Forced convective heat transfer of nanofluids in microchannels
计算流体力学中英文词汇对照
流体动力学fluid dynamics 连续介质力学mechanics of continuous media 介质medium 流体质点fluid particle无粘性流体nonviscous fluid, inviscid fluid 连续介质假设continuous medium hypothesis 流体运动学fluid kinematics 水静力学hydrostatics液体静力学hydrostatics 支配方程governing equation伯努利方程Bernoulli equation 伯努利定理Bernonlli theorem毕奥-萨伐尔定律Biot-Savart law 欧拉方程Euler equation亥姆霍兹定理Helmholtz theorem 开尔文定理Kelvin theorem涡片vortex sheet 库塔-茹可夫斯基条件Kutta-Zhoukowski condition 布拉休斯解Blasius solution 达朗贝尔佯廖d'Alembert paradox雷诺数Reynolds number 施特鲁哈尔数Strouhal number随体导数material derivative 不可压缩流体incompressible fluid质量守恒conservation of mass 动量守恒conservation of momentum能量守恒conservation of energy 动量方程momentum equation能量方程energy equation 控制体积control volume液体静压hydrostatic pressure 涡量拟能enstrophy压差differential pressure 流[动] flow流线stream line 流面stream surface流管stream tube 迹线path, path line流场flow field 流态flow regime流动参量flow parameter 流量flow rate, flow discharge涡旋vortex 涡量vorticity涡丝vortex filament 涡线vortex line涡面vortex surface 涡层vortex layer涡环vortex ring 涡对vortex pair涡管vortex tube 涡街vortex street卡门涡街Karman vortex street 马蹄涡horseshoe vortex对流涡胞convective cell 卷筒涡胞roll cell涡eddy 涡粘性eddy viscosity环流circulation 环量circulation速度环量velocity circulation 偶极子doublet, dipole驻点stagnation point 总压[力] total pressure总压头total head 静压头static head总焓total enthalpy 能量输运energy transport速度剖面velocity profile 库埃特流Couette flow单相流single phase flow 单组份流single-component flow均匀流uniform flow 非均匀流nonuniform flow二维流two-dimensional flow 三维流three-dimensional flow准定常流quasi-steady flow 非定常流unsteady flow, non-steady flow 暂态流transient flow 周期流periodic flow振荡流oscillatory flow 分层流stratified flow无旋流irrotational flow 有旋流rotational flow轴对称流axisymmetric flow 不可压缩性incompressibility不可压缩流[动] incompressible flow 浮体floating body定倾中心metacenter 阻力drag, resistance减阻drag reduction 表面力surface force表面张力surface tension 毛细[管]作用capillarity来流incoming flow 自由流free stream自由流线free stream line 外流external flow进口entrance, inlet 出口exit, outlet扰动disturbance, perturbation 分布distribution传播propagation 色散dispersion弥散dispersion 附加质量added mass ,associated mass收缩contraction 镜象法image method无量纲参数dimensionless parameter 几何相似geometric similarity运动相似kinematic similarity 动力相似[性] dynamic similarity平面流plane flow 势potential势流potential flow 速度势velocity potential复势complex potential 复速度complex velocity流函数stream function 源source汇sink 速度[水]头velocity head拐角流corner flow 空泡流cavity flow超空泡supercavity 超空泡流supercavity flow空气动力学aerodynamics低速空气动力学low-speed aerodynamics 高速空气动力学high-speed aerodynamics气动热力学aerothermodynamics 亚声速流[动] subsonic flow跨声速流[动] transonic flow 超声速流[动] supersonic flow锥形流conical flow 楔流wedge flow叶栅流cascade flow 非平衡流[动] non-equilibrium flow细长体slender body 细长度slenderness钝头体bluff body 钝体blunt body翼型airfoil 翼弦chord薄翼理论thin-airfoil theory 构型configuration后缘trailing edge 迎角angle of attack失速stall 脱体激波detached shock wave波阻wave drag 诱导阻力induced drag诱导速度induced velocity 临界雷诺数critical Reynolds number 前缘涡leading edge vortex 附着涡bound vortex约束涡confined vortex 气动中心aerodynamic center气动力aerodynamic force 气动噪声aerodynamic noise气动加热aerodynamic heating 离解dissociation地面效应ground effect 气体动力学gas dynamics稀疏波rarefaction wave 热状态方程thermal equation of state 喷管Nozzle 普朗特-迈耶流Prandtl-Meyer flow瑞利流Rayleigh flow 可压缩流[动] compressible flow可压缩流体compressible fluid 绝热流adiabatic flow非绝热流diabatic flow 未扰动流undisturbed flow等熵流isentropic flow 匀熵流homoentropic flow兰金-于戈尼奥条件Rankine-Hugoniot condition 状态方程equation of state量热状态方程caloric equation of state 完全气体perfect gas拉瓦尔喷管Laval nozzle 马赫角Mach angle马赫锥Mach cone 马赫线Mach line马赫数Mach number 马赫波Mach wave当地马赫数local Mach number 冲击波shock wave激波shock wave 正激波normal shock wave斜激波oblique shock wave 头波bow wave附体激波attached shock wave 激波阵面shock front激波层shock layer 压缩波compression wave反射reflection 折射refraction散射scattering 衍射diffraction绕射diffraction出口压力exit pressure 超压[强] over pressure反压back pressure 爆炸explosion爆轰detonation 缓燃deflagration水动力学hydrodynamics 液体动力学hydrodynamics泰勒不稳定性Taylor instability 盖斯特纳波Gerstner wave斯托克斯波Stokes wave 瑞利数Rayleigh number自由面free surface 波速wave speed, wave velocity波高wave height 波列wave train波群wave group 波能wave energy表面波surface wave 表面张力波capillary wave规则波regular wave 不规则波irregular wave浅水波shallow water wave深水波deep water wave 重力波gravity wave椭圆余弦波cnoidal wave 潮波tidal wave涌波surge wave 破碎波breaking wave船波ship wave 非线性波nonlinear wave孤立子soliton 水动[力]噪声hydrodynamic noise 水击water hammer 空化cavitation空化数cavitation number 空蚀cavitation damage超空化流supercavitating flow 水翼hydrofoil水力学hydraulics 洪水波flood wave涟漪ripple 消能energy dissipation海洋水动力学marine hydrodynamics 谢齐公式Chezy formula欧拉数Euler number 弗劳德数Froude number水力半径hydraulic radius 水力坡度hvdraulic slope高度水头elevating head 水头损失head loss水位water level 水跃hydraulic jump含水层aquifer 排水drainage排放量discharge 壅水曲线back water curve压[强水]头pressure head 过水断面flow cross-section明槽流open channel flow 孔流orifice flow无压流free surface flow 有压流pressure flow缓流subcritical flow 急流supercritical flow渐变流gradually varied flow 急变流rapidly varied flow临界流critical flow 异重流density current, gravity flow堰流weir flow 掺气流aerated flow含沙流sediment-laden stream 降水曲线dropdown curve沉积物sediment, deposit 沉[降堆]积sedimentation, deposition沉降速度settling velocity 流动稳定性flow stability不稳定性instability 奥尔-索末菲方程Orr-Sommerfeld equation 涡量方程vorticity equation 泊肃叶流Poiseuille flow奥辛流Oseen flow 剪切流shear flow粘性流[动] viscous flow 层流laminar flow分离流separated flow 二次流secondary flow近场流near field flow 远场流far field flow滞止流stagnation flow 尾流wake [flow]回流back flow 反流reverse flow射流jet 自由射流free jet管流pipe flow, tube flow 内流internal flow拟序结构coherent structure 猝发过程bursting process表观粘度apparent viscosity 运动粘性kinematic viscosity动力粘性dynamic viscosity 泊poise厘泊centipoise 厘沱centistoke剪切层shear layer 次层sublayer流动分离flow separation 层流分离laminar separation湍流分离turbulent separation 分离点separation point附着点attachment point 再附reattachment再层流化relaminarization 起动涡starting vortex驻涡standing vortex 涡旋破碎vortex breakdown涡旋脱落vortex shedding 压[力]降pressure drop压差阻力pressure drag 压力能pressure energy型阻profile drag 滑移速度slip velocity无滑移条件non-slip condition 壁剪应力skin friction, frictional drag 壁剪切速度friction velocity 磨擦损失friction loss磨擦因子friction factor 耗散dissipation滞后lag 相似性解similar solution局域相似local similarity 气体润滑gas lubrication液体动力润滑hydrodynamic lubrication 浆体slurry泰勒数Taylor number 纳维-斯托克斯方程Navier-Stokes equation 牛顿流体Newtonian fluid 边界层理论boundary later theory边界层方程boundary layer equation 边界层boundary layer附面层boundary layer 层流边界层laminar boundary layer湍流边界层turbulent boundary layer 温度边界层thermal boundary layer边界层转捩boundary layer transition 边界层分离boundary layer separation边界层厚度boundary layer thickness 位移厚度displacement thickness动量厚度momentum thickness 能量厚度energy thickness焓厚度enthalpy thickness 注入injection吸出suction 泰勒涡Taylor vortex速度亏损律velocity defect law 形状因子shape factor测速法anemometry 粘度测定法visco[si] metry流动显示flow visualization 油烟显示oil smoke visualization孔板流量计orifice meter 频率响应frequency response油膜显示oil film visualization 阴影法shadow method纹影法schlieren method 烟丝法smoke wire method丝线法tuft method 氢泡法nydrogen bubble method相似理论similarity theory 相似律similarity law部分相似partial similarity 定理pi theorem, Buckingham theorem 静[态]校准static calibration 动态校准dynamic calibration风洞wind tunnel 激波管shock tube激波管风洞shock tube wind tunnel 水洞water tunnel拖曳水池towing tank 旋臂水池rotating arm basin扩散段diffuser 测压孔pressure tap皮托管pitot tube 普雷斯顿管preston tube斯坦顿管Stanton tube 文丘里管Venturi tubeU形管U-tube 压强计manometer微压计micromanometer 多管压强计multiple manometer静压管static [pressure]tube 流速计anemometer风速管Pitot- static tube 激光多普勒测速计laser Doppler anemometer, laser Doppler velocimeter 热线流速计hot-wire anemometer热膜流速计hot- film anemometer 流量计flow meter粘度计visco[si] meter 涡量计vorticity meter传感器transducer, sensor 压强传感器pressure transducer热敏电阻thermistor 示踪物tracer时间线time line 脉线streak line尺度效应scale effect 壁效应wall effect堵塞blockage 堵寒效应blockage effect动态响应dynamic response 响应频率response frequency底压base pressure 菲克定律Fick law巴塞特力Basset force 埃克特数Eckert number格拉斯霍夫数Grashof number 努塞特数Nusselt number普朗特数prandtl number 雷诺比拟Reynolds analogy施密特数schmidt number 斯坦顿数Stanton number对流convection 自由对流natural convection, free convec-tion强迫对流forced convection 热对流heat convection质量传递mass transfer 传质系数mass transfer coefficient热量传递heat transfer 传热系数heat transfer coefficient对流传热convective heat transfer 辐射传热radiative heat transfer动量交换momentum transfer 能量传递energy transfer传导conduction 热传导conductive heat transfer热交换heat exchange 临界热通量critical heat flux浓度concentration 扩散diffusion扩散性diffusivity 扩散率diffusivity扩散速度diffusion velocity 分子扩散molecular diffusion沸腾boiling 蒸发evaporation气化gasification 凝结condensation成核nucleation 计算流体力学computational fluid mechanics 多重尺度问题multiple scale problem 伯格斯方程Burgers equation对流扩散方程convection diffusion equation KDU方程KDV equation修正微分方程modified differential equation 拉克斯等价定理Lax equivalence theorem 数值模拟numerical simulation 大涡模拟large eddy simulation数值粘性numerical viscosity 非线性不稳定性nonlinear instability希尔特稳定性分析Hirt stability analysis 相容条件consistency conditionCFL条件Courant- Friedrichs- Lewy condition ,CFL condition狄里克雷边界条件Dirichlet boundarycondition熵条件entropy condition 远场边界条件far field boundary condition流入边界条件inflow boundary condition无反射边界条件nonreflecting boundary condition数值边界条件numerical boundary condition流出边界条件outflow boundary condition冯.诺伊曼条件von Neumann condition 近似因子分解法approximate factorization method 人工压缩artificial compression 人工粘性artificial viscosity边界元法boundary element method 配置方法collocation method能量法energy method 有限体积法finite volume method流体网格法fluid in cell method, FLIC method通量校正传输法flux-corrected transport method通量矢量分解法flux vector splitting method 伽辽金法Galerkin method积分方法integral method 标记网格法marker and cell method, MAC method 特征线法method of characteristics 直线法method of lines矩量法moment method 多重网格法multi- grid method板块法panel method 质点网格法particle in cell method, PIC method 质点法particle method 预估校正法predictor-corrector method投影法projection method 准谱法pseudo-spectral method随机选取法random choice method 激波捕捉法shock-capturing method激波拟合法shock-fitting method 谱方法spectral method稀疏矩阵分解法split coefficient matrix method 不定常法time-dependent method时间分步法time splitting method 变分法variational method涡方法vortex method 隐格式implicit scheme显格式explicit scheme 交替方向隐格式alternating direction implicit scheme, ADI scheme 反扩散差分格式anti-diffusion difference scheme紧差分格式compact difference scheme 守恒差分格式conservation difference scheme 克兰克-尼科尔森格式Crank-Nicolson scheme杜福特-弗兰克尔格式Dufort-Frankel scheme指数格式exponential scheme 戈本诺夫格式Godunov scheme高分辨率格式high resolution scheme 拉克斯-温德罗夫格式Lax-Wendroff scheme 蛙跳格式leap-frog scheme 单调差分格式monotone difference scheme保单调差分格式monotonicity preserving diffe-rence scheme穆曼-科尔格式Murman-Cole scheme 半隐格式semi-implicit scheme斜迎风格式skew-upstream scheme全变差下降格式total variation decreasing scheme TVD scheme迎风格式upstream scheme , upwind scheme计算区域computational domain 物理区域physical domain影响域domain of influence 依赖域domain of dependence区域分解domain decomposition 维数分解dimensional split物理解physical solution 弱解weak solution黎曼解算子Riemann solver 守恒型conservation form弱守恒型weak conservation form 强守恒型strong conservation form散度型divergence form 贴体曲线坐标body- fitted curvilinear coordi-nates [自]适应网格[self-] adaptive mesh 适应网格生成adaptive grid generation自动网格生成automatic grid generation 数值网格生成numerical grid generation交错网格staggered mesh 网格雷诺数cell Reynolds number数植扩散numerical diffusion 数值耗散numerical dissipation数值色散numerical dispersion 数值通量numerical flux放大因子amplification factor 放大矩阵amplification matrix阻尼误差damping error 离散涡discrete vortex熵通量entropy flux 熵函数entropy function分步法fractional step method。
