弧长和扇形面积教学设计
弧长与扇形面积教案
弧长与扇形面积教案一、引入本节课将学习弧长与扇形面积的计算方法。
在数学中,弧是指圆上两个点之间的曲线段,扇形是由圆心和圆上两点组成的图形。
我们将通过理论和实践的结合,帮助学生理解弧长和扇形面积的概念,并学会计算它们的值。
二、理论知识解释1. 弧长:弧长是指圆上两个点之间的弧的长度。
弧长和圆的半径以及弧所对应的圆心角有关。
我们可以通过以下公式计算弧长:弧长 = (圆心角/360°) × 2πr其中,r为圆的半径。
2. 扇形面积:扇形是由圆心和圆上两点组成的图形,而扇形面积就是扇形所包围的部分的面积。
扇形面积的计算方法如下:扇形面积 = (圆心角/360°) × πr²其中,r为圆的半径。
三、例题演示和讲解1. 例题一:已知一个圆的半径为8cm,求其中一个扇形面积,其对应的圆心角为60°。
解:根据扇形面积的计算公式,将已知数据代入计算得:扇形面积= (60°/360°) × π×8²= 1/6 × π × 64≈ 33.51c m²2. 例题二:若一个圆的半径为12cm,其中一个扇形的面积为150cm²,求对应的圆心角。
解:设所求圆心角为x°,根据扇形面积的计算公式,我们可以列方程:(x°/360°) × π × 12² = 150解方程可得:x° ≈ 124.07°四、练习题和讲解1. 练习题一:已知一个圆的半径为10cm,其中一个扇形的面积为75π cm²,求对应圆心角的度数。
解:设所求圆心角为x°,根据扇形面积的计算公式,我们可以列方程:(x°/360°) × π × 10² = 75π解方程可得:x° = 540°2. 练习题二:若一个圆的半径为15cm,求其中一个扇形的面积,其对应的圆心角为120°。
弧长与扇形的面积教案
弧长与扇形的面积教案一、教学目标1. 理解弧长的概念和计算方法。
2. 掌握扇形面积的计算方法。
3. 能够应用弧长和扇形面积的知识解决实际问题。
二、教学内容1. 弧长的概念和计算方法。
2. 扇形面积的计算方法。
3. 弧长和扇形面积的应用。
三、教学过程1. 导入老师通过引入一道实际问题,如一个半径为10cm的圆的一条弧长为15cm,问这条弧长对应的圆心角是多少度,让学生思考并尝试解答。
2. 弧长的概念和计算方法(1)引导学生观察圆的弧形和其中一个弧长,进一步培养学生对弧的直观感受。
(2)让学生尝试用圆的半径和圆心角来计算弧长,通过实际测量验证计算结果的准确性。
(3)总结弧长的计算方法(弧长 = 半径×圆心角 / 360°),并让学生进行练习。
3. 扇形面积的计算方法(1)引导学生观察一个扇形和其对应的圆,进一步培养学生对扇形的直观感受。
(2)让学生尝试用圆的半径和圆心角来计算扇形的面积,通过实际测量验证计算结果的准确性。
(3)总结扇形面积的计算方法(扇形面积 = 1/2 ×半径×半径×圆心角 / 360°),并让学生进行练习。
4. 弧长和扇形面积的应用(1)导入一个实际问题:一个圆形花坛的周长为30米,花坛中心的喷泉水按每秒60毫升的速度喷出,问这个喷泉每分钟喷水多少升?(2)引导学生分析问题,并利用已学知识解答问题。
(3)通过解答问题,让学生认识到弧长和扇形面积在解决实际问题中的应用价值。
五、教学总结1. 弧长是圆的一部分长度,可以用圆的半径和圆心角来计算。
2. 扇形是圆的一部分面积,可以用圆的半径和圆心角来计算。
3. 弧长和扇形面积的计算方法是由圆的半径和圆心角决定的。
4. 弧长和扇形面积的知识在解决实际问题中有很大的应用价值。
六、教学延伸1. 可以引导学生查找更多弧长和扇形面积的实际应用例子,并进行讨论和分享。
2. 可以设计更多扩展题目和实践任务,让学生更加熟练运用弧长和扇形面积的知识。
教案 弧长和扇形的面积
24.4弧长和扇形的面积教学目标(一)知识与技能1.经历探索弧长计算公式及扇形面积计算公式的过程;2.了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题.(二)过程与方法1.经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力.2.了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力.(三)情感与价值观1.经历探索弧长及扇形面积计算公式,让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2.通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.教学重点1.经历探索弧长及扇形面积计算公式的过程.2.了解弧长及扇形面积计算公式.3.会用公式解决问题.教学难点1.探索弧长及扇形面积计算公式.2.用公式解决实际问题.教学方法学生互相交流探索法教学过程Ⅰ.创设问题情境,引入新课[师] 如图,在运动会的4×100米比赛中,甲和乙分别在第1跑道和第2跑道,为什么他们的起跑线不在同一处?怎样来计算弯道的“展直长度”?学完今天的内容,你就会算了。
今天我们来学习弧长和扇形的面积。
出示学习目标(学生了解学习目标)。
下面请同学们预习课本。
Ⅱ.新课讲解一、探索弧长的计算公式1.半径为R的圆,周长为多少?C=2πR2.1°的圆心角所对弧长是多少?3.n°圆心角所对的弧长是1°圆心角所对的弧长的多少倍?4. n°的圆心角所对弧长l是多少?弧长公式注意:用弧长公式进行计算时,要注意公式中n 的意义.n 表示1°圆心角的倍数,它是不带单位的.下面我们看弧长公式的运用.算一算 已知弧所对的圆心角为90°,半径是4,则弧长为____.典例精析 投影片例例1;制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度l.(单位:mm ,精确到1mm) 解:由弧长公式,可得弧AB 的长因此所要求的展直长度l =2×700+1570=2970(mm ).答:管道的展直长度为2970mm .对应练一练:1.已知扇形的圆心角为60°,半径为1,则扇形的弧长为 .2.一个扇形的半径为8cm ,弧长为 cm ,则扇形的圆心角为 .二.扇形及扇形的面积由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形.1009005001570(mm),180l ⨯⨯π==π≈判一判: 下列图形是扇形吗?[师]扇形的面积公式的推导. 如果圆的半径为R ,则圆的面积为πR 2。