流体力学常用名词中英文对照
流体力学常用名词流体动力学fluid dynamics连续介质力学mechanics of continuous介质medium流体质点fluid particle无粘性流体nonviscous fluid, inviscid连续介质假设continuous medium hypothesis流体运动学fluid kinematics水静力学hydrostatics液体静力学hydrostatics支配方程governing equation伯努利方程Bernoulli equation伯努利定理Bernonlli theorem毕奥-萨伐尔定律Biot-Savart law欧拉方程Euler equation亥姆霍兹定理Helmholtz theorem开尔文定理Kelvin theorem涡片vortex sheet库塔-茹可夫斯基条件Kutta-Zhoukowski condition 布拉休斯解Blasius solution达朗贝尔佯廖d'Alembert paradox雷诺数Reynolds number施特鲁哈尔数Strouhal number随体导数material derivative不可压缩流体incompressible fluid质量守恒conservation of mass动量守恒conservation of momentum能量守恒conservation of energy动量方程momentum equation能量方程energy equation控制体积control volume液体静压hydrostatic pressure涡量拟能enstrophy压差differential pressure流[动]flow流线stream line流面stream surface流管stream tube迹线path, path line流场flow field流态flow regime流动参量flow parameter流量flow rate, flow discharge涡旋vortex涡量vorticity涡丝vortex filament 涡线vortex line 涡面vortex surface 涡层vortex layer 涡环vortex ring 涡对vortex pair 涡管vortex tube 涡街vortex street 卡门涡街『Karman vortex street 马蹄涡horseshoe vortex 对流涡胞convective cell 卷筒涡胞roll cell 涡eddy 涡粘性eddy viscosity 环流circulation 环量circulation速度环量velocity circulation 偶极子doublet, dipole 驻点stagnation point 总压[力]total pressure 总压头total head 静压头static head 总焓total enthalpy 能量输运energy transport 速度剖面velocity profile 库埃特流Couette flow 单相流single phase flow 单组份流single-component flow 均匀流uniform flow 非均匀流nonuniform flow 二维流two-dimensional flow 三维流three-dimensional flow 准定常流quasi-steady flow 非定常流unsteady flow, non-steady flow 暂态流transient flow 周期流periodic flow 振荡流oscillatory flow 分层流stratified flow 无旋流irrotational flow 有旋流rotational flow 轴对称流axisymmetric flow 不可压缩性incompressibility 不可压缩流[动]incompressible flow浮体floating body 定倾中心metacenter 阻力drag, resistance 减阻drag reduction 表面力surface force 表面张力surface tension 毛细[管]作用capillarity 来流incoming flow 自由流free stream 自由流线free stream line 外流external flow 进口entrance, inlet 出口exit, outlet扰动disturbance, perturbation分布distribution 传播propagation 色散dispersion 弥散dispersion 附力口质量added mass ,associated mass 收缩contraction 镜象法image method无量纲参数dimensionless parameter几何相似geometric similarity 运动相似kinematic similarity 动力相似[性]dynamic similarity 平面流plane flow 势potential 势流potential flow 速度势velocity potential 复势complex potential 复速度complex velocity 流函数stream function 源source 汇sink速度[水]头velocity head拐角流corner flow空泡流cavity flow 超空泡supercavity 超空泡流supercavity flow 空气动力学aerodynamics 低速空气动力学low-speed aerodynamics 高速空气动力学high-speedaerodynamics 气动热力学aerothermodynamics 亚声速流[动]subsonic flow 跨声速流[动]transonic flow超声速流[动]supersonic flow锥形流conical flow楔流wedge flow叶栅流cascade flow非平衡流[动]non-equilibrium flow细长体slender body细长度slenderness钝头体bluff body钝体blunt body翼型airfoil翼弦chord薄翼理论thin-airfoil theory构型configuration后缘trailing edge迎角angle of attack失速stall月兑体激波detached shock wave波阻wave drag诱导阻力induced drag诱导速度induced velocity临界雷诺数critical Reynolds number前缘涡leading edge vortex附着涡bound vortex约束涡confined vortex气动中心aerodynamic center气动力aerodynamic force气动噪声aerodynamic noise气动力口热aerodynamic heating离解dissociation地面效应ground effect气体动力学gas dynamics稀疏波rarefaction wave热状态方程thermal equation of state 喷管Nozzle普朗特-迈耶流Prandtl-Meyer flow瑞利流Rayleigh flow可压缩流[动]compressible flow可压缩流体compressible fluid绝热流adiabatic flow非绝热流diabatic flow未扰动流undisturbed flow等熵流isentropic flow匀熵流homoentropic flow 兰金-于戈尼奥条件Rankine-Hugoniot condition 状态方程equation of state 量热状态方程caloric equation of state 完全气体perfect gas 拉瓦尔喷管Laval nozzle 马赫角Mach angle 马赫锥Mach cone 马赫线Mach line 马赫数Mach number 马赫波Mach wave 当地马赫数local Mach number 冲击波shock wave 激波shock wave 正激波normal shock wave 斜激波oblique shock wave 头波bow wave 附体激波attached shock wave 激波阵面shock front 激波层shock layer 压缩波compression wave 反射reflection 折射refraction 散射scattering 衍射diffraction 绕射diffraction 出口压力exit pressure 超压[强]over pressure 反压back pressure 爆炸explosion 爆轰detonation 缓燃deflagration 水动力学hydrodynamics 液体动力学hydrodynamics 泰勒不稳定性Taylor instability 盖斯特纳波Gerstner wave 斯托克斯波Stokes wave 瑞利数Rayleigh number 自由面free surface波速wave speed, wave velocity波高wave height 波歹U wave train 波群wave group 波能wave energy 表面波surface wave表面张力波capillary wave规则波regular wave不规则波irregular wave浅水波shallow water wave深水波deep water wave重力波gravity wave椭圆余弦波cnoidal wave潮波tidal wave涌波surge wave破碎波breaking wave船波ship wave非线性波nonlinear wave孤立子soliton水动[力]噪声hydrodynamic noise水击water hammer空化cavitation空化数cavitation number空蚀cavitation damage 超空化流supercavitating flow水翼hydrofoil水力学hydraulics洪水波flood wave涟漪ripple消能energy dissipation海洋水动力学marine hydrodynamics谢齐公式Chezy formula欧拉数Euler number弗劳德数Froude number水力半径hydraulic radius水力坡度hvdraulic slope高度水头elevating head水头损失head loss水位water level水跃hydraulic jump含水层aquifer排水drainage排放量discharge壅水曲线back water curve压[强水]头pressure head过水断面flow cross-section明槽流open channel flow孑1流orifice flow无压流free surface flow有压流pressure flow缓流subcritical flow急流supercritical flow渐变流gradually varied flow急变流rapidly varied flow临界流critical flow异重流density current, gravity flow堰流weir flow掺气流aerated flow含沙流sediment-laden stream降水曲线dropdown curve沉积物sediment, deposit沉[降堆]积sedimentation, deposition沉降速度settling velocity流动稳定性flow stability不稳定性instability奥尔-索末菲方程Orr-Sommerfeld equation 涡量方程vorticity equation泊肃叶流Poiseuille flow奥辛流Oseen flow剪切流shear flow粘性流[动]viscous flow层流laminar flow分离流separated flow二次流secondary flow近场流near field flow远场流far field flow滞止流stagnation flow尾流wake [flow]回流back flow反流reverse flow射流jet自由射流free jet管流pipe flow, tube flow内流internal flow拟序结构coherent structure 猝发过程bursting process 表观粘度apparent viscosity 运动粘性kinematic viscosity 动力粘性dynamic viscosity 泊poise厘泊centipoise厘沱centistoke剪切层shear layer次层sublayer流动分离flow separation层流分离laminar separation 湍流分离turbulent separation 分离点separation point 附着点attachment point 再附reattachment再层流化relaminarization 起动涡starting vortex 驻涡standing vortex 涡旋破碎vortex breakdown 涡旋脱落vortex shedding 压[力]降pressure drop 压差阻力pressure drag 压力能pressure energy 型阻profile drag 滑移速度slip velocity 无滑移条件non-slip condition 壁剪应力skin friction, frictional drag 壁剪切速度friction velocity 磨擦损失friction loss磨擦因子friction factor耗散dissipation滞后lag相似性解similar solution局域相似local similarity 气体润滑gas lubrication 液体动力润滑hydrodynamic lubrication 浆体slurry泰勒数Taylor number纳维-斯托克斯方程Navier-Stokes equation 牛顿流体Newtonian fluid边界层理论boundary later theory 边界层方程boundary layer equation 边界层boundary layer 附面层boundary layer层流边界层laminar boundary layer 湍流边界层turbulent boundary layer 温度边界层thermal boundary layer 边界层转捩boundary layer transition 边界层分离boundary layer separation 边界层厚度boundary layer thickness 位移厚度displacement thickness 动量厚度momentum thickness 能量厚度energy thickness 焓厚度enthalpy thickness注入injection吸出suction泰勒涡Taylor vortex速度亏损律velocity defect law形状因子shape factor测速法anemometry粘度测定法visco[si] metry流动显示flow visualization油烟显示oil smoke visualization孔板流量计orifice meter频率响应frequency response油膜显示oil film visualization阴影法shadow method纹影法schlieren method烟丝法smoke wire method丝线法tuft method说明氢泡法nydrogen bubble method相似理论similarity theory相似律similarity law部分相似partial similarity定理pi theorem, Buckingham theorem静[态]校准static calibration动态校准dynamic calibration风洞wind tunnel激波管shock tube激波管风洞shock tube wind tunnel水洞water tunnel拖曳水池towing tank旋臂水池rotating arm basin扩散段diffuser测压孔pressure tap皮托管pitot tube普雷斯顿管preston tube斯坦顿管Stanton tube文丘里管Venturi tubeU 形管U-tube压强计manometer微压计micromanometer多管压强计multiple manometer静压管static [pressure]tube流速计anemometer风速管Pitot- static tube激光多普勒测速计laser Doppler anemometer,laser Doppler velocimeter 热线流速计hot-wire anemometer热膜流速计hot- film anemometer流量计flow meter粘度计visco[si] meter涡量计vorticity meter传感器transducer, sensor压强传感器pressure transducer热敏电阻thermistor示踪物tracer时间线time line脉线streak line尺度效应scale effect壁效应wall effect堵塞blockage堵寒效应blockage effect动态响应dynamic response响应频率response frequency底压base pressure菲克定律Fick law巴塞特力Basset force埃克特数Eckert number格拉斯霍夫数Grashof number努塞特数Nusselt number普朗特数prandtl number雷诺比拟Reynolds analogy施密特数schmidt number斯坦顿数Stanton number对流convection自由对流natural convection, free convec-tion 强迫对流forced convection热对流heat convection质量传递mass transfer传质系数mass transfer coefficient热量传递heat transfer传热系数heat transfer coefficient对流传热convective heat transfer辐射传热radiative heat transfer动量交换momentum transfer能量传递energy transfer传导conduction热传导conductive heat transfer热交换heat exchange临界热通量critical heat flux浓度concentration扩散diffusion扩散性diffusivity扩散率diffusivity扩散速度diffusion velocity分子扩散molecular diffusion沸腾boiling蒸发evaporation气化gasification凝结condensation成核nucleation计算流体力学computational fluid mechanics 多重尺度问题multiple scale problem伯格斯方程Burgers equation对流扩散方程convection diffusion equation KDU 方程KDV equation修正微分方程modified differential equation 拉克斯等价定理Lax equivalence theorem数值模拟numerical simulation大涡模拟large eddy simulation数值粘性numerical viscosity非线性不稳定性nonlinear instability希尔特稳定性分析Hirt stability analysis相容条件consistency conditionCFL 条件Courant- Friedrichs- Lewy condition ,CFL condition 狄里克雷边界条件Dirichlet boundary condition熵条件entropy condition远场边界条件far field boundary condition流入边界条件inflow boundary condition无反射边界条件nonreflecting boundary condition数值边界条件numerical boundary condition流出边界条件outflow boundary condition冯.诺伊曼条件von Neumann condition近似因子分解法approximate factorization method人工压缩artificial compression人工粘性artificial viscosity边界元法boundary element method配置方法collocation method能量法energy method有限体积法finite volume method流体网格法fluid in cell method,FLIC method通量校正传输法flux-corrected transport method通量矢量分解法flux vector splitting method伽辽金法Galerkin method积分方法integral method标记网格法marker and cell method, MAC method特征线法method of characteristics直线法method of lines矩量法moment method多重网格法multi- grid method板块法panel method质点网格法particle in cell method, PIC method质点法particle method预估校正法predictor-corrector method投影法projection method准谱法pseudo-spectral method随机选取法random choice method激波捕捉法shock-capturing method激波拟合法shock-fitting method谱方法spectral method稀疏矩阵分解法split coefficient matrix method不定常法time-dependent method时间分步法time splitting method变分法variational method涡方法vortex method隐格式implicit scheme显格式explicit scheme交替方向隐格式alternating direction implicit scheme, ADI scheme反扩散差分格式anti-diffusion difference scheme紧差分格式compact difference scheme守恒差分格式conservation difference scheme克兰克-尼科尔森格式Crank-Nicolson scheme杜福特-弗兰克尔格式Dufort-Frankel scheme指数格式exponential scheme戈本诺夫格式Godunov scheme高分辨率格式high resolution scheme拉克斯-温德罗夫格式Lax-Wendroff scheme蛙跳格式leap-frog scheme单调差分格式monotone difference scheme保单调差分格式monotonicity preserving diffe-rence scheme穆曼-科尔格式Murman-Cole scheme半隐格式semi-implicit scheme斜迎风格式skew-upstream scheme全变差下降格式total variation decreasing scheme TVD scheme迎风格式upstream scheme , upwind scheme计算区域computational domain物理区域physical domain影响域domain of influence依赖域domain of dependence区域分解domain decomposition 维数分解dimensional split 物理解physical solution 弱解weak solution 黎曼解算子Riemann solver 守恒型conservation form 弱守恒型weak conservation form 强守恒型strong conservation form 散度型divergence form 贴体曲线坐标body- fitted curvilinear coordi-nates [自]适应网格[self-] adaptive mesh 适应网格生成adaptive grid generation 自动网格生成automatic grid generation 数值网格生成numerical grid generation 交错网格staggered mesh 网格雷诺数cell Reynolds number 数植扩散numerical diffusion 数值耗散numerical dissipation 数值色散numerical dispersion 数值通量numerical flux 放大因子amplification factor 放大矩阵amplification matrix 阻尼误差damping error 离散涡discrete vortex 熵通量entropy flux 熵函数entropy function 分步法fractional step method。
Convection Heat Transfer Coefficient Estimation
4.