弧长与扇形面积 教案
弧长与扇形面积教案教案标题:弧长与扇形面积教学目标:1. 理解并能够计算弧长的概念和计算方法。
2. 理解并能够计算扇形面积的概念和计算方法。
3. 能够应用弧长和扇形面积的计算方法解决实际问题。
教学准备:1. 教师准备:投影仪,计算工具(例如计算器),白板,白板笔。
2. 学生准备:铅笔,纸张,计算工具。
教学过程:步骤一:导入(5分钟)1. 教师通过引入圆的概念,复习半径、直径和圆周长的计算方法。
2. 引出新的概念:弧长和扇形面积,并与圆周长进行对比,说明它们之间的关系。
步骤二:弧长的计算(15分钟)1. 教师通过示意图和实例,解释如何计算弧长。
2. 教师指导学生进行练习,从简单到复杂逐步提高难度。
3. 教师提供反馈和讲解,纠正学生可能存在的错误。
步骤三:扇形面积的计算(15分钟)1. 教师通过示意图和实例,解释如何计算扇形面积。
2. 教师指导学生进行练习,从简单到复杂逐步提高难度。
3. 教师提供反馈和讲解,纠正学生可能存在的错误。
步骤四:综合应用(15分钟)1. 教师设计一些实际问题,要求学生运用所学知识解决。
2. 学生进行个人或小组讨论,寻找解决问题的方法。
3. 学生展示解决思路和结果,教师给予评价和指导。
步骤五:总结与拓展(5分钟)1. 教师对本节课的重点内容进行总结,并强调弧长和扇形面积的实际应用。
2. 教师提供一些拓展问题,鼓励学生进一步思考和探索。
教学延伸:1. 学生可以通过实际测量,验证圆周长、弧长和扇形面积的计算公式。
2. 学生可以应用所学知识解决一些与圆相关的实际问题,如轮胎的制作、扇形花坛的设计等。
评估方式:1. 教师观察学生在课堂上的参与和表现。
2. 教师设计练习题和应用题,检查学生对弧长和扇形面积的理解和应用能力。
教学反思:本节课通过引入圆的概念,将弧长和扇形面积与圆周长进行对比,帮助学生理解这两个概念的意义和计算方法。
通过练习和应用,学生能够逐步掌握弧长和扇形面积的计算技巧,并能够应用于实际问题中。
弧长及扇形的面积教案示范三篇
弧长及扇形的面积教案示范三篇弧长及扇形的面积教案1教材分析:本节课涉及的主要概念有弧长、圆心角、扇形面积等,需要学生掌握相关定义和公式。
同时,也需要对圆的基本属性和关系有一定的了解,如弦长公式、周长公式等。
教学目标:学生能够准确理解弧长、圆心角、扇形面积等的概念与关系,能够运用相应的公式计算,同时掌握圆的基本属性和关系。
教学重点:弧长、圆心角、扇形面积的概念、公式和计算方法。
教学难点:圆心角的度量方法和圆的相关属性的理解。
学情分析:学生在初中阶段已经学习过圆的相关知识,对圆的基本属性和关系有一定的了解,但掌握程度存在差异。
部分学生对于弧长、圆心角、扇形面积等概念理解不深,计算方法掌握不熟练。
教学策略:通过引导学生观察实际生活中的圆形物体,探求圆的相关特征和性质,并引出弧长、圆心角、扇形面积的概念及其运用。
同时,采用差异化教学和在课外加强练习的方式,提高学生对知识点的掌握度。
教学方法:由浅入深、由低到高的顺序逐步引导学生,通过实际生活情境,建立数学模型,形象直观地解释和应用相关知识点。
同时,采用小组合作、互帮互助的方式,激发学生学习兴趣和主动参与性。
弧长及扇形的面积教案2导入环节(约5分钟):教学内容:引出本节课的主题——弧长及扇形的面积。
教学活动:通过展示一些圆形的图片,采用提问的方式引导学生发现圆形的特点,比如圆周率、直径等等,然后展示一些弧线和扇形的图片,引导学生思考它们与圆形有什么关系,为本节课的学习做好铺垫。
课堂互动(约35分钟):教学内容:介绍弧长及扇形的面积的概念、计算公式以及应用。
教学活动:先通过展示一些实际生活中的问题,引出学习弧长及扇形的面积的重要性。
然后对弧长的概念及计算公式进行详细解释,并且设计一些小组讨论或者个人练习的活动,加强学生对于弧长计算的掌握。
接着,再对扇形的面积进行详细讲解,包括其计算公式和一些实例的练习,这里也可以采用小组讨论的方式,让学生们互相帮助和交流,加强学生们对于扇形面积的理解和掌握。
弧长和扇形面积教学设计(共12篇)
弧长和扇形面积教学设计(共12篇)第1篇:《弧长和扇形面积》教学设计24.4 弧长和扇形面积第二课时一、教学目标(一)学习目标1.了解圆锥母线的概念,探索并理解圆锥侧面和全面积计算公式;2.会灵活应用圆锥侧面积和全面积计算公式解决问题.(二)学习重点探究圆锥侧面积和全面积的计算公式.(三)学习难点应用圆锥侧面积和全面积计算公式解决问题二、教学设计 1.自主学习(1)弧长计算公式和扇形面积计算公式回顾师问:上节课我们学习了弧长计算公式和扇形面积计算公式,你们还记得它们是怎样的吗?生答:弧长l=半径)生答:扇形面积S=(2)圆锥的再认识(教师出示一组生活中含圆锥形物体的图片)n⨯πR2,(其中n 表示扇形圆心角的度数,R表示扇形所在圆的半径)360nnπR⨯2πR=,(其中n表示弧所对的圆心角的度数,R表示弧所在圆的360180 师问:上面的物体中,有你熟悉的立体图形吗?生答:圆锥体师问:非常好,它们都含有圆锥体(如下图),那么什么是圆锥体呢?生答:圆锥是由一个底面和一个侧面组成的,它的底面是一个圆,它的侧面是一个曲面.师问:我们将圆锥顶点和底面圆周上任意一点连接的线段称作圆锥的母线,那么一个圆锥有多少条母线呢?它们在数量上有什么关系?生答:有无数条,它们是相等的.