Newton's Law of Cooling
Newton's Law of Cooling is an equation that is widely used for both forced convection and natural convection calculations. The equation for Newton's Law of Cooling is: Q = h A T. The parameters in the equation and their typical U.S. and S.I. units are as follows: Q is the rate of heat transfer between the fluid and the solid surface (Btu/hr U.S.; W - S.I.) A is the area of the surface that is in contact with the fluid (ft2 - U.S.Introduction
Convection heat transfer takes place whenever a fluid is in contact with a solid surface that is at a different temperature than the fluid. If the fluid is moving past the solid surface because of an external driving force, like a pump or blower, then it is called forced convection. If fluid motion is due to density differences caused by temperature variation in the fluid, then it is called natural convection or free convection. A major component of most convection heat transfer calculations is obtaining a good estimate for a convection heat transfer coefficient. This course gives some background on Newton's law of cooling, a discussion of the dimensionless numbers used in convection heat transfer correlations, and a description of some of the typical configurations of interest for convection heat transfer. Then the rest of the course is devoted to presentation of correlations and example calculations for estimating natural convection and forced convection heat transfer coefficients. A spreadsheet that will assist in making these calculations for either turbulent or laminar pipe flow is included with the course.
高温熔盐传热特性研究
图 1 试验装置系统示意图
试验 采 用 三 元 硝 酸 盐 (53% KNO3,7% NaNO3,40% NaNO2)作为传热介质,初次启动时,常温下的固体熔盐在低温 储热罐内经电加热器加热到熔点以上并形成液态,由低温熔盐 泵将熔盐送至熔盐吸热管,熔盐在吸热管流动过程中由电加热 器进行传热实验,使其继续升温后进入高温熔盐罐后经高温熔 盐泵送至熔盐 /水换热器进行换热试验,之后回流至低温储热 罐形成回路。
( ) ( ) η=1027.5exp -31T.5 +29.1exp -116T.4 +0.9(cp)
H=1.42t+125(kJ/kg)
( ) ( ) Pr=132.4exp -90T.1 +3951.8exp -3T0 +6.25
创新与实践
试验结果与分析 2.1 温度与吸热管壁温分布
图 3是在一定的熔盐流速 υ=0.64m/s条件下,吸热管壁 温与熔盐温度的变化情况,可以发现在熔盐流速不变时,吸热 器壁温 Tw 及熔盐温度 Tf的变化速度随着热流密度 q的增加而 变大。
引言 以熔盐为工作介质的太阳能热发电系统在整个吸热、传热
循环中无相变,系统无压运行,安全性提高;熔盐本身较高的 热容,使得吸热器可承受较高的热流密度,从而使吸热器可做 得更紧凑,有利于减少制造成本,降低热损,提高系统热效率。 此外,熔盐本身是很好的蓄热材料,因而整个太阳能热力系统 的传热、蓄热可共 用 同 一 工 质,使 系 统 得 到 极 大 的 简 化,降 低 电站投资成本[1]。因此熔盐在太阳能电站中得到了广泛应用, 则对熔盐的吸热传热特性进行研究,为熔盐吸热器的设计提供 依据,为其安全可靠运行提供保障就显得尤为重要。
的壁温热电偶测量得到,见图 2。
图 2 吸热管布置示意图 实验通过改变吸热器电加热功率和熔盐泵变频器功率进 行不同热流密度和不同流速下的吸热实验。 试验中所用三元硝酸盐熔点为 142℃,沸点为 680℃,能够在 550℃的高温下长期使用,其物性参数根据厂家提供数据得到:
传热学第4章对流换热(Convective Heat Transfer)
第一节:概述 工程应用背景
第四章 对流换热(Convective Heat Transfer)
第一节:概述
热对流 对流换热:
计算关系式
Φ hAtw tf
Φ hAtf tw
本章的主要任务:确定 h 的具体表达式
——请千万小心,步步都是富贵险中求。殊不知多少江湖英豪;名门侠女都 曾栽在这块看似山青湖静,实则风阴涛涌的领域!
第二节:对流换热问题的数学描写—对流换热微分方程组
二维、常物性、不可压、稳态
u v 0 x y
u
u x
v
u y
Fx
1
p x
2u x 2
2u y 2
u
v x
v
v y
Fy
1
p y
2v x 2
2v y 2
u
t x
v
t y
a
2t x 2
2t y 2
t
h tw t y w
第四章 对流换热(Convective Heat Transfer)
第一节:概述 求h主要有以下基本途径:
Φ h At w t f
h
第四章 对流换热(Convective Heat Transfer)
第一节:概述
影响对流换热的基本因素: 流动因素、几何因素和物性参数 流动因素 a 流动起因 自然对流(Natural Convection)—— 强迫对流(Forced Convection)—— b 流动状态 层流(Laminar Flow)—— 紊流(Turbulent Flow)—— c 流体有无相变(Phase Change) 凝结换热(Condensation Heat Transfer) 沸腾换热(Boiling Heat Transfer)
石蜡乳状液高温潜热输送材料的传热特性
石蜡乳状液高温潜热输送材料的传热特性邹得球;肖睿;冯自平;郭江荣【摘要】The latent heat transportation materials with high melting points, paraffin emulsions, can be used as heat storage and transfer media. Because paraffin emulsions can store their latent heat during phase change process in the temperature range of 80-90°C , their heat storage density is higher than water. They can be applied for waste heat recovery, solar energy utilization or central heating systems. In the forced convection heat transfer experiments, the thermal boundary conditions of constant heat flux were imposed. Although the paraffin emulsions have higher effective specific heat capacity, the convective heat transfer coefficients are lower than that of water and decrease with the increase of concentration. The results also show that the convection heat transfer coefficient increases with temperature slightly. The correlations of Nusselt number for paraffin emulsions are obtained according to the experimental data.%石蜡乳状液高温潜热输送材料是一种在80~90℃之间存在相变的流体.由于相变潜热的存在,石蜡乳状液在相变区间内的储热、载热密度远大于水,且集储热与潜热输送于一体,适用于余热利用、太阳能利用和集中供热等领域,具有广阔的应用前景.研究了定热流条件下石蜡乳状液在管内的强制对流换热特性.结果表明,与纯水相比,虽然石蜡乳状液的有效比热大,但其对流传热系数低,且浓度越高,对流传热系数越低.实验发现入口温度对石蜡乳状液对流传热系数的影响不大,但随着入口温度升高,对流传热系数有增大的趋势.最后获得了石蜡乳状液对流换热量纲1关系式.【期刊名称】《化工学报》【年(卷),期】2012(063)004【总页数】6页(P1019-1024)【关键词】石蜡乳状液;潜热输送;传热【作者】邹得球;肖睿;冯自平;郭江荣【作者单位】宁波大学海运学院,浙江宁波315211;中国科学院广州能源研究所,广东广州510640;中国科学院广州能源研究所,广东广州510640;宁波大学海运学院,浙江宁波315211【正文语种】中文【中图分类】TB65石蜡乳状液是由水、相变石蜡及乳化剂等成分通过乳化作用形成的不互溶或部分互溶的分散体系。
传热学名词解释考点
名词解释考点P5:热传导(heat conduction),热流量(heat transfer rate),热流密度(heat flux)P6:导热系数(thermal conductivity),热对流(heat convection)P7:对流传热(convective heat transfer),自然对流(natural/free convection),强制对流(forced convection)P8:热辐射(thermal radiation),辐射传热(radiation heat transfer),黑体(black body)P12:传热过程(overall heat transfer process)P13:传热系数(overall heat transfer coefficient)P34:温度场(temperature field)P37:保温材料/绝热材料(insulating material)p45:热扩散率(thermal diffusivity)p57:肋片(fin)p62:肋效率(fin efficiency)p112:非稳态导热(unsteady heat conduction)p114:非正规状况阶段(non-regular regime),正规状况阶段(regular regime)p117:集中参数法(lumped parameter method)p120:时间常数(time constant)p207:热边界层(thermal boundary layer)p301:膜状凝结(film condensation),珠状凝结(dropwise condensation)p315:大容器沸腾/池沸腾(pool boiling),管内沸腾(in-tube boiling)p316:饱和沸腾(saturated boiling)p317:临界热流密度(critical heat flux)p318:汽化核心(nucleation site)p356:辐射力(emissive power)p357:光谱辐射力(spectral/ monochromatic emissive power)p362:定向辐射强度(directional radiation intensity)p365:发射率(emissivity)p366:光谱发射率(spectral/ monochromatic emissivity)p367:漫射体(diffuse body)p372:投入辐射(irradiation),光谱吸收比(spectral/ monochromatic absorptivity)p373:温室效应(greenhouse effect)p374:灰体(gray body)p396:角系数(angle/shape factor)p405:有效辐射(radiosity)p413:重辐射面(re-radiation surface)p432:遮热板(radiation shield)p463:临界热绝缘直径(critical radius of insulation)p466:换热器(heat exchanger)p491:污垢热阻(thermal resistance of fouling)。
换热器热力学计算中平均温差计算方法
λ fo
设这两种方法所得 Nu 之比为 z: Nu o,am ho,am z= = Nu o,ln ho,ln 其中,
(14)
q ho,am A(t wo − tfo ) = (15) d q ho,ln i ⋅ do ⎛ do ⎞ q q ⎟ πd i l∆t ln − − ln⎜ ⎟ α i 2λw d i ⎜ ⎝ di ⎠ 式中,de 为当量直径,m;l 为换热长度,m。 根据热流率计算公式:
收稿日期:2006-11-21;修回日期:2007-03-05 基金项目:国家自然科学基金资助项目(50476015)
平均温差和热力学平均温差几乎相等 [6] 。孙中 宁、孙桂初等也对传热温差的计算方法进行了分 析,通过对各种计算方法之间的误差进行比较, 指出了 LMTD 法的局限性和应用时需要注意的问 , 题[7 8]。Ram 在对 LMTD 法进行分析的基础上, 提出了一种 LMTDnew 的对数平均温差近似算法, 减小了计算误差[9]。 本文在已有工作的基础上,分别采用 LMTD 和测壁温两种方法,计算了逆流换热器的传热系 数, 对两种方法进行比较, 并在实验的基础上, 进 一步分析了二者的不同之处。
Nu i = 0.023Rei
0.8
Pri
0.3
(9)
d d d 1 1 1 = + o ln o + o k ho 2λ w di d i hi
(5b)
采用 LMTD 法计算对流换热系数时, 对式(5a) 或式(5b)中的传热系数 k 进行分离, 可以得到换热 器一侧的对流换热系数: 1 ho= (6a) 1 1 δ − − k λ w hi
根据计算的平均壁面温度可以得到对流换热 系数: q h= (8) A(t w − t f ) 式中,d 为直径,m;δ为换热器壁厚,m;h 为对 流换热系数, W/(m2 · K);λ为导热系数, W/(m · K)。 下标:i、o 分别表示内侧、外侧;w、f 分别表示 壁面和流体。
传热学第五章对流换热
§5-1 §5-2 §5-3 §5-4 §5-5 §5-6 §5-7 §5-8
对流换热
Convective heat transfer
对流换热概说 对流换热的数学描写 对流换热边界层微分方程组 对流换热边界层积分方程组 相似理论与量纲分析 管内受迫流动 横向外掠圆管的对流换热 自然对流换热及实验关联式
λ ∂t 换热微分方程(描写h的本质,hx = − ∆t ( ∂y ) y =0 dA) 连续性方程(描写流体流动状态,即质量守恒) 动量微分方程(描写流动状态,即动量守恒) 能量微分方程(描写流体中温度场分布)
对流换热微分方程组 先作假设: (1)仅考虑二维问题; (2)流体为不可压缩的牛顿流体,稳定流动; (3)常物性,无内热源; (4)忽略由粘性摩擦而产生的耗散热。 以二维坐标系中的微元体为分析对象,根据热力学第一定 律,对于这样一个开口系统,有:
同理:() dτ qm hout − qm hin ≈ ρcp (
y
H y + dy − H y =
∂t ∂v ⋅ v + ⋅ t )dxdydτ ∂y ∂y
(qm h)out − (qm h)in ∴ ∂t ∂t ∂u ∂v = ρ c p (u + v )dxdy + ρ c p t ( + )dxdy ∂x ∂y ∂x ∂y ∂t ∂t = ρ c p (u + v )dxdy (d ) ∂x ∂y
1.流动边界层(Velocity boundary layer )
如果流体为没有粘性流体,流体流过平板时,流速在截 面上一直保持不变。 如果流体为粘性流体,情况会如何呢?我们用一测速仪 来测量壁面附近的速度分布。测量发现在法向方向上, 即y方向上,壁面上速度为零,随着y方向的增加,流速 急剧增加,到达一薄层后,流速接近或等于来流速度, 德国科学家普朗特L.Prandtl研究了这一现象,并且在 1904年第一次提出了边界层的概念。
载冷剂低温热物性测试方法综述
常心洁等:载冷剂低温热物性测试方法综述
133
相平,说明沸点内管里的蒸气压与外界压力相等,这时的温度即为该液体的 沸点。
微量法测定载冷剂沸点时应注意加热不能太快、被测液体不能太少以防 液体全部汽化,而且沸点内管里的空气在测定前要尽量除干净。此外,观察要 仔细及时,数值应重复测量 3 次,之后取平均值。 3.4 黏度测量
国科学院大连化学物理研究所谭志诚[11]近年来用该方法分别在 90~290 K 和 78~370 K 温区范围测量了物质
的比热容。中国计量科学研究院热工处绝热量热计的示意图如图 2 所示,其样品容器为容积大约为 60 mL 的
134
真空与低温
第 15 卷第 3 期
薄壁圆柱形密闭容器。该方法的关键技术在于保证样品容器真正的绝热,通常采用辐射屏来防止辐射漏热并 利用真空系统使样品容器和辐射屏工作在真空环境下以减少对流热损。
的性能要求,需要对流体工质在低温下的热物性参数进行测量。对现有的载冷剂物性测试方法进行了综述,总结了测
量载冷剂密度、凝固点、沸点、黏度等参数的方法,并通过比较得出绝热量热法是低温下测量液体比热容的最佳方法,
径向热流法适合于低温下测量液体工质的导热系数。
关键词:载冷剂;热物性;低温;测试
中图分类号:TB61+2/TK31
Abstract: The temperature in spacecraft is controlled by the forced convective heat transfer of secondary refrigerant in the thermal control system. When secondary refrigerant is developed and selected based on the performance requirements, the thermal property parameters of fluid are required to measure in low temperature. This article summarizes the measuring technique on thermal properties of secondary refrigerant, including the testing methods of density, freezing point, boiling point and viscosity and so on. Adiabatic calorimeter is the best method for testing specific heat capacity at low temperature, and radial heat flow method is suitable for measuring thermal conductivity at low temperature. Key words: secondary refrigerant;thermal properties;low temperature;measuring
Estimation of heat-transfer characteristics on a vertical annular circular fin of finned-tube heat e
Estimation of heat-transfer characteristics on a vertical annular circular fin of finned-tube heat exchangers in forced convectionHan-Taw Chen *,Wei-Lun HsuDepartment of Mechanical Engineering,National Cheng Kung University,Tainan 701,TaiwanReceived 19January 2007;received in revised form 17June 2007Available online 6September 2007AbstractThe finite difference method in conjunction with the least-squares scheme and experimental measured temperatures is applied to pre-dict the average heat transfer coefficient h and fin efficiency g f on a vertical annular circular fin of finned-tube heat exchangers for various fin spacings in forced convection.The distribution of the heat transfer coefficient on the fin is assumed to be non-uniform,thus the whole annular circular fin is divided into several sub-fin regions in order to predict the h and g f values.These two predicted values can be obtained using the present inverse scheme in conjunction with the experimental measured temperatures.The results show that the effect of the fin spacing S on the h value can be negligible when the S value exceeds about 0.018m.The h value increases with increasing the air speed V air for 1m/s 6V air 65m/s (15506Re d 67760)and increasing the fin spacing for 0.005m 6S 60.018m.The present estimated results can be applied to obtain the new correlations of the Nusselt number and fin efficiency based on d o ,S and Re d .The average heat transfer coefficients obtained from this new correlation of the Nusselt number are in good agreement with those given by Hu and Jacobi [X.Hu,A.M.Jacobi,Local heat transfer behavior and its impact on a single-row,annularly finned tube heat exchanger,ASME J.Heat Transfer 115(1993)66–74].Ó2007Elsevier Ltd.All rights reserved.1.IntroductionAnnular-finned tube heat exchangers are commonly used in industry.In designing such heat exchangers,it is necessary to note the interactions between the local heat transfer and flow distribution within the fins.The previous works about the effect of the fin spacing of annular-finned tube heat exchangers were limited to the experiments [1].Thus the present study applies the hybrid inverse scheme in conjunction with experimental temperature data to esti-mate the heat-transfer characteristics of annular-finned tube heat exchangers in forced convection.The fin in heat exchangers is always applied to increase the heat flow per unit of basic surface.The analysis of a continuous plate fin pierced by a regularly spaced array of circular tubes in staggered and in-line arrays has many engineering appli-cations [2].In order to simplify the problem considered,the calculation of the standard fin efficiency usually assumed that the heat transfer coefficient was constant over the plate fin.It can be found from Refs.[3–6]that there exhibited very complex three-dimensional flow characteristics within a plate finned-tube heat exchanger.In particular,complex flow patterns caused by the horseshoe vortices at the corner junction are of interest to the study of local heat transfer enhancement mechanism.The flow accelerates around a heated horizontal annular-finned circular tube in a cross-flow and forms a low-velocity wake region behind the tube.The boundary layer over a heated horizontal tube starts to develop at the front of the tube and increases in thickness along the circumference of the tube.Thus the heat transfer coefficient in forced convection is highest on the upstream fin region and is lowest on the wake fin region,as shown in Ref.[7].This causes local variations of the heat transfer coefficient on the fin.On the other hand,the heat transfer coefficient on the fin is non-uniform.As shown in Ref.[8],0017-9310/$-see front matter Ó2007Elsevier Ltd.All rights reserved.doi:10.1016/j.ijheatmasstransfer.2007.06.035*Corresponding author.Fax:+88662352973.E-mail address:htchen@.tw (H.-T.Chen)./locate/ijhmtAvailable online at International Journal of Heat and Mass Transfer 51(2008)1920–1932the measurement of the local heat transfer coefficient on the platefin under steady-state heat transfer conditions was very difficult to perform,since the localfin temperature and local heatflux were required.Moreover,reliability is an important concept in engineering design,and the use of reliable components enables the designers to utilize more sophisticated techniques to improve the performance[9]. Thus the estimation of a more accurate heat transfer coef-ficient on thefin is an important task for the device of the high-performance heat exchangers.Heat transfer coefficients encountered in forced convec-tion are typically much higher than those encountered in natural convection because of the higherfluid velocities associated with forced convection.As a result,most of researchers tend to ignore natural convection in heat trans-fer analyses that involve forced convection.However,this error may be considerable at low velocities associated with forced convection[10].It is known that the physical quantities of the test mate-rial can be predicted using the measured temperatures inside this test material.Such problems are called the inverse heat conduction problems that have become an interesting subject recently.To date,various inverse meth-ods in conjunction with the measured temperatures inside the test material have been developed for the analysis of the inverse heat conduction problems[11,12].However, to the authors’knowledge,a few researchers performed the prediction of the local heat transfer coefficients on a vertical annular circularfin offinned-tube heat exchangers with regard for the effect of thefin spacing[3–7,13,15–17].Sung et al.[3]applied the naphthalene sublimation tech-nique to obtain the local mass transfer coefficient on a cir-cular cylinder with transverse two annularfins in a cross flow.Hu and Jacobi[6]also applied the naphthalene subli-mation technique to obtain the local convective heat and mass transfer coefficients on a circular cylinder with trans-verse annularfins in a crossflow over the Reynolds number ranging from3300to12,000.Watel et al.[14]investigated the influence of theflow velocity andfin spacing on the forced convective heat transfer from a single annular-finned tube using the Particle Image Velocimetry and infrared thermography.They obtained a valuable correlation of the mean Nusselt number on thefin as a function of the dimensionlessfin spacing,outer diameter of a circular tubeNomenclatureA f area of the annular circularfin,m2A j area of the j th sub-fin region,m2[A]global conduction matrixD H hydraulic diameter of heat exchanger,md o outer diameter of the circular tube,m[F]force matrixg acceleration of gravity,m/s2h local heat transfer coefficient,W/m2Kh unknown average heat transfer coefficient,W/m2Kh iso unknown average heat transfer coefficient underthe isothermal condition,W/m2Kh ffin height,R oÀR ihjunknown average heat transfer coefficient on thej th sub-fin region,W/m2Kk f thermal conductivity of thefin,W/m Kk air thermal conductivity of the air,W/m K‘r distance between two neighboring nodes in the r-direction,‘r=(R oÀR i)/(N rÀ1)‘h distance between two neighboring nodes in the h-direction,‘h=2p/(N hÀ1)N number of sub-fin regionsNu isod Nusselt number defined in Eq.(22)N r number of nodes in the r-directionN h number of nodes in the h-directionQ total heat transfer rate dissipated from the annu-lar circularfin,Wq j heat transfer rate dissipated from the j th sub-fin region,W r spatial coordinateR i inner radius of the annular circularfin or outer radius of the circular tube,mR o outer radius of the annular circularfin,mRe Reynolds number defined in Eq.(23)Re d Reynolds number defined in Eq.(24)Sfin spacing,mTfin temperature,KT ffilm temperature,(T o+T1)/2T j measured temperature on the j th sub-fin region, KT o outer surface temperature of the circular tube,K T1ambient temperature,K[T]global temperature matrixV air frontal air speed,m/sV max maximum air speed,m/sGreek symbolsa thermal diffusivity of the air,m2/sb volumetric thermal expansion coefficient,1/K dfin thickness,mg ffin efficiencym kinematic viscosity of the air,m2/sh spatial coordinateSuperscriptscal calculated valuemea measured dataH.-T.Chen,W.-L.Hsu/International Journal of Heat and Mass Transfer51(2008)1920–19321921and Reynolds number for25506Re d642,000.They also found that the reduction infin spacing leaded to a decrease of heat transfer for afixed Reynolds number.However,the difference of the average heat transfer coefficients on the downstream and upstreamfin regions andfin efficiency was not shown in Ref.[14].As stated by Hu and Jacobi [6],it was difficult to obtainfin efficiency measurements, because the temperature measurements within thefin or on its surface are inherently difficult to make without dis-rupting the heat transfer behavior.Mon and Gross[15] applied the three-dimensional numerical study to investi-gate the effect of thefin spacing on four-row annular-finned tube bundles in staggered and in-line arrangements.The heat transfer andfluidflow characteristics were predicted using the computationalfluid dynamics commercial code of FLUENT.It can be found from Ref.[15]that the lami-narflow between thefins and one-dimensional heat conduc-tion equation were assumed.Sparrow and Samie[16] measured Nusselt numbers and pressure loss coefficients for one-and two-row arrays of annular-finned tubes using the experimental method.Matos et al.[17]applied a theo-retical,numerical and experimental study to demonstrate thatfinned and non-finned circular and elliptic tubes heat exchangers in forced convection that can be optimized for maximum heat transfer under afixed volume constraint. Jang[18]used the numerical and experimental studies to estimate the heat transfer andfluidflow characteristics of a four-row annular-finned tube heat exchanger in a stag-gered arrangement in order to develop the high efficiency air-cooled steam condenser for the power plant.Sometimes, it is maybe difficult to measure the temperature distribu-tions on thefin of platefinned-tube heat exchangers using the infrared thermography and thermocouples for some practical heat transfer problems.Due to this reason,Chen and Hsu[13]applied thefinite difference method in conjunc-tion with the least-squares scheme and experimental mea-sured temperatures to predict the natural-convection heat transfer coefficient andfin efficiency on a vertical annular circularfin offinned-tube heat exchangers in a small open box with regard for the effect of thefin spacing.It can be found that the predicted results of the average heat transfer coefficient given in Ref.[13]agreed with those obtained from the correlations recommended by current textbooks [1,19]under the assumption of the ideal isothermalfin.This implies that the present inverse scheme has good reliability. In order to validate the reliability and accuracy of the pres-ent inverse scheme in forced convection further,the present study performs the estimations of the average heat transfer coefficient andfin efficiency on a vertical annular circularfin offinned-tube heat exchangers in forced convection.The present estimated results of the average heat transfer coeffi-cient under the ideal isothermal condition will compare with the estimated results given by Hu and Jacobi[6]and Watel et al.[14].The inverse analysis of the present study is that the wholefin area is divided into several analysis sub-fin regions and then thefin temperatures at selected measure-ment locations are measured using T-type thermocouples. Later,thefinite difference method in conjunction with the measured temperatures and least-squares method is applied to predict the average heat transfer coefficients on these sub-fin regions.Furthermore,the average heat transfer coefficient h andfin efficiency can be obtained for various air speeds andfin spacings under the given conditions of the ambient and tube temperatures.The computational procedures for the estimates of the heat transfer coefficient on each sub-fin region are performed repeatedly until the sum of the squares of the deviations between the calculated and measured temperatures becomes minimum.2.Mathematical formulationThe schematic diagram of the present problem is shown in Fig.1.Fig.2shows the physical model of the two-dimensional thin annular circularfin with measurement locations and sub-fin regions in forced convection.R o and R i denote the outer and inner radii of the annular cir-cularfin,respectively.S and d,respectively,denote thefin spacing andfin thickness.The center of the circular tube is located at r=0.T o and T1,respectively,denote the outer surface temperature of the circular tube and the ambient temperature.Due to the thinfin behavior,the temperature gradient in the z-direction(thefin thickness)is small and thefin temperature varies only in the r-and h-directions. The‘‘insulated tip”assumption can be an adequate approximation provided that the actual heat transfer rate dissipated through the tip is much smaller than the total heat transfer rate drawn from the base wall[20].It can be found from Refs.[7,13]that the heat transfer coefficient on thefin offinned-tube heat exchangers was non-uniform. Thus the heat transfer coefficient h(r,h)in the present study is also assumed to be non-uniform.The average heattrans-1922H.-T.Chen,W.