师问:为什么是相等的呢?生答:由勾股定理,每条母线l=h2+r2,h表示圆锥的高,r表示底面半径,对于同一个圆锥体,h和r的长是固定的,因此母线的长也是固定的.师:非常好!我们不仅知道母线长度是相同的,而且还了解了有关母线的一条非常重要的性质:母线l、圆锥高h、底面半径r之间满足:l2=h2+r2【设计意图】本节课探究的圆锥的侧面积和全面积,因此有必要重新认识圆锥,另外,本节课必须使用到上节课学习的弧长计算公式和扇形面积计算公式,因此也有必要回顾这两个公式,为本节课教学内容顺利进行做铺垫.二、合作交流师:大家分析得非常好,接下来请大家以小组为单位,完成下列问题串:如图,沿圆锥的一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形,(1)设圆锥的母线长为l,底面圆的半径为r,如图所示,那么这个扇形的半径为________;(2)扇形的弧长其实是底面圆周展开得到的,所以扇形弧长为________;(3)因此圆锥的侧面积为________,圆锥的全面积为________l(学生先独立思考,再小组合作完成,并展示)归纳:①如上图,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2πr,根据上节课学习的扇形面积公式S 扇形=半径)可知:该圆锥的侧面展开图的面积是S侧=1lR(其中l表示扇形的弧长,R表示扇形21⨯2πr⨯l=πrl;2②圆锥的侧面积与底面积之和称为圆锥的全面积,表示为:S全=S侧+S底=πrl+πr2=πr(l+r)③通过上面两个公式,我们可以看到,只要知道母线、底面半径就可以求圆锥的侧面积的全面积. 3.展示提升如图,玩具厂生产一种圣诞老人的帽子,其帽身是圆锥形,母线SB=15 cm,底面半径OB=5 cm,要生产这种帽身10000个,你能帮玩具厂算一算帽身至少需多少平方米的材料吗?(π取3.142)【知识点】圆锥侧面积在生活问题中的应用【数学思想】数形结合【解题过程】解:∵母线SB=15 cm,底面半径OB=5 cm ∴一顶圣诞帽需要的材料是π⨯5⨯15=75πcm²∴生产这种帽身10000个,需要75π⨯10000=750000πcm²=75πm²≈235.65 m².∴玩具厂至少需235.65平方米的材料【思路点拨】已知底面半径和母线长,可以直接套用圆锥侧面积公式即可,但实际问题需要注意单位问题.【答案】235.65m2四、课堂巩固1、在Rt△ABC中,∠ACB=90o,AC=8,BC=6,将△ABC绕AC所在的直线k旋转一周得到一个旋转体,则该旋转体的侧面积为()A.30πB.40πC.50πD.60π2、已知圆锥的底面半径为3,母线为4,则它的侧面积是_______,全面积是________.【知识点】圆锥侧面积的计算【解题过程】解:∵母线l=4,底面半径r=3 ∴由圆锥侧面积计算公式得:S侧=πrl=π⨯3⨯4=12π由圆锥全面积计算公式得:S全=πr(l+r)=π⨯3⨯(3+4)=21π【思路点拨】已知底面半径和母线长,可以直接套用圆锥侧面积和全面积计算公式求得.【答案】12π21π练3、已知圆锥的底面半径为3,高为4,则它的侧面积是_______,全面积是_______.4、已知圆锥的母线长是5cm,侧面积是20πcm²,则这个圆锥的底面半径是________.【知识点】圆锥侧面积计算公式的逆用【思路点拨】已知圆锥的母线、圆锥侧面积,可以逆用圆锥侧面积的计算公式求得圆锥底面半径,实际上圆锥母线、圆锥底面半径、圆锥侧面积三者中可以“知二求一”.【解题过程】解:∵母线长l=5cm,圆锥侧面积S侧=20πcm2 ∴圆锥侧面积计算公式:S侧=πrl=π⨯r⨯5=20π解得:r=4 ∴底面半径为4cm 【答案】4cm5、圆锥的底面半径是4,母线长是12,则这个圆锥侧面展开图的圆心角度数是_______.【知识点】圆锥侧面积的计算,扇形面积的计算【解题过程】解法一:∵圆锥的底面半径是4,母线长是12 ∴圆锥侧面积=S侧=πrl=π⨯4⨯12=48π设圆锥侧面展开图的圆心角度数为n 所以展开图的面积还可以表示为:∴nπ⨯122 360nπ⨯122=48π解得:n=120 3604 ∴这个圆锥侧面展开图的圆心角度数是120°.解法二:∵圆锥的底面半径是4 ∴底面周长=2π⨯4=8π设圆锥侧面展开图的圆心角度数为n ∵圆锥的母线长是12 ∴侧面展开图的弧长=∴8π=nπ⨯12 180nπ⨯12解得:n=120 180∴这个圆锥侧面展开图的圆心角度数是120°.【思路点拨】圆锥侧面展开图的面积一方面可以通过母线和底面半径来求,即S=πrl;另一方面也可以通过扇形本身的面积计算公式来求,即S=解这个方程即可得到圆锥侧面展开图的圆心角n=nnπl2,这样就得到πrl=πl2,360360360r,其中r表示圆锥底面半径,l表示圆lnnπl,这样就得到πl=180180锥母线.还可以根据圆锥侧面展开图的弧长来建立等量关系,一方面圆锥侧面展开图的弧长等于底面周长2πr;另一方面圆锥侧面展开图的弧长等于2πr,同样可以得到圆锥侧面展开图的圆心角n=360r. l【答案】120° 五.课堂小结(1)连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线,圆锥有无数条母线,它们的长度都相等,每条母线l=h2+r2(h表示圆锥的高,r表示底面半径).(2)设圆锥的母线长为l,底面圆的半径为r,则该圆锥的侧面展开图的面积是1⨯2πr⨯l=πrl.2(3)圆锥的侧面积与底面积之和称为圆锥的全面积,设圆锥的母线长为l,底面圆的半径为S侧=r,则S全=S侧+S底=πrl+πr2=πr(l+r).5第2篇:弧长和扇形的面积教学设计弧长和扇形的面积教学设计姜永娜教学目标知识与技能:1.会计算弧长及扇形的面积。
弧长与扇形面积教案
弧长与扇形面积教案一、教学目标1.理解弧长的概念,掌握计算弧长的方法。
2.理解扇形面积的概念,掌握计算扇形面积的方法。
3.能够应用所学知识解决实际问题。
二、教学重点1.弧长的计算方法。
2.扇形面积的计算方法。
三、教学难点1.弧长和扇形面积的关系。
2.如何应用所学知识解决实际问题。
四、教学过程1. 弧长的概念和计算方法(1)弧长的概念弧长是指圆上两点之间的弧所对应的圆周长度。
弧长的单位通常为弧度或者角度。
(2)弧长的计算方法弧长的计算方法有两种,一种是根据圆的半径和圆心角的大小计算,另一种是根据圆的直径和圆心角的大小计算。
① 根据圆的半径和圆心角的大小计算弧长设圆的半径为r,圆心角的大小为θ(弧度制),则弧长l的计算公式为:l=rθ② 根据圆的直径和圆心角的大小计算弧长设圆的直径为d,圆心角的大小为θ(弧度制),则弧长l的计算公式为:l=dθ2(3)弧长的应用弧长的应用非常广泛,例如在建筑、机械、电子等领域中,都需要用到弧长的计算。
2. 扇形面积的概念和计算方法(1)扇形面积的概念扇形是指圆心角所对应的圆弧和两条半径所围成的图形。
扇形面积是指扇形所围成的面积。
(2)扇形面积的计算方法设圆的半径为r,圆心角的大小为θ(弧度制),则扇形面积S的计算公式为:S=12r2θ(3)扇形面积的应用扇形面积的应用也非常广泛,例如在建筑、机械、电子等领域中,都需要用到扇形面积的计算。
3. 实例分析(1)弧长的实例分析例:一个圆的半径为5 cm,圆心角的大小为60∘,求弧长。
解:根据弧长的计算公式可知:l=rθ=5×π3=5π3cm因此,该圆的弧长为5π3cm。
(2)扇形面积的实例分析例:一个圆的半径为5 cm,圆心角的大小为60∘,求扇形面积。
解:根据扇形面积的计算公式可知:S=12r2θ=12×52×π3=25π6cm2因此,该圆的扇形面积为25π6cm²。
4. 总结本节课主要介绍了弧长和扇形面积的概念及其计算方法,同时通过实例分析,让学生更好地理解和掌握所学知识。
弧长及扇形面积公式教学设计
弧长及扇形面积公式教学设计教学设计:弧长及扇形面积公式【导言】在数学学科中,我们经常会遇到与圆相关的问题,如何计算弧长和扇形面积是其中常见的问题。
本次教学设计旨在帮助学生深入理解和掌握弧长和扇形面积的计算公式,并能够在实际问题中灵活运用。
【教学目标】1. 理解并运用弧长及扇形面积公式;2. 能够准确计算给定的弧长和扇形面积,并应用于实际问题;3. 发展学生的逻辑思维、分析问题和解决问题的能力。
【教学内容】1. 弧长公式的引入与推导;2. 扇形面积公式的引入与推导;3. 练习题及实际问题的应用。
【教学步骤】Step 1 弧长公式的引入与推导1. 张贴一张圆的图片,引导学生观察并回答:什么是弧?弧的长度如何计算?2. 向学生提出以下问题:当我们只知道圆的半径r和圆心角θ时,如何计算弧长L?3. 引导学生观察并发现弦与弧长之间的关系,由此引出弧长公式:L = rθ,其中L表示弧长,r表示半径,θ表示圆心角的弧度数。
4. 利用实例演示弧长公式的应用,进行案例讨论。
Step 2 扇形面积公式的引入与推导1. 给学生呈现一个扇形的图片,并引导学生回答:扇形面积如何计算?2. 向学生出示以下问题:当我们只知道圆的半径r和圆心角θ时,如何计算扇形面积S?3. 通过将扇形拆分为扇形锥或楔形,并利用相似三角形以及圆的面积公式进行推导,得出扇形面积公式:S = (1/2) r²θ,其中S表示扇形面积,r表示半径,θ表示圆心角的弧度数。
4. 利用实例演示扇形面积公式的应用,进行案例讨论。
Step 3 练习题及实际问题的应用1. 分发练习题,包括计算给定圆的弧长和扇形面积的练习。
2. 引导学生通过实际问题,如建筑、园艺等相关领域的问题,应用弧长和扇形面积公式解决实际问题。
3. 学生互相交流、合作解决问题,并展示解题过程和结果。
【课堂延伸】1. 将弧长和扇形面积与其他几何概念进行联系,如相似、共圆等;2. 拓展学生的思维,提出更复杂的问题,让学生通过综合应用解决问题;3. 鼓励学生探究其他相关公式的推导和应用。
弧长及扇形的面积教学设计
弧长及扇形的面积教学设计教学目标:1.理解弧长、圆心角、半径和圆周之间的关系。
2.能够计算给定半径和圆心角的弧长。
3.能够计算给定半径和圆心角的扇形面积。
教学资源:1.圆盘模型2.教学画板或PPT3.学生练习题集教学步骤:引入:1.引导学生回顾圆的基本概念,如半径、直径、弧、圆周等。
2.介绍弧长的概念,即圆周上部分弧的长度。
讲解弧长的计算方法:1.引导学生思考如何计算弧长。
2.引入弧度制度量角度的方法,即使用半径长作为角度单位。
3.讲解弧长的计算公式:弧长=半径×圆心角(弧度制)。
4.给学生演示计算弧长的实例。
5.与学生一起解决一些计算弧长的练习题。
讲解扇形面积的计算方法:1.引导学生思考如何计算扇形面积。
2.提示学生想一想圆盘模型中的扇形面积是如何计算的。
3.讲解扇形面积的计算公式:扇形面积=1/2×半径×半径×圆心角(弧度制)。
4.给学生演示计算扇形面积的实例。
5.与学生一起解决一些计算扇形面积的练习题。
总结与拓展:1.总结弧长和扇形面积的计算方法。
2.引导学生思考在解决实际问题时如何应用弧长和扇形面积的概念。
3.鼓励学生发散思维,探讨其他几何形状的面积计算方法。
4.布置练习作业,巩固所学知识。
扩展活动:1.学生自行设计一个实验,验证弧长和扇形面积的计算方法。
2.探究如何计算不规则圆周上的弧长和扇形面积。
3.进一步学习其他几何形状的面积计算方法,如三角形、矩形等。
评估方式:1.课堂练习题2.小组讨论和实验报告。
九年级数学上册《弧长及扇形的面积》教案、教学设计
(二)过程与方法
在教学过程中,采用以下方法引导学生学习:
1.创设生活情境,以实际问题导入新课,激发学生的学习兴趣。
2.采用小组合作、讨论交流的学习方式,引导学生通过观察、思考、探索,自主发现弧长和扇形面积的计算方法。
3.通过具体例题的分析和讲解,帮助学生掌握弧长和扇形面积的计算步骤,并能够灵活运用。