-L.Hsu/International Journal of Heat and Mass Transfer51(2008)1920–1932fer coefficient on each sub-fin region can be estimated pro-vided that thefin temperatures at various measurement locations can be measured.Under the assumptions of the steady state and constant thermal properties,the two-dimensional heat conduction equation for the continuous thefin of a one-tubefinned-tube heat exchanger can be expressed aso2T o r2þ1ro To rþ1r2o2To h2¼2hðr;hÞk f dðTÀT1Þin R i<r<R o;0<h62pð1ÞIts corresponding boundary conditions areo Tðr;0Þo h ¼o Tðr;2pÞo hð2ÞTðr;0Þ¼Tðr;2pÞð3ÞTðr;hÞ¼T o at r¼R ið4Þando Tðr;hÞo r¼0at r¼R oð5Þwhere T is thefin temperature.r and h are cylindrical coor-dinates.h(r,h)is the unknown heat transfer coefficient on thefin.k f is the thermal conductivity of thefin.3.Numerical analysisIt might be difficult to measure the temperature distribu-tions on the annular circularfin using the infrared ther-mography and thermocouples for some practical heat transfer problems.Relatively,the distribution of the unknown heat transfer coefficient on afin h(r,h)is not easy to be obtained.Under this circumstance,the annular circu-larfin considered can be divided into N sub-fin regions in the present inverse scheme and then the unknown heat transfer coefficient on each sub-fin region can be assumed to be constant.Thus the application of thefinite difference method to Eq.(1)can produce the following difference equation on the k th sub-fin region asT iþ1;jÀ2T i;jþT iÀ1;j‘2rþ1R iþðiÀ1Þ‘rT iþ1;jÀT iÀ1;j2‘rþ1½R iþðiÀ1Þ‘r 2T i;jþ1À2T i;jþT i;jÀ1‘2h¼2 h kk f dðT i;jÀT1Þfor i¼2;...;N r;j¼ðN hÀ1ÞðkÀ1Þ=Nþ2;ðN hÀ1ÞðkÀ1Þ=Nþ3;...;ðN hÀ1Þk=Nð6Þwhere‘r and‘h,respectively,are the distances between two neighboring nodes in the r-and h-directions and are de-fined as‘r=(R oÀR i)/(N rÀ1)and‘h=2p/(N hÀ1).N r and N h are the nodal numbers in the r-and h-directions, respectively. h k is denoted as the average heat transfer coef-ficient on the k th sub-fin region.The application of the central difference approximation to the boundary condition(2)and then the substitution of the resulting equation into Eq.(6)can yield the difference equations asT iþ1;1À2T i;1þT iÀ1;1‘2rþ1R iþðiÀ1Þ‘rT iþ1;1ÀT iÀ1;12‘rþ1½R iþðiÀ1Þ‘rT i;2À2T i;1þT i;NhÀ1‘h¼2 h mk f dðT i;1ÀT1Þfor i¼2;3;...;N rð7ÞH.-T.Chen,W.-L.Hsu/International Journal of Heat and Mass Transfer51(2008)1920–19321923andT iþ1;Nh À2T i;NhþT iÀ1;Nh‘rþ1R iþðiÀ1Þ‘rT iþ1;NhÀT iÀ1;Nh2‘rþ1½R iþðiÀ1Þ‘r 2T i;2À2T i;NhþT i;NhÀ1‘2h¼2 h mk f dðT i;NhÀT1Þfor i¼2;3;...;N rð8Þwhere h m is defined as h m¼ð h1þ h NÞ=2.The discretized form of Eq.(4)is given asT1;j¼T o for j¼1;2;...;N hð9ÞThe application of the central difference approximation to the boundary conditions(3)and(5)can yield their differ-ence equations asT i;1¼T i;Nhfor i¼2;3;...;N rð10ÞandT NrÀ1;j ¼T Nrþ1;jfor j¼1;2;...;N hð11ÞThe difference equations for the nodes at the interface of two neighboring sub-fin regions,as shown in Fig.3,can be expressed asT iþ1;jÀ2T i;jþT iÀ1;j‘r þ1R iþðiÀ1Þ‘rT iþ1;jÀT iÀ1;j2‘rþ1½R iþðiÀ1Þ‘r 2T i;jþ1À2T i;jþT i;jÀ1‘2h¼ hkþ h kþ1k f dðT i;jÀT1Þfor i¼2;...;N r;j¼ðN hÀ1Þk=Nþ1;k¼1;2;...;NÀ1ð12ÞRearrangement of Eqs.(6)–(12)can yield the following ma-trix equation as½A ½T ¼½F ð13Þwhere[A]is a global conduction matrix.[T]is a matrix rep-resenting the nodal temperatures.[F]is a force matrix.The nodal temperatures can be obtained from Eq.(13)using the Gauss elimination algorithm.Once the average heat transfer coefficient on each sub-fin region is obtained,the heat transfer rate dissipated from the j th sub-fin region q i and average heat transfer coeffi-cient on the wholefin h can be determined using the follow-ing expressions.The heat transfer rate dissipated from the j th sub-fin region q i is defined asqi¼2 h jZA jðTÀT1Þd A for j¼1;2;...;Nð14ÞThe average heat transfer coefficient on the wholefin h can be expressed ash¼X Nj¼1hjA j=A fð15Þwhere A f is the area of the annular circularfin.A j is the area of the j th sub-fin region.Thefin efficiency g f is defined as the ratio of the actual heat transfer rate from the wholefin to the dissipated heat transfer rate from thefin maintained at the tube tempera-ture T o.Thus thefin efficiency g f can be expressed asg f¼P Nj¼1qj2A fðT oÀT1Þ hð16ÞThe total heat transfer rate dissipated from the wholefin to the ambient Q can be written asQ¼X Nj¼1qjð17ÞIn order to estimate the unknown heat transfer coefficient on the j th sub-fin region h j,the additional information of the steady-state measured temperatures is required.The more a number of the sub-fin regions are,the more accu-rate the estimation of the unknown average heat transfer coefficient on the wholefin can be.Relatively,a more com-putational time can be required.In the present study, T-type thermocouples are used to record the temperature information at selected measurement locations.The mea-sured temperature taken from the j th thermocouple isdenoted as T meaj,j=1,...,N,as shown in Tables1–3.The least-squares minimization technique is applied to minimize the sum of the squares of the deviations between the calculated and measured temperatures at selected mea-surement locations.In the present study,the unknown average heat transfer coefficients on each sub-fin region h i can be expressed ashi¼C i for i¼1;2;...;Nð18ÞFig.3.Nodes at the interface of two-neighboring sub-fin areas.1924H.-T.Chen,W.-L.Hsu/International Journal of Heat and Mass Transfer51(2008)1920–1932Table1Temperature measurements and the present estimates for V air=1m/s and various S valuesS=0.005m S=0.01m S=0.015m S?1T0=330.63K T0=328.82K T0=330.34K T0=335.03KT1=298.03K T1=298.20K T1=299.74K T1=300.23KT mea j ðKÞT mea1¼305:67T mea1¼304:71T mea1¼305:51T mea1¼306:67T mea2¼305:83T mea2¼305:36T mea2¼305:67T mea2¼307:06T mea3¼314:30T mea3¼309:22T mea3¼313:25T mea3¼312:75T mea4¼312:93T mea4¼309:28T mea4¼311:31T mea4¼312:75T mea5¼305:91T mea5¼305:39T mea5¼307:67T mea5¼309:22T mea6¼303:70T mea6¼303:17T mea6¼304:75T mea6¼306:16h j (W/m2K) h1¼24:72 h1¼29:65 h1¼34:35 h1¼36:27h2¼35:86 h2¼31:97 h2¼45:10 h2¼41:00h3¼3:20 h3¼12:51 h3¼4:06 h3¼11:20h4¼7:49 h4¼12:51 h4¼13:98 h4¼13:62h5¼31:02 h5¼29:40 h5¼24:56 h5¼24:74h6¼45:46 h6¼48:96 h6¼48:50 h6¼45:60q j(W)q1=0.72q1=0.77q1=0.85q1=1.01q2=1.11q2=0.90q2=1.19q2=1.22q3=0.14q3=0.43q3=0.16q3=0.44q4=0.32q4=0.43q4=0.51q4=0.54q5=0.95q5=0.82q5=0.72q5=0.82q6=1.11q6=1.09q6=1.08q6=1.17hðW=ðm2KÞÞ24.6327.5028.4228.74h iso W=ðm2KÞPresent Eq.(20)18.7320.3520.6920.97Present Eq.(25)18.4919.3719.5521.02Ref.[14]18.4921.0421.9825.73Q(W) 4.35 4.44 4.51 5.20g f38%37%36%35%Table2Temperature measurements and the present estimates for V air=3m/s and various S valuesS=0.005m S=0.01m S=0.015m S?1T0=331.70K T0=331.00K T0=330.80K T0=331.60KT1=298.15K T1=299.00K T1=299.90K T1=300.15KT mea j ðKÞT mea1¼300:31T mea1¼302:46T mea1¼302:49T mea1¼302:95T mea2¼303:73T mea2¼302:75T mea2¼302:95T mea2¼303:08T mea3¼310:39T mea3¼306:36T mea3¼307:21T mea3¼306:79T mea4¼308:82T mea4¼306:92T mea4¼306:95T mea4¼307:05T mea5¼302:16T mea5¼302:79T mea5¼303:41T mea5¼303:80T mea6¼301:31T mea6¼301:21T mea6¼302:46T mea6¼302:79h j ðW=m2KÞ h1¼116:86 h1¼62:67 h1¼84:40 h1¼78:63h2¼45:01 h2¼67:67 h2¼80:43 h2¼84:43h3¼9:38 h3¼25:12 h3¼21:83 h3¼27:02h4¼14:13 h4¼20:89 h4¼25:12 h4¼26:16h5¼69:25 h5¼64:38 h5¼67:88 h5¼65:85h6¼73:28 h6¼107:52 h6¼87:12 h6¼86:73q j(W)q1=2.24q1=1.29q1=1.56q1=1.50q2=1.17q2=1.48q2=1.61q2=1.69q3=0.35q3=0.71q3=0.59q3=0.71q4=0.49q4=0.60q4=0.68q4=0.70q5=1.62q5=1.40q5=1.41q5=1.40q6=1.39q6=1.82q6=1.48q6=1.51hðW=ðm2KÞÞ54.6558.0461.1361.47h isoðW=ðm2KÞÞPresent Eq.(20)30.3732.0233.2933.51Present Eq.(25)30.9631.6731.7833.62Ref.[14]35.4339.3840.9047.10Q(W)7.267.307.337.51g f28%28%27%27%H.-T.Chen,W.-L.Hsu/International Journal of Heat and Mass Transfer51(2008)1920–19321925The error in the estimates E (C 1,C 2,...,C N )will be mini-mized in order to obtain the required estimates.E (C 1,C 2,...,C N )is defined asE ðC 1;C 2;...;C N Þ¼XN j ¼1½T cal j ÀT mea j2ð19Þwhere T cal j denotes the calculated temperature taken from the j th thermocouple location and is obtained from Eq.(13).The estimated values of C j ,j =1,2,...,N ,are deter-mined until the value of E (C 1,C 2,...,C N )is minimum.The detailed computational procedures for estimating the C j values,j =1,2,...,N ,can be found in Refs.[7,13].In order to avoid repetition,they are not shown in this paper.The computational procedures of the present study are repeated until the values of T mea j ÀT calj T mea j,j =1,2,...,N ,are lessthan 10À6.4.Experimental apparatusAn experimental configuration of the small wind tunnel used for the present problem is the same as Fig.1of Ref.[7].The experimental procedures and manners have also been shown in Ref.[7].In order to avoid repetition,they are not shown in this study.Fig.4shows the experimental configuration of the test annular fin vertically mounted ona circular tube in forced convection.The test annular circu-lar fin with 27mm in inner diameter,99mm in outer diam-eter and 1mm in thickness are made of AISI 304stainless material.It can be found from Ref.[21]that the thermal conductivity of AISI 304stainless material is 14.9W/m K.An anemometer installed at 300mm in front of the airflow entering the test specimen is used to measure the frontal air velocity.The limit of its error is ±0.4%for the velocity ranging from 0.4m/s to 30.0m/s.The ambient and test fin temperatures are measured using T-type thermocouples.The limit of error of the T-type thermocouple is ±0.4%for 0°C 6T 6350°C.Six thermo-couples,TC7,TC8,TC9,TC10,TC11and TC12,placed in the gap between the fin and the circular tube are fixed at p /6,p /2,5p /6,7p /6,3p /2and 11p /6in angle,as shown in Fig.2.In order to reduce the heat loss between the fin and the circular tube,their gap is filled with the cyanoacry-late (Satlon,D-3).The average of these six measured tem-peratures is taken as the fin base temperature and is also assumed to be the outer surface temperature of the circular tube T 0in the present study.Three thermocouples pene-trated the central line of the top surface and two lateral sur-faces are positioned at 100mm away from the test fin in order to measure the ambient temperature T 1.The aver-age of these three measured temperatures is taken as the ambient temperature T 1.In order to estimate the average heat transfer coefficient on the fin,the annular circular finTable 3Temperature measurements and the present estimates for V air =5m/s and various S valuesS =0.005m S =0.01m S =0.015m S ?1T 0=330.13K T 0=331.20K T 0=329.30K T 0=331.50K T 1=298.90KT 1=299.25K T 1=299.53K T 1=299.88K T mea jðK ÞT mea 1¼300:98T mea 1¼301:80T mea 1¼301:18T mea 1¼301:44T mea 2¼301:37T mea 2¼301:97T mea 2¼301:64T mea 2¼302:39T mea 3¼306:43T mea 3¼305:11T mea 3¼304:43T mea 3¼304:13T mea 4¼308:75T mea 4¼305:41T mea 4¼305:25T mea 4¼304:92T mea 5¼300:98T mea 5¼301:67T mea 5¼301:48T mea 5¼302:13T mea 6¼300:86T mea 6¼300:82T mea 6¼301:18T mea 6¼301:61h j ðW =ðm 2K ÞÞh 1¼102:50h 1¼83:83 h 1¼120:11 h 1¼134:30 h 2¼98:83 h 2¼90:25 h 2¼103:57 h 2¼89:38 h 3¼24:03 h 3¼33:43 h 3¼39:21 h 3¼51:64 h 4¼7:68 h 4¼29:36 h 4¼27:64 h 4¼37:36 h 5¼121:35 h 5¼98:33 h 5¼114:14 h 5¼103:20 h 6¼107:11 h 6¼137:38 h 6¼119:16 h 6¼120:46q j (W)q 1=1.79q 1=1.56q 1=1.91q 1=2.22q 2=1.87q 2=1.77q 2=1.79q 2=1.67q 3=0.68q 3=0.84q 3=0.88q 3=1.14q 4=0.24q 4=0.75q 4=0.65q 4=0.87q 5=2.24q 5=1.86q 5=1.95q 5=1.89q 6=1.67q 6=2.10q 6=1.72q 6=1.84 h ðW =ðm 2K ÞÞ76.9278.7687.3089.39 h iso ðW =ðm 2K ÞÞPresent Eq.(20)38.1539.0141.9642.74Present Eq.(25)39.2739.7939.8341.82Ref.[14]47.2052.6754.5862.44Q (W)8.498.888.909.63g f25%25%24%24%1926H.-T.Chen,W.-L.Hsu /International Journal of Heat and Mass Transfer 51(2008)1920–1932。
(完整版)流体力学常用名词中英文对照