2.探索新知:组织学生进行小组合作,探索圆的弧长与圆心角的关系,引导学生发现并理解弧长计算公式。在此基础上,引入扇形面积的概念,让学生自主推导扇形面积的计算公式。
3.应用与实践:设计不同难度的练习题,从简单的计算题到复杂的实际问题,帮助学生巩固所学知识,提高解决问题的能力。
4.总结提升:在课程的最后阶段,通过师生共同总结本节课的重点和难点,帮助学生梳理知识结构,形成完整的知识体系。
-家长参与评价,了解学生的学习情况,并在作业本上签字,以便教师及时了解学生的学习反馈。
2.应用与实践:
-选择两个生活中的实例,要求学生将其抽象为弧长或扇形面积的计算问题,并给出详细的解题过程和答案。
-鼓励学生发挥创意,设计一个包含弧长和扇形面积的综合性问题,与其他同学进行交流和讨论。
3.拓展与探究:
-探究圆周率π在弧长和扇形面积计算中的作用,要求学生查阅相关资料,了解圆周率π的历史和数学意义,并撰写一篇小短文。
九年级数学上册《弧长及扇形的面积》教案、教学设计
一、教学目标
(一)知识与技能
1.了解弧长和扇形面积的概念,理解它们在实际生活中的应用。
2.掌握弧长和扇形面积的计算公式,能够准确计算出给定圆的弧长和扇形面积。
3.能够运用弧长和扇形面积的相关知识解决实际问题,如计算园林中弧形道路的长度、计算扇形区域的面积等。
弧长和扇形面积教学设计
弧长和扇形面积教学设计一、教学目标•了解弧长的概念及计算方法;•了解扇形面积的概念及计算方法;•学会应用弧长和扇形面积进行问题求解;•培养学生分析和解决实际问题的能力。
二、教学步骤步骤一:引入知识(15分钟)•通过一个问题引入弧长和扇形面积的概念,如一个车轮转一圈所走过的路程是多少。
•让学生讨论问题,并引导他们思考弧长的计算方法。
步骤二:弧长的计算(25分钟)•引入弧度的概念,解释弧长的计算公式:s = rθ,其中 s 代表弧长,r 代表半径,θ 代表圆心角的弧度值。
•提供一些例题,并进行详细讲解。
例如,给定半径 r = 3cm,圆心角θ = 60°,求弧长 s。
•让学生分组合作完成一些练习题,以巩固弧长的计算方法。
•列举一些实际问题,让学生应用弧长进行问题求解。
步骤三:扇形面积的计算(25分钟)•解释扇形面积的计算公式:A = (1/2) × r^2 × θ,其中 A 代表扇形面积。
•提供一些例题,并进行详细讲解。
例如,给定半径 r = 4cm,圆心角θ = 90°,求扇形面积 A。
•让学生分组合作完成一些练习题,以巩固扇形面积的计算方法。
•列举一些实际问题,让学生应用扇形面积进行问题求解。
步骤四:综合运用(20分钟)•给学生提供一些复杂的综合问题,让他们综合运用弧长和扇形面积进行求解。
•引导学生思考解题方法和步骤,培养他们解决实际问题的能力。
•鼓励学生进行小组讨论和合作,分享解题思路和方法。
步骤五:总结与拓展(15分钟)•让学生总结弧长和扇形面积的计算方法,并进行概念的复习和巩固。
•提供一些拓展问题,引导学生思考应用弧长和扇形面积的更多实际情境,培养他们的应用能力和创新思维。
三、教学评价•设计一些课堂练习题和作业题,检验学生对于弧长和扇形面积的掌握程度。
•观察学生在课堂练习和小组讨论中的表现,评价他们的合作能力和解题思维。
•收集学生的解题过程和思路,给予针对性的指导和反馈。
弧长及扇形的面积 教案
弧长及扇形的面积教案教案标题:弧长及扇形的面积教学目标:1. 理解弧长的概念,能够计算给定圆的弧长。
2. 理解扇形的概念,能够计算给定扇形的面积。
教学准备:1. 教师准备:白板、黑板笔、投影仪、计算器。
2. 学生准备:课本、笔、纸。
教学步骤:引入(5分钟):1. 教师通过投影仪或白板,展示一个圆形,并引导学生回顾圆的相关概念。
2. 引导学生思考,当我们需要计算圆的一部分时,如何计算它的长度或面积。
探究(15分钟):1. 教师将圆形分成几个等分,引导学生观察每个等分的特点。
2. 引导学生思考,当我们需要计算圆的一部分弧长时,如何计算。
3. 教师通过示例计算,引导学生掌握弧长计算的方法。
概念讲解(10分钟):1. 教师通过投影仪或黑板,讲解扇形的概念,并引导学生理解扇形的特点。
2. 教师讲解如何计算扇形的面积,并通过示例计算,帮助学生掌握计算方法。
练习(15分钟):1. 学生在课本上完成一些练习题,巩固弧长和扇形面积的计算方法。
2. 教师巡视学生的学习情况,及时给予指导和帮助。
拓展(10分钟):1. 教师引导学生思考,如果给定一个扇形的半径和圆心角,如何计算扇形的面积。
2. 教师讲解如何根据半径和圆心角计算扇形的面积,并通过示例计算,帮助学生理解。
总结(5分钟):1. 教师对本节课所学内容进行总结,并强调弧长和扇形面积的计算方法。
2. 学生提问和解答。
作业布置:1. 学生完成课后练习题,巩固所学知识。
2. 鼓励学生提出问题,以便在下节课进行讨论和解答。
教学反思:1. 教师在教学过程中能够充分引导学生思考,培养学生的自主学习能力。
2. 教师在讲解过程中使用示例进行计算,帮助学生更好地理解概念和计算方法。
3. 教师及时巡视学生学习情况,给予指导和帮助,确保学生掌握所学知识。
《弧长及扇形面积的计算》教案
《弧长及扇形面积的计算》教案教学目标:1.能够理解什么是弧长和扇形面积。
2.能够掌握弧长和扇形面积的计算方法。
3.能够应用所学知识解决实际问题。
教学重点:1.弧长和扇形面积的定义和计算方法。
2.弧长和扇形面积的应用,能够解决实际问题。
教学难点:应用所学知识解决实际问题。
教学准备:1.教师准备黑板、粉笔、教学PPT。
2.学生准备纸和铅笔。
教学过程:Step 1:导入新知(5分钟)教师通过展示一幅画面,简要介绍弧长和扇形面积的概念,并激发学生对于这两个概念的兴趣。
Step 2:概念讲解(15分钟)教师通过PPT向学生介绍弧长和扇形面积的定义,同时讲解计算公式以及相关的单位。
-弧长的定义:一个圆的弧长是指弧所对应的圆周上的一段弧的长度。
弧长与半径和弧度有关。
弧度是用来表示弧长的度量单位,它是指半径等于1的圆的弧长所对应的角。
弧长的计算公式为:弧长=半径×弧度。
-扇形面积的定义:一个圆的扇形面积是指由圆心和圆上两端点围成的一段圆弧和两条相连的半径所形成的区域的面积。
扇形面积的计算公式为:扇形面积=1/2×弧长×半径。
Step 3:实例演练(20分钟)教师通过PPT和讲解,给出一些实例进行演练,让学生运用所学知识计算弧长和扇形面积。
- 实例1:一个半径为5cm的圆的弧度为1.2弧度,求它的弧长和扇形面积。
- 实例2:一个直径为10cm的圆的圆心角为60度,求它的弧长和扇形面积。
- 实例3:一个半径为8cm的圆的弧长为12cm,求它的弧度和扇形面积。
Step 4:拓展应用(20分钟)教师出示一些与弧长和扇形面积相关的实际问题,鼓励学生运用所学知识解决问题。
- 问题1:一个轮胎的直径为60cm,每次转一圈需要转4.8米,求这个轮胎的弧长。
- 问题2:一个车轮半径为50cm,旋转一周需要走300cm的距离,求这个车轮的弧度。
-问题3:一个广告牌的直径为10m,将广告牌按照弧度等分为8份,求每份的弧长和扇形面积。
弧长和扇形面积教学设计
《 24.4弧长和扇形面积》教学设计教学过程2、例题讲解例1、制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算下图中管道的展直长度,即的长(结果精确到0.1mm)。
分析:要求管道的展直长度,即求的长,根根弧长公式l=180n Rπ可求得的长,其中n为圆心角,R为半径。
解:R=40mm,n=110。
∴的长=180nπR=110180×40π≈76.8mm。
因此,管道的展直长度约为76.8mm。
例2、制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,试计算下图所示的管道的展直长度L(结果取整数)。
解:由弧长公式,得的长=500π≈1 570(mm)因此所要求的展直长度L=2×700+1 570=2 970(mm)例3、如图,已知扇形AOB的半径为10,∠AOB=60°,求的长(•结果精确到0.1)和扇形AOB的面积(结果精确到0.1)分析:要求弧长和扇形面积,只要有圆心角,半径的已知量便可求,本题已满足。
解:的长=5.103101018060≈=⨯ππ3.52610010360602≈=⨯=ππ扇形S通过三道例题教学,巩固两个公式,并学习规范的书写步骤。
对课本例题书写过程加以改进,使学生精准掌握例题。
弧长和扇形面积教案
弧长和扇形面积教案【教学目标】(一)教学知识点1.经历探究弧长运算公式及扇形面积运算公式的过程;2.了解弧长运算公式及扇形面积运算公式,并会应用公式解决问题.(二)能力训练要求1.经历探究弧长运算公式及扇形面积运算公式的过程,培养学生的探究能力.2.了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力(三)情感与价值观要求1.经历探究弧长及扇形面积运算公式,让学生体验教学活动充满着探究与制造,感受数学的严谨性以及数学结论的确定性.2.通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的紧密联系,激发学生学习数学的爱好,提高他们的学习积极性,同时提高大伙儿的运用能力.【重点难点】重点:1.经历探究弧长及扇形面积运算公式的过程.2.了解弧长及扇形面积运算公式.3.会用公式解决问题.难点:1.探究弧长及扇形面积运算公式.2.用公式解决实际问题.【教学方法】观看猜想、合作交流、讲练结合【自主复习、预习】【教学过程】一、检查自主复习、预习请同学们回答下列问题.1.圆的周长公式是什么?2.圆的面积公式是什么?3.什么叫弧长?二、新课导学请同学们独立完成下题:设圆的半径为R,则:1.圆的周长能够看作______度的圆心角所对的弧.2.1°的圆心角所对的弧长是_______.3.2°的圆心角所对的弧长是_______.4.4°的圆心角所对的弧长是_______.……5.n°的圆心角所对的弧长是_______.(老师点评)依照同学们的解题过程,我们可得到:.c n︒40mm .c B A O 110︒ n °的圆心角所对的弧长为360n R π 例1制作弯形管道时,需要先按中心线运算“展直长度”再下料,•试运算如图所示的管道的展直长度,即AB 的长(结果精确到0.1mm )分析:要求AB 的弧长,圆心角知,半径知,只要代入弧长公式即可.解:R=40mm ,n=110∴AB 的长=180n R π=11040180π⨯≈76.8(mm ) 因此,管道的展直长度约为76.8mm .问题:(学生分组讨论)在一块空旷的草地上有一根柱子,柱子上拴着一条长5m•的绳子,绳子的另一端拴着一头牛,如图所示:(1)这头牛吃草的最大活动区域有多大?(2)假如这头牛只能绕柱子转过n °角,那么它的最大活动区域有多大?学生提问后,老师点评:(1)这头牛吃草的最大活动区域是一个以A (柱子)为圆心,5m 为半径的圆的面积.(2)假如这头牛只能绕柱子转过n °角,那么它的最大活动区域应该是n °圆心角的两个半径的n °圆心角所对的弧所围成的圆的一部分的图形,如图:像如此,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.(小黑板),请同学们结合圆心面积S=πR 2的公式,独立完成下题:1.该图的面积能够看作是_______度的圆心角所对的扇形的面积. 2.设圆的半径为R ,1°的圆心角所对的扇形面积S 扇形=_______. 3.设圆的半径为R ,2°的圆心角所对的扇形面积S 扇形=_______.4.设圆的半径为R ,5°的圆心角所对的扇形面积S 扇形=_______.……5.设圆半径为R ,n °的圆心角所对的扇形面积S 扇形=_______.