流体力学常用名词流体动力学fluid dynamics连续介质力学mechanics of continuous介质medium流体质点fluid particle无粘性流体nonviscous fluid, inviscid连续介质假设continuous medium hypothesis流体运动学fluid kinematics水静力学hydrostatics液体静力学hydrostatics支配方程governing equation伯努利方程Bernoulli equation伯努利定理Bernonlli theorem毕奥-萨伐尔定律Biot-Savart law欧拉方程Euler equation亥姆霍兹定理Helmholtz theorem开尔文定理Kelvin theorem涡片vortex sheet库塔-茹可夫斯基条件Kutta-Zhoukowski condition 布拉休斯解Blasius solution达朗贝尔佯廖d'Alembert paradox雷诺数Reynolds number施特鲁哈尔数Strouhal number随体导数material derivative不可压缩流体incompressible fluid质量守恒conservation of mass动量守恒conservation of momentum能量守恒conservation of energy动量方程momentum equation能量方程energy equation控制体积control volume液体静压hydrostatic pressure涡量拟能enstrophy压差differential pressure流[动] flow流线stream line流面stream surface流管stream tube迹线path, path line流场flow field流态flow regime流动参量flow parameter流量flow rate, flow discharge涡旋vortex涡量vorticity涡丝vortex filament涡线vortex line涡面vortex surface涡层vortex layer涡环vortex ring涡对vortex pair涡管vortex tube涡街vortex street卡门涡街Karman vortex street马蹄涡horseshoe vortex对流涡胞convective cell卷筒涡胞roll cell涡eddy涡粘性eddy viscosity环流circulation环量circulation速度环量velocity circulation偶极子doublet, dipole驻点stagnation point总压[力] total pressure总压头total head静压头static head总焓total enthalpy能量输运energy transport速度剖面velocity profile库埃特流Couette flow单相流single phase flow单组份流single-component flow均匀流uniform flow非均匀流nonuniform flow二维流two-dimensional flow三维流three-dimensional flow准定常流quasi-steady flow非定常流unsteady flow, non-steady flow 暂态流transient flow周期流periodic flow振荡流oscillatory flow分层流stratified flow无旋流irrotational flow有旋流rotational flow轴对称流axisymmetric flow不可压缩性incompressibility不可压缩流[动] incompressible flow浮体floating body定倾中心metacenter阻力drag, resistance减阻drag reduction表面力surface force表面张力surface tension毛细[管]作用capillarity来流incoming flow自由流free stream自由流线free stream line外流external flow进口entrance, inlet出口exit, outlet扰动disturbance, perturbation分布distribution传播propagation色散dispersion弥散dispersion附加质量added mass ,associated mass收缩contraction镜象法image method无量纲参数dimensionless parameter几何相似geometric similarity运动相似kinematic similarity动力相似[性] dynamic similarity平面流plane flow势potential势流potential flow速度势velocity potential复势complex potential复速度complex velocity流函数stream function源source汇sink速度[水]头velocity head拐角流corner flow空泡流cavity flow超空泡supercavity超空泡流supercavity flow空气动力学aerodynamics低速空气动力学low-speed aerodynamics 高速空气动力学high-speed aerodynamics 气动热力学aerothermodynamics亚声速流[动] subsonic flow跨声速流[动] transonic flow超声速流[动] supersonic flow锥形流conical flow楔流wedge flow叶栅流cascade flow非平衡流[动] non-equilibrium flow细长体slender body细长度slenderness钝头体bluff body钝体blunt body翼型airfoil翼弦chord薄翼理论thin-airfoil theory构型configuration后缘trailing edge迎角angle of attack失速stall脱体激波detached shock wave波阻wave drag诱导阻力induced drag诱导速度induced velocity临界雷诺数critical Reynolds number 前缘涡leading edge vortex附着涡bound vortex约束涡confined vortex气动中心aerodynamic center气动力aerodynamic force气动噪声aerodynamic noise气动加热aerodynamic heating离解dissociation地面效应ground effect气体动力学gas dynamics稀疏波rarefaction wave热状态方程thermal equation of state 喷管Nozzle普朗特-迈耶流Prandtl-Meyer flow瑞利流Rayleigh flow可压缩流[动] compressible flow可压缩流体compressible fluid绝热流adiabatic flow非绝热流diabatic flow未扰动流undisturbed flow等熵流isentropic flow匀熵流homoentropic flow兰金-于戈尼奥条件Rankine-Hugoniot condition 状态方程equation of state量热状态方程caloric equation of state完全气体perfect gas拉瓦尔喷管Laval nozzle马赫角Mach angle马赫锥Mach cone马赫线Mach line马赫数Mach number马赫波Mach wave当地马赫数local Mach number冲击波shock wave激波shock wave正激波normal shock wave斜激波oblique shock wave头波bow wave附体激波attached shock wave激波阵面shock front激波层shock layer压缩波compression wave反射reflection折射refraction散射scattering衍射diffraction绕射diffraction出口压力exit pressure超压[强] over pressure反压back pressure爆炸explosion爆轰detonation缓燃deflagration水动力学hydrodynamics液体动力学hydrodynamics泰勒不稳定性Taylor instability盖斯特纳波Gerstner wave斯托克斯波Stokes wave瑞利数Rayleigh number自由面free surface波速wave speed, wave velocity波高wave height波列wave train波群wave group波能wave energy表面波surface wave表面张力波capillary wave规则波regular wave不规则波irregular wave浅水波shallow water wave深水波deep water wave重力波gravity wave椭圆余弦波cnoidal wave潮波tidal wave涌波surge wave破碎波breaking wave船波ship wave非线性波nonlinear wave孤立子soliton水动[力]噪声hydrodynamic noise水击water hammer空化cavitation空化数cavitation number空蚀cavitation damage超空化流supercavitating flow水翼hydrofoil水力学hydraulics洪水波flood wave涟漪ripple消能energy dissipation海洋水动力学marine hydrodynamics 谢齐公式Chezy formula欧拉数Euler number弗劳德数Froude number水力半径hydraulic radius水力坡度hvdraulic slope高度水头elevating head水头损失head loss水位water level水跃hydraulic jump含水层aquifer排水drainage排放量discharge壅水曲线back water curve压[强水]头pressure head过水断面flow cross-section明槽流open channel flow孔流orifice flow无压流free surface flow有压流pressure flow缓流subcritical flow急流supercritical flow渐变流gradually varied flow急变流rapidly varied flow临界流critical flow异重流density current, gravity flow堰流weir flow掺气流aerated flow含沙流sediment-laden stream降水曲线dropdown curve沉积物sediment, deposit沉[降堆]积sedimentation, deposition沉降速度settling velocity流动稳定性flow stability不稳定性instability奥尔-索末菲方程Orr-Sommerfeld equation 涡量方程vorticity equation泊肃叶流Poiseuille flow奥辛流Oseen flow剪切流shear flow粘性流[动] viscous flow层流laminar flow分离流separated flow二次流secondary flow近场流near field flow远场流far field flow滞止流stagnation flow尾流wake [flow]回流back flow反流reverse flow射流jet自由射流free jet管流pipe flow, tube flow内流internal flow拟序结构coherent structure猝发过程bursting process表观粘度apparent viscosity运动粘性kinematic viscosity动力粘性dynamic viscosity泊poise厘泊centipoise厘沱centistoke剪切层shear layer次层sublayer流动分离flow separation层流分离laminar separation湍流分离turbulent separation分离点separation point附着点attachment point再附reattachment再层流化relaminarization起动涡starting vortex驻涡standing vortex涡旋破碎vortex breakdown涡旋脱落vortex shedding压[力]降pressure drop压差阻力pressure drag压力能pressure energy型阻profile drag滑移速度slip velocity无滑移条件non-slip condition壁剪应力skin friction, frictional drag壁剪切速度friction velocity磨擦损失friction loss磨擦因子friction factor耗散dissipation滞后lag相似性解similar solution局域相似local similarity气体润滑gas lubrication液体动力润滑hydrodynamic lubrication浆体slurry泰勒数Taylor number纳维-斯托克斯方程Navier-Stokes equation 牛顿流体Newtonian fluid边界层理论boundary later theory边界层方程boundary layer equation边界层boundary layer附面层boundary layer层流边界层laminar boundary layer湍流边界层turbulent boundary layer温度边界层thermal boundary layer边界层转捩boundary layer transition边界层分离boundary layer separation边界层厚度boundary layer thickness位移厚度displacement thickness动量厚度momentum thickness能量厚度energy thickness焓厚度enthalpy thickness注入injection吸出suction泰勒涡Taylor vortex速度亏损律velocity defect law形状因子shape factor测速法anemometry粘度测定法visco[si] metry流动显示flow visualization油烟显示oil smoke visualization孔板流量计orifice meter频率响应frequency response油膜显示oil film visualization阴影法shadow method纹影法schlieren method烟丝法smoke wire method丝线法tuft method 说明氢泡法nydrogen bubble method相似理论similarity theory相似律similarity law部分相似partial similarity定理pi theorem, Buckingham theorem静[态]校准static calibration动态校准dynamic calibration风洞wind tunnel激波管shock tube激波管风洞shock tube wind tunnel水洞water tunnel拖曳水池towing tank旋臂水池rotating arm basin扩散段diffuser测压孔pressure tap皮托管pitot tube普雷斯顿管preston tube斯坦顿管Stanton tube文丘里管Venturi tubeU形管U-tube压强计manometer微压计micromanometer多管压强计multiple manometer静压管static [pressure]tube流速计anemometer风速管Pitot- static tube激光多普勒测速计laser Doppler anemometer,laser Doppler velocimeter热线流速计hot-wire anemometer热膜流速计hot- film anemometer流量计flow meter粘度计visco[si] meter涡量计vorticity meter传感器transducer, sensor压强传感器pressure transducer热敏电阻thermistor示踪物tracer时间线time line脉线streak line尺度效应scale effect壁效应wall effect堵塞blockage堵寒效应blockage effect动态响应dynamic response响应频率response frequency底压base pressure菲克定律Fick law巴塞特力Basset force埃克特数Eckert number格拉斯霍夫数Grashof number努塞特数Nusselt number普朗特数prandtl number雷诺比拟Reynolds analogy施密特数schmidt number斯坦顿数Stanton number对流convection自由对流natural convection, free convec-tion 强迫对流forced convection热对流heat convection质量传递mass transfer传质系数mass transfer coefficient热量传递heat transfer传热系数heat transfer coefficient对流传热convective heat transfer辐射传热radiative heat transfer动量交换momentum transfer能量传递energy transfer传导conduction热传导conductive heat transfer热交换heat exchange临界热通量critical heat flux浓度concentration扩散diffusion扩散性diffusivity扩散率diffusivity扩散速度diffusion velocity分子扩散molecular diffusion沸腾boiling蒸发evaporation气化gasification凝结condensation成核nucleation计算流体力学computational fluid mechanics多重尺度问题multiple scale problem伯格斯方程Burgers equation对流扩散方程convection diffusion equationKDU方程KDV equation修正微分方程modified differential equation拉克斯等价定理Lax equivalence theorem数值模拟numerical simulation大涡模拟large eddy simulation数值粘性numerical viscosity非线性不稳定性nonlinear instability希尔特稳定性分析Hirt stability analysis相容条件consistency conditionCFL条件Courant- Friedrichs- Lewy condition ,CFL condition 狄里克雷边界条件Dirichlet boundary condition熵条件entropy condition远场边界条件far field boundary condition流入边界条件inflow boundary condition无反射边界条件nonreflecting boundary condition数值边界条件numerical boundary condition流出边界条件outflow boundary condition冯.诺伊曼条件von Neumann condition近似因子分解法approximate factorization method人工压缩artificial compression人工粘性artificial viscosity边界元法boundary element method配置方法collocation method能量法energy method有限体积法finite volume method流体网格法fluid in cell method,FLIC method通量校正传输法flux-corrected transport method通量矢量分解法flux vector splitting method伽辽金法Galerkin method积分方法integral method标记网格法marker and cell method, MAC method特征线法method of characteristics直线法method of lines矩量法moment method多重网格法multi- grid method板块法panel method质点网格法particle in cell method, PIC method质点法particle method预估校正法predictor-corrector method投影法projection method准谱法pseudo-spectral method随机选取法random choice method激波捕捉法shock-capturing method激波拟合法shock-fitting method谱方法spectral method稀疏矩阵分解法split coefficient matrix method不定常法time-dependent method时间分步法time splitting method变分法variational method涡方法vortex method隐格式implicit scheme显格式explicit scheme交替方向隐格式alternating direction implicit scheme, ADI scheme 反扩散差分格式anti-diffusion difference scheme紧差分格式compact difference scheme守恒差分格式conservation difference scheme克兰克-尼科尔森格式Crank-Nicolson scheme杜福特-弗兰克尔格式Dufort-Frankel scheme指数格式exponential scheme戈本诺夫格式Godunov scheme高分辨率格式high resolution scheme拉克斯-温德罗夫格式Lax-Wendroff scheme蛙跳格式leap-frog scheme单调差分格式monotone difference scheme保单调差分格式monotonicity preserving diffe-rence scheme穆曼-科尔格式Murman-Cole scheme半隐格式semi-implicit scheme斜迎风格式skew-upstream scheme全变差下降格式total variation decreasing scheme TVD scheme迎风格式upstream scheme , upwind scheme计算区域computational domain物理区域physical domain影响域domain of influence依赖域domain of dependence区域分解domain decomposition维数分解dimensional split物理解physical solution弱解weak solution黎曼解算子Riemann solver守恒型conservation form弱守恒型weak conservation form强守恒型strong conservation form散度型divergence form贴体曲线坐标body- fitted curvilinear coordi-nates [自]适应网格[self-] adaptive mesh适应网格生成adaptive grid generation自动网格生成automatic grid generation数值网格生成numerical grid generation交错网格staggered mesh网格雷诺数cell Reynolds number数植扩散numerical diffusion数值耗散numerical dissipation数值色散numerical dispersion数值通量numerical flux放大因子amplification factor放大矩阵amplification matrix阻尼误差damping error离散涡discrete vortex熵通量entropy flux熵函数entropy function分步法fractional step method。
铝合金薄板强风气垫射流加热过程的对流换热系数研究
铝合金薄板强风气垫射流加热过程的对流换热系数研究李家栋;刘静;高冠军;王昭东【摘要】实验研究了强风气垫冲击射流加热铝合金薄板的对流换热特性.基于集总热容法计算表面对流换热系数,获得射流速度42 m/s ~68 m/s(压力0.4 kPa~1.0 kPa)的表面对流换热系数与铝板温度关系.对于厚度为3mm的薄板,若要实现工业气垫炉加热所需的4.5℃/s的加热速率,其表面平均对流换热系数应大于231W/(m2 ·K),雷诺数Re要大于17 138.利用实验数据的回归处理及最小二乘法,建立了强风气垫射流加热过程的平均对流换热准数方程,与实验数据比较,该准数方程与实验结果吻合良好,误差小于4.5%.【期刊名称】《轻合金加工技术》【年(卷),期】2017(045)008【总页数】6页(P30-34,39)【关键词】射流冲击加热;气垫炉;热处理;对流换热系数;准数方程【作者】李家栋;刘静;高冠军;王昭东【作者单位】东北大学轧制技术及连轧自动化国家重点实验室,辽宁沈阳110819;东北大学轧制技术及连轧自动化国家重点实验室,辽宁沈阳110819;东北大学轧制技术及连轧自动化国家重点实验室,辽宁沈阳110819;东北大学轧制技术及连轧自动化国家重点实验室,辽宁沈阳110819【正文语种】中文【中图分类】TG166.3;TG155.1强风气垫加热装置,也称气垫炉,是国外开发成功的一种薄板带加热设备[1],具有温控精度高、板带生产效率高、表面质量优异、加热速度快(对于0.3 mm~3 mm的铝合金薄板,加热速度可达4.5℃/s~18℃/s)的特点,能充分满足汽车、航空用途的大规格高性能铝合金板带材的快速、高质量热处理需要[2-4]。
目前国内西南铝业、南山铝业、南南铝业等多家铝合金加工企业都引进了该设备[5-7]。