老师检察学生练习情形并点评因此:在半径为R 的圆中,圆心角n °的扇形 S 扇形=2360n R π 例2.如图,已知扇形AOB 的半径为10,∠AOB=60°,求AB 的长(•结果精确到0.1)和扇形AOB的面积结果精确到0.1)分析:要求弧长和扇形面积,只要有圆心角,半径的已知量便可求,本题已满足.三、巩固练习(一)基础训练——夯实基础一、课本课本P112 练习1、2、3二、选择题.1.已知扇形的圆心角为120°,半径为6,则扇形的弧长是().A.3π B.4π C.5π D.6π2.如图1所示,把边长为2的正方形ABCD的一边放在定直线L上,按顺时针方向绕点D旋转到如图的位置,则点B运动到点B′所通过的路线长度为()A.1 B.π C.2 D.2π(1) (2) (3)3.如图2所示,实数部分是半径为9m的两条等弧组成的游泳池,若每条弧所在的圆都通过另一个圆的圆心,则游泳池的周长为()A.12πm B.18πm C.20πm D.24πm(二)提升训练——能力培养1.假如一条弧长等于4πR,它的半径是R,那么这条弧所对的圆心角度数为______,当圆心角增加30°时,这条弧长增加________.2.如图3所示,OA=30B,则AD的长是BC的长的_____倍.3.已知如图所示,AB所在圆的半径为R,AB的长为3πR,⊙O′和OA、OB分别相切于点C、E,且与⊙O内切于点D,求⊙O′的周长.(三)综合运用——拓展思维例3.(1)操作与证明:如图所示,O是边长为a的正方形ABCD的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O处,并将纸板绕O点旋转,求证:正方形ABCD 的边被纸板覆盖部分的总长度为定值a .(2)尝试与摸索:如图a 、b 所示,•将一块半径足够长的扇形纸板的圆心角放在边长为a 的正三角形或边长为a 的正五边形的中心点处,并将纸板绕O 旋转,,当扇形纸板的圆心角为________时,正三角形边被纸覆盖部分的总长度为定值a ;当扇形纸板的圆心角为_______时,正五边形的边长被纸板覆盖部分的总长度也为定值a .(3)探究与引申:一样地,将一块半径足够长的扇形纸板的圆心放在边长为a 的正n 边形的中心O 点处,若将纸板绕O 点旋转,当扇形纸板的圆心角为_______时,正n 边形的边被纸板覆盖部分的总长度为定值a ,这时正n•边形被纸板所覆盖部分的面积是否也为定值?若为定值,写出它与正n 边形面积S 之间的关系(不需证明);若不是定值,请说明理由.四、归纳小结本节课应把握:1.n °的圆心角所对的弧长L=180n R π 2.扇形的概念. 3.圆心角为n °的扇形面积是S 扇形=2360n R π 4.运用以上内容,解决具体问题.五、布置作业P 114 1、3 P 115 5、6、7【课后反思】。
弧长与扇形面积教案
弧长与扇形面积教案教学内容:弧长与扇形面积教学目标:通过本课的学习,学生能够理解并掌握弧长与扇形面积的计算方法。
教学重点:弧长的计算方法,扇形面积的计算方法。
教学难点:扇形面积与弧长的关系。
教学准备:白板、笔、教材、小黑板、计算器。
教学过程:Step 1:引入新知识1. 通过一个探究性问题引入本课的内容,例如:一个半径为3cm的圆上有一段长为8cm的弧线,那么这段弧线所对应的圆心角是多大呢?2. 引导学生思考,并让学生自由讨论,鼓励学生尝试用已经学过的知识进行计算。
Step 2:概念讲解1. 弧长的概念:弧长是指圆周上两个点之间的弧线长度,通常用字母l表示,计算方法是l = rθ,其中r表示半径,θ表示圆心角的弧度。
2. 扇形面积的概念:扇形面积是指由圆心与弧线所围成的扇形所覆盖的面积,计算方法是A = 1/2rθ,其中r表示半径,θ表示圆心角的弧度。
Step 3:计算实例演示1. 结合几个实际问题,进行弧长和扇形面积的计算演示,帮助学生理解并掌握计算方法。
2. 强调计算时需要将角度转换为弧度,提醒学生不要忽略单位的转换。
Step 4:让学生练习1. 让学生在小组内讨论并计算一些练习题,然后让个别学生上台展示解题思路和计算步骤,通过互相学习,加深对知识的理解。
2. 提供一些练习题,让学生在课后进行巩固。
Step 5:总结与拓展1. 总结弧长与扇形面积的计算方法,强调重点和难点,确保学生掌握了基本的计算技巧。
2. 拓展:引导学生思考,如果知道扇形面积和圆心角,如何求解半径?Step 6:作业布置1. 布置一些练习题作为课后作业,要求学生用所学方法计算出题目要求的值。
2. 提醒学生及时解决作业中的问题,可以请教同学或向老师寻求帮助。
教学反馈:根据学生的作业情况、课堂参与情况以及课后测试情况,进行教学反馈和调整教学进度。
弧长和扇形面积教案
弧长和扇形面积教案一、教学目标1. 知识目标:了解弧长和扇形面积的概念及计算方法,能够运用弧长和扇形面积的公式进行计算。
2. 技能目标:掌握计算扇形面积的公式,能够准确计算给定扇形的面积。
3. 情感目标:培养学生对数学的兴趣,增强学生对数学的探究能力。
二、教学重点弧长和扇形面积的计算方法。
三、教学难点运用弧长和扇形面积的公式进行计算。
四、教学方法讲授法、示范法、练习法、自主学习法。
五、教学过程1. 导入新课通过一个问题引入新课:小明想要为自己的生日蛋糕加上一个扇形装饰,他怎样才能准确算出扇形面积呢?2. 发现规律利用一块透明的扇形模型,让学生观察并回答问题:如何计算扇形的面积?引导学生发现扇形面积与圆的面积之间的关系,并引入弧长的概念。
3. 弧长的计算方法解释弧长的定义,并通过几个实际例子让学生熟悉如何计算弧长。
引出弧长的计算公式:L = 2πr × (θ/360°)。
4. 扇形面积的计算方法解释扇形面积的定义,并通过几个实际例子让学生熟悉如何计算扇形面积。
引出扇形面积的计算公式:S = πr² × (θ/360°)。
5. 示例演练通过几个具体的题目示例,引导学生掌握弧长和扇形面积的计算方法。