但国内针对相关技术的研究还不充分,还没有自主开发出气垫炉产业化应用的实例。
为使其能在我国高性能铝合金板带工艺优化和产品开发中发挥作用,形成我国自主的强风气垫射流加热技术,有必要对强风气垫加热装置的换热系数及换热特性予以研究。
强制对流的英文单词
强制对流的英文单词The concept of forced convection is fundamental in the study of heat transfer. It involves the movement of fluid, driven by an external force, to enhance the rate of heat exchange.In practical applications, forced convection is utilized in various systems such as heating and cooling of electronic devices, air conditioning, and refrigeration. It ensures efficient temperature regulation and prevents overheating.The process is characterized by the use of pumps or fans to push the fluid over a surface, thereby increasing the heat transfer coefficient. This method is highly effective compared to natural convection, where fluid movement is driven by buoyancy forces.Understanding the principles of forced convection is essential for designing systems that require precise temperature control. Engineers must consider factors such as fluid velocity, surface area, and thermal properties of the materials involved.Moreover, the efficiency of forced convection can be optimized by selecting the appropriate type of flow, such as laminar or turbulent, based on the specific requirements of the application.In summary, forced convection plays a crucial role in many industries and is a vital topic in the field of thermal engineering. It allows for the controlled transfer of heat, ensuring the safe and efficient operation of various devices and systems.。
传热学智慧树知到答案章节测试2023年烟台大学
第一章测试1.深秋及初冬的清晨常常会看到屋面结霜,有雾天也会出现A:错B:对答案:A2.据说国外家中的吊扇最慢一挡的转速比我们的慢得多,他们冬天时用这一挡速度开启吊扇。
分析其中的原因是什么?A:室内温度高,散热凉快B:上方温度高,开风扇可使得温度均匀答案:B3.热传递方式中热量计算与热力学温度四次方有关的是哪个?A:热对流B:热传导C:对流传热D:热辐射答案:D4.双语测试题。
选择与下列术语对应的英文。
热传导A:heat transfer rateB:heat fluxC:heat conductionD:thermal conductivity答案:C5.双语测试题。
选择与下列术语对应的英文。
黑度A:black bodyB:overall heat transfer processC:emissivityD:overall heat transfer coefficient答案:C6.双语测试题。
选择与下列术语对应的英文。
强制对流A:forced convectionB:convective heat transferC:heat convectionD:natural convection答案:A7.双语测试题。
选择与下列术语对应的英文。
传热过程热阻A:insulating materialB:Fourier’ s law of heat conductionC:temperature gradientD:overall thermal resistance答案:D第二章测试1.求解导热微分方程需要给出单值性条件,下列选项中哪一组不属于单值性条件?A:边界上温度梯度分布B:物体中的初始温度分布及内热源C:边界上对流换热时空气的相对温度及压力D:几何尺寸及物性系数答案:C2.纯金属的热导率一般随着温度的升高而:A:不变B:上升C:先上升然后下降D:下降答案:D3.下列导热过程傅里叶定律表述中,不正确的是:A:热流密度q与传热面积无关B:导热量Q与导热距离成反比C:导热量Q与温度梯度成正比D:热流密度q与传热面积成正比答案:D4.单层圆柱体内一维径向稳态导热过程中,无内热源,物性参数为常数,则下列说法正确的是:A:导热量Φ为常数B:单位长度热流量q1只是长度l的函数C:导热量Φ为半径的函数D:单位长度热流量q1为常数答案:D5.下列四种物质的导热系数,最大的是:A:木材B:混凝土C:钢铁D:铝答案:D6.有一中间为空气的双层玻璃窗,两侧窗户的厚度均为3mm,导热系数为1.05W/mK,中间空气层厚度为5mm,空气层中仅以导热方式传热,导热系数0.026W/mK,室内空气温度为25℃,表面传热系数为20W/m2K,室外空气温度为-10℃,表面传热系数为15W/m2K,试计算该双层窗户中外层窗户的外壁面温度。
椭球颗粒随机紧密堆积实验研究
椭球颗粒随机紧密堆积实验研究赵述敏;胡志刚【摘要】针对随机堆积问题在数理领域和实际生产中意义重大且目前尚无一般性的理论模型的问题,采用一种基于高分辨率工业X射线断层扫描(CT)无损检测的实验方法较精确地测定了椭球颗粒随机紧密堆积体系的3个重要参数,即堆积分数、取向序和配位数分布,结果表明,椭球纵横比为0.5左右时,堆积分数达到的最大值为74%,与现有的模拟结果一致,而在一定纵横比范围内,配位数的分布呈偏态分布,取向角与取向轴呈现出高对称性,但离散性较强,该结果与球体随机紧密堆积的差异较大.在不考虑摩擦刚体所需平均配位数为刚体自由度的2倍、有限堆积物的配位数分布满足古典的几何分布的2个假设下,提出了一种椭球的堆积理论,其能解释堆积参数的变化趋势.结论和实验手段对探讨非球体填充理论和计算堆积体孔隙率有一定的参考价值.【期刊名称】《西安交通大学学报》【年(卷),期】2016(050)009【总页数】6页(P140-145)【关键词】随机紧密堆积;堆积分数;配位数;取向序【作者】赵述敏;胡志刚【作者单位】西安交通大学理学院,710049,西安;西安交通大学理学院,710049,西安【正文语种】中文【中图分类】O4颗粒物质的堆积问题已成为当前工程、材料等领域研究的热点之一,很多科学及工程都与堆积密切相关。
数学上有关于堆积的著名Kepler猜想[1]和Hilbert第18问题已逐步得到解决,但距离堆积一般性理论还有一段距离;物理中液体、晶体和玻璃的微观结构[2]相态的转变会遇到堆积体系的处理问题。
所以,堆积问题非常普遍,其中紧密堆积研究很有意义。
有学者运用紧密堆积理论从统计角度研究了森林树木直径的分布[3],工程上利用颗粒紧密堆积对流可以显著提高换热效率[4]等。
随机堆积体系的特征尚难以用解析的形式给出[5],利用相图分析[6]可以给出球体随机紧密堆积分数的极限,但无法提供配位数和取向序分布等其他重要的堆积参数,因此实验和计算机模拟成为研究随机紧密堆积体系的主要手段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Forced convective heat transfer of nanofluids in microchannelsJung-Yeul Jung,Hoo-Suk Oh,Ho-Young Kwak *Mechanical Engineering Department,Chung-Ang University,221Huksuk-Dong,Dongjak-Ku,Seoul 156-756,Republic of Koreaa r t i c l e i n f o Article history:Received 7March 2007Received in revised form 6February 2008Available online 22July 2008Keywords:Convective heat transfer Friction factor Microchannel Nanofluidsa b s t r a c tConvective heat transfer coefficient and friction factor of nanofluids in rectangular microchannels were measured.An integrated microsystem consisting of a single microchannel on one side,and two localized heaters and five polysilicon temperature sensors along the channel on the other side were fabricated.Aluminum dioxide (Al 2O 3)with diameter of 170nm nanofluids with various particle volume fractions were used in experiments to investigate the effect of the volume fraction of the nanoparticles to the con-vective heat transfer and fluid flow in microchannels.The convective heat transfer coefficient of the Al 2O 3nanofluid in laminar flow regime was measured to be increased up to 32%compared to the distilled water at a volume fraction of 1.8volume percent without major friction loss.The Nusselt number measured increases with increasing the Reynolds number in laminar flow regime.The measured Nusselt number which turned out to be less than 0.5was successfully correlated with Reynolds number and Prandtl num-ber based on the thermal conductivity of nanofluids.Ó2008Elsevier Ltd.All rights reserved.1.IntroductionConvective heat transfer in microchannel has been proved to be a very effective method for the thermal control micro electronic device [1–4].In fact,a considerable heat flux of the order of 107W/m 2can be removed in microchannels with a surface tem-perature below 71°C [1].Another approach to enhance the convec-tive heat transfer coefficient in the microchannel may be utilizing nanofluids as working fluids.This can be possible because the nanofluids having unprecedented stability of suspended nanopar-ticles were proven to be having anomalous thermal conductivity even with small volume fraction of the nanoparticles [5–7].Various models have been proposed for explaining the mecha-nism of thermal conductivity enhancement with increasing tem-perature and decreasing nanoparticle sizes [8–11].Through an order-of-magnitude analysis,Prasher et al.[12,13]have proposed that the localized convection due to the Brownian motion of nano-particles is a key mechanism for the enhancement of the thermal conductivity of nanofluids.Further,the relationship between Brownian motion and enhanced thermal conductivity of nanopar-ticles was observed by optical visualization of the particles and measurement of the thermal conductivity [14].Less extensive study on the measurement of the convective heat transfer coefficient with nanofluids has been done.Pak and Cho [15]measured the convective heat transfer coefficient with nano-particles of c -Al 2O 3and TiO 2dispersed in water.Their experimen-tal results have revealed that the heat transfer coefficients of thenanofluids increase with increasing the volume fraction of nano-particles and the Reynolds number.Their heat transfer data showed Nusselt numbers up to 30%higher than predicted by the pure liquid correlation.Lee and Choi [16]have found that the nanofluid in the microchannel heat exchanger dramatically en-hances cooling rate compared with the conventional water cooled and liquid-nitrogen-cooled microchannel heat exchangers.Xuan and Li [17]measured the convective heat transfer coefficient and friction factor of Cu–water nanofluids of the turbulent flow in a brass tube of the inner diameter of 10mm.Their experimental re-sults have shown that the nanofluid enhances remarkably the heat transfer coefficients without substantial increase in the friction factor.A correlation for the convective heat transfer coefficient of nanofluid was also suggested by considering the microconvection and microdiffusion of the suspended nanoparticles.Convective heat transfer coefficients of nanofluids,made of c -Al 2O 3nanoparti-cles in deionized water along a copper tube of 4.5mm diameter in laminar flow regime were measured by Wen and Ding [18].They obtained significant enhancement in the entrance region and some decrease along the axial direction to approach a constant value.Re-cently,Buongiorno [19]suggested that a reduction of viscosity within and consequent thinning of the laminar sublayer leads to abnormal increase in the convective heat transfer coefficient in turbulent flow regime.In this study,convective heat transfer coefficient and friction factor of Al 2O 3nanofluids in rectangular microchannels were mea-sured in laminar flow regime.The measured Nusselt number which turned out to be less than 0.5was successfully correlated to the Reynolds number and Prandtl number based on the thermal conductivity of nanofluids.0017-9310/$-see front matter Ó2008Elsevier Ltd.All rights reserved.*Corresponding author.Tel.:+8228205278;fax:+8228267464.E-mail address:kwakhy@cau.ac.kr (H.-Y.Kwak).International Journal of Heat and Mass Transfer 52(2009)466–472Contents lists available at ScienceDirectInternational Journal of Heat and Mass Transferjournal homepage:www.else v i e r.c o m /l o ca t e /i j h mt2.Device design and fabricationA silicon wafer polished on both sides (p-type h 100i single crys-tal with 525l m (±5l m)thickness)was used to fabricate an inte-grated microsystem consisting of a single channel on one sideand two localized heaters and five polysilicon temperature sensors along the channel on the other side.A 17mm Â33mm die for the device was used.The fabrication of the device began with the ther-mal growth of a 0.5l m oxide layer on the front side of the silicon wafer.A 0.540l m polysilicon film was deposited on the top of the oxide layer and patterned to serve as the heater and temperature sensors.The length of the temperature sensors was fabricated to be the same as the width of the flow channel.The silicon temper-ature sensors having width of 10l m were found to have a good current-resistance characteristics [20,21]so that one can measure the temperature of the channel wall in contact with the sensors.On the back side of the wafer,an oxide layer was also formed and pat-terned to serve as an etch mask for plasma etching,which pro-duced a 50l m or 100l m deep flow channel with rectangular cross section.The microchannel was etched by using Bosch process with the aid of inductive-coupled plasma.Such etching process yielded a wavy pattern of the vertical surface with surface rough-ness of 0.15–0.17l m.The main fabrication steps described above are shown schematically in Fig.1.After these processes were com-pleted,a pyrex-7740glass wafer (thickness,525l m)having two holes as inlet and outlet ports of the liquid was anodically bonded to the back side of the silicon substrate to cover the fluid manifolds and microchannels.The width of the fabricated channel is either 50l m or 100l m so that the dimensions of the channel are 50Â50,50Â100and 100Â100with 15mm length.The mani-folds were 5mm wide,5mm long,and 100l m deep.The test chip was inserted into PCB (printed circuit board)and was connected toelectrical equipments using wire ball bonding.Finally model chip was insulated thermally by using the resin epoxy and silicon rub-ber.A schematic of the complete device with dimensions in mm are shown in Fig.2.3.Experimental apparatusA schematic of experimental apparatus is shown in Fig.3.The apparatus consists of (a)working fluid handling system,(b)Nomenclature A areaC constantC p specific heat of liquidD h hydraulic diameter f friction factorh heat transfer coefficientk N thermal conductivity of nanofluids L channel length Nu Nusselt number P PerimeterPr Prandtl number ReReynolds numberT temperaturexdistance from channel inletSubscripts ch channel res reservoir f fluid in inlet w wallGreek letters /volume fraction ofnanoparticleFig. 