学生可以在黑板上进行解题,然后在纸上进行计算。
6. 合作探究让学生根据自己的兴趣,设计几个相关的实际问题,利用弧长和扇形面积的公式进行计算,并与同学们一起进行讨论和分享。
7. 拓展延伸对于数学能力较强的学生,可以提出一些扩展问题,如:如何计算扇形的弧长和面积,如果只知道扇形的面积,能否计算出扇形的半径和角度等。
六、教学总结通过本节课的学习,我们了解了弧长和扇形面积的概念及计算方法。
弧长的计算公式为L = 2πr × (θ/360°),扇形面积的计算公式为S = πr² × (θ/360°)。
掌握了这些概念和公式后,我们就能准确计算给定扇形的弧长和面积。
弧长和扇形面积的教学设计
27.4弧长和扇形面积一教学目标1、知识目标:让学生通过自主探索来认识扇形,掌握弧长和扇形面积的计算公式,并学会运用弧长和扇形面积公式解决一些实际问题。
2、能力目标:让学生经历弧长和扇形面积公式的推导过程,培养学生自主探索的能力;在利用弧长和扇形面积公式解题中,培养学生应用知识的能力,空间想象能力和动手画图能力,体会由一般到特殊的数学思想。
3、情感与价值目标:通过现实生活图片的欣赏,让学生感受到美的生活离不开数学,激发学生学习数学的兴趣;通过对弧长和扇形面积公式的自主探究,让学生获得亲自参与研究探索的情感体验;通过同桌的讨论、交流和解决问题的过程,让学生更多的展示自己,建立自信,树立正确的价值观。
二教学重点、难点我从新课程标准出发,在吃透教材根底上,确立了如下的教学重点、难点重点:让学生经历弧长和扇形面积公式的推导,通过计算弧长和扇形面积来突出重点难点:弧长和扇形面积公式的应用,通过利用弧长和扇形面积解答实际问题来突破难点三、教法设想四、教学过程学环节教学过程学生活动设计理念设置问题情境1、借助多媒体放映四幅生活图片2、利用幻灯片出示两个实际问题问题一:在一块空旷的草地上有一根柱子,柱子上拴着一条长3m的绳子,绳子的一端拴着一只狗。
〔1〕这只狗的最大活动区域有多大?这个区域的边缘长是多少?〔2〕如果这只狗拴在夹角为120°的墙角,那么它的最大活动区域有多大?这个区域的边缘长是多少?问题二:将以边长为1的等边三角形木板沿水平线翻滚(如图3所示),那么点B从开场至完毕所经过的路径的长度为____________。
学生观察图片,阅读两个生活中的实际问题,自觉的提出弧长和扇形面积的计算让学生观看生活中的弧和扇形,感受数学就在我们的身边,进而出示两个实际生活中的问题,引发学生的思考与分析,鼓励学生自主的提出要研究的问题即弧长和扇形面积的问题,这样,学生带着问题开场新知识的探索。
这样两道与实际相联系的问题,调动了学生观察思考的积极性,加深他们对几何图形的理解和渴望探索新知识的求知欲。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.4 弧长和扇形面积
教学目标
一、知识目标
1.经历探索弧长计算公式及扇形面积计算公式的过程;
2.掌握弧长计算公式及扇形面积计算公式,并会应用公式解决问题.
二、能力目标
1.经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力.
2.掌握弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力.
三、情感目标
1.体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.
2.体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.
教学重点
1.经历探索弧长及扇形面积计算公式的过程.
2.了解弧长及扇形面积计算公式.
3.会用公式解决问题.
教学难点
1.探索弧长及扇形面积计算公式.
2.用公式解决实际问题.
教学过程
一、 引入新课
以幻灯片扇子的图片,让学生观察扇子外边沿以及整体,得到弧和扇形,以问题形式如何计算曲线弧长和扇形面积引入新课。
二、出示学习目标
三、新课讲解
1、探索弧长公式的得到过程
(1)学生自学课本第111页例1以上部分,独立完成下题:设圆的半径为R ,则:
①圆的周长是_______.
②圆的周长可以看作______度的圆心角所对的弧. ③1°的圆心角所对的弧长是_______.
④n °的圆心角所对的弧长是_______.
(2)找学生回答以上问题(根据难易提问不同程度的学生),进而得到公式.
板书:在半径为R 的圆中,n °的圆心角所对的弧长的计算公式为: l =180
n R . (3)分析公式:n 是圆心角的度数,R 是圆的半径,n 与180表示倍数关系,不带单位.
(4)练习(对弧长公式的应用进行针对性练习)
总结:在弧长公式以及两个变形中,圆心角、半径和弧长知二求一。
2、探索扇形面积公式的得到过程
(1)学生自学课本第112页例2以上部分,独立完成下题:设圆的半径为R ,则:
①圆的面积是_______.
②圆的面积可以看作______度的圆心角所对的扇形面积.
③1°的圆心角所对的扇形面积是_______.
④n°的圆心角所对的扇形面积是_______.
(2)找几名同学回答问题,得到扇形面积公式
n 在半径为R的圆中,n°的圆心角的扇形面积公式为S扇形=
360πR2
(3)扇形面积公式与弧长公式有一定的练习,用弧长表示扇形面积为:S扇形=()
(4)练习(对弧长公式的应用进行针对性练习)
(5)总结:跟弧长公式一样,利用扇形面积公式也可以知二求一.
三、例题讲解(见课件)教师引导学生进行分析,板书解题过程。
四、中考链接
五、小结
本节课你有什么收获?本节课学习了如下内容:
nπR,并运用公式进行计算;
1.探索弧长的计算公式l=
180
nπR2,并运用公式进行计算;
2.探索扇形的面积公式S=
360
3.探索弧长l及扇形的面积S之间的关系,并能已知一方求另一方.
六.布置作业:课本第116页第8题。