2.Schematics of chip for convection experiment;(a)micro heaters and thermo-sensors and (b)chip setting (not to scale).J.-Y.Jung et al./International Journal of Heat and Mass Transfer 52(2009)466–472467microchannel test chip,and (c)data acquisition system.The working fluid handling system includes a high-pressure gas source,a pressurized fluid reservoir,micro filter,a pressure gauge,and a volumetric graduate.Nanofluids with suspending Al 2O 3nanoparticles (Sigma)in base fluids were used as working fluids.The size of nanoparticles suspended in working fluids was measured by light scattering equipment (ELS-8000,Otsuka Electronic,Japan).The average size of Al 2O 3nanoparticle is about 170±10nm.The base fluids used were distilled water and a mixture of 50%of water and 50%of ethylene glycol.The nanofluids were prepared by ultrasonic method without using surfactant.The working fluid was driven by a high-pressure argon gas,and the driving pressure was adjusted by a pressure regulator.The liquid was freely dis-charged from the outlet manifold so that the outlet pressure would be atmospheric.The mass flow rate of the working fluid was mea-sured by reading the liquid volume flowed through the graduated cylinder during 20min and the fluid mass was measured by an electronic scale.A pressure gauge was used to monitor the fluid pressure near the inlet manifold.The power to the heater in the test chip was supplied by a DC voltage source.The voltage values from the two calibrated T-type thermocouples to measure the li-quid temperatures at inlet and outlet ports,and resistance values from the polysilicon sensors to measure the wall surface tempera-tures along the channel were monitored by a multi meter (HP 34401A).All data at selected driving pressures to the microchannel and/or at selected powers to the heater were obtained at steady state conditions.The nanofluid at approximately 21–24°C was fed into the input manifold through the inlet hole at driving pres-sures up to 0.240MPa.4.Experimental procedures 4.1.Sensor calibrationAlthough the polysilicon line heater on SiO 2layer is a good sensor to measure the temperature [20,21],the resistance values from the sensors could change depending on the degree of phos-phorus doping,the sensor dimensions fabricated and the condi-tion of wire bonding.Thus,all the temperature sensors were calibrated before measurements.The resistance values were con-siderably different depending on the temperature among sen-sors,even though the temperature was linearly related to the resistance.4.2.Data acquisition of heat transferLocal fluid temperature T f (x )along the channel was obtained through the energy balance at constant heat flux condition.T f ðx Þ¼T in þq 00ðA res þP ch Áx Þð1ÞCorrespondingly the local convective heat transfer coefficient and the corresponding Nusselt number along the channel were obtained from the Newton’s cooling law.The estimated liquid temperatures along the channel with the measured wall temperature data along the channel and liquid temperatures at the inlet and outlet are shown in Fig.4for a case of /=1.8and Re =89.9in 50Â50l m 2microchannel.h ðx Þ¼q 00=ðT w ðx ÞÀT f ðx ÞÞð2ÞNu ¼hD h =k Nð3ÞThermal conductivities of the nanofluids used in this study were not measured but estimated using the theoretical correlation by Prasher et al.[12,13].A reason for using the estimated values is that the thermal conductivities of water-based and ethylene glycol-based nanofluids with Al 2O 3nanoparticles are well predicted by the semi-empirical method by Prasher et al.within ±10%[12,13].Con-sequently,one can develop a Nusselt number correlation reason-ably by using the estimated value of the thermal conductivity of nanofluids to predict the heat transfer coefficients.In fact,the rela-tive error due to the uncertainty of the conductivity of nanofluids by the Nusselt number correlation to predict the heat transfer coeffi-cients is approximately ±4%,which is comparable to the relative er-ror in the heat transfer measurement,±4.5%.The thermal conductivities of water and ethylene glycol mixture were obtained using the Filippov correlation [22].The effective thermal conductiv-ities of nanofluids of Al 2O 3suspended in water or ethylene glycol turned out to increase linearly with the volume fraction of the oxide particles in the host liquids [6].For example,the thermal conductiv-ity of nanofluid increases 12%at the volume fraction of 1.8%of Al 2O 3in water.Viscosities of working fluids were measured by a viscosity meter (DV-II+Pro,Brookfield,US).4.3.Error analysisThe relative error in mass flow rate measurements was esti-mated to be approximately ±0.5%.Since the error in the measure-ment of channel area is less than ±0.3%and the magnitude of the mass flow rate is accurate within ±0.8%.D/C power supplyexperimental devicemultimeterthermocouple/hybrid recorderhigh pressure argon gas0.45m μ filter pressure regulatorpressure gaugegraduated cylinder Electronic balanceFig.3.Schematic of experimentalapparatus.Fig. 4.Estimated liquid temperatures along the channel with measured wall468J.-Y.Jung et al./International Journal of Heat and Mass Transfer 52(2009)466–472The heatflux given in Eq.(2)was calculated by using the follow-ing equation by assuming that uniform heat generates in the sili-con wafer;q00¼Q chip=ðA resþP chÁLÞð4ÞQ chip in Eq.(4)is equal to the voltage times the current to the chip. The current to the chip was determined by measuring the voltage drop across a resistor connected with a series of chips.The error of the current measured is less than±0.005A so that the estimated uncertainty in the heatflux is about±1.25%at low powers and ±1.02%at high powers with accounting for the error in the measure-ment of the chip surface area below±1.0%.The error in the mea-surement of the wall temperature by using the polysilicon sensors is about±0.5°C and the error in the measurement of the liquid tem-perature by the T-type thermocouples is also about±0.5°C so that the estimated experimental errors for heat transfer coefficient are about4.4%at the lowest heatflux and3.9%at the highest one. The error ranges encountered in the measurement of the wall and liquid temperatures and of the heat transfer coefficients are shown the correspondingfigures.5.Results and discussionsSeveral particle volume fractions of0.6%,1.2%and1.8%were used in this experiment.The Reynolds numbers tested are in therange between5and300.Fig.5shows the local convective heat transfer coefficients for nanofluids with various volume fractions of nanoparticle and pure water in50Â50l m2channel at Reynolds numbers of14.0and80.0.Appreciable increase more than32%in the convective heat transfer coefficient for the nanofluids with 1.8volume percent of Al2O3nanoparticle compared to the case of pure water was obtained.Similar trend in the local heat transfer coefficient was obtained for the same nanofluid in100Â100l m2 microchannel as shown in Fig.6.At the Reynolds number of80.0, the convective heat transfer coefficient in the entrance region up to x/D h=50is significantly higher than that in the other regions, which is similar to the results obtained by Wen and Ding[18]with nanofluids in a minichannel.However no entrance region effect in the heat transfer coefficient was observed at Re=14.0in 50Â50l m2channel and at Re=60.0in100Â100l m2channel.As can be seen from Figs.5and6,the enhancement in the heat transfer coefficient of nanofluids becomes appreciable at higher Reynolds number.Also,the entrance regime effect becomes more pronounced at the high Reynolds number of280,as shown in Fig.6.The magnitude of the heat transfer coefficients obtained for the nanofluids in microchannel of50l m hydraulic diameter at Re=80,which are about2000–3000W/m2K are comparable to those obtained for Cu–water nanofluids in minichannel of 4.5mm diameter at Re=1000[18].Fig.7shows the local heat transfer coefficients for nanofluids with various volume fractions of Al2O3nanoparticles and water/EG mixture in100Â100l m2 microchannel.Fig.7shows the local heat transfer coefficients for nanofluids with various volume fractions of Al2O3nanoparticles and water/EG mixture in100Â100l m2microchannel.Theviscos-Fig.5.Local heat transfer coefficients for nanofluids with various volume fractionFig.6.Local heat transfer coefficients for nanofluids with various volume fractionsof Al2O3nanoparticles and distilled water in100Â100l m2microchannel.Fig.7.Local heat transfer coefficients for nanofluids with various volume fractionsJ.-Y.Jung et al./International Journal of Heat and Mass Transfer52(2009)466–472469ity of nanofluids based on water/EG mixture have about four times greater than those of the nanofluids based on distilled water,so the fluid velocities were very low in the microchannels.In fact,we did not obtain the stable fluid flow in the 50Â50l m 2and 50Â100l m 2microchannels.Therefore,EG based nanofluids turn out to be not suitable for working fluid in the microchannels.Wen and Ding [23]argued that a significant non-uniformity in nanoparticle concentration inside the channel due to particlemigration affected the local thermal conductivity and viscosity of the fluid,which resulted in the Nesselt number variation along the channel.They predicted that entrance effect will be more sig-nificant for larger particle.However,in our experiment where nanoparticle of larger diameter of 170l m was used,similar entrance effect in the heat transfer coefficient was obtained compared to the Wen and Ding’s results with a size range of 27–56nm Al 2O 3nanoparticles.Xuan and Li [17]obtained 39%increase in the Nusselt number for the nanofluid with the volume fraction of 2.0%of Cu nanoparticles in minichannel,compared with the case of water.Such remarkable increase in the Nusselt number for the Cu nanofluid in their study may be due to the turbulent flow effect.Fig.8shows the heat transfer coefficients versus Reynolds num-bers of pure water,various nanofluids and different microchannels.The heat transfer coefficients of all nanofluids are greater than those of their base fluids (i.e.pure water).In relatively small micro-channel (50Â50l m 2),the heat transfer coefficients of both nano-fluids and pure water at low Reynolds numbers are comparable to or higher than those obtained at high Reynolds number in rela-tively large microchannels,which shows the heat transfer charac-teristics of microchannels.The thermal conductivity of nanofluids depend on the species and sizes of the nanoparticles,the concentration of nanoparticles in working fluids and the combination of nanoparticles and work-ing fluid properties [6,7].However,at present,various correlations were proposed to predict the thermal conductivity of nanofluids [12,13,18],which reasonably provides a tool to estimate the ther-mal conductivity of nanofluids.The relative error in our estimation for the thermal conductivity of nanofluids is less than ±20%so that the Nusselt number correlation proposed in this study may pro-vide,at least,a trend for the heat transfer characteristics of nano-fluids in microchannel.Fig.9illustrates trends of the Nusselt number depending on the Reynolds number for the tested nanofluids with variousvolumeFig.8.Heat transfer coefficient versus ReynoldsNumber.Fig.9.Dependence of Nusselt number on Reynolds number in different dimensions of microchannels of 50Â50l m 2(1),50Â100l m 2(2)and 100Â100l m 2(3)for the 470J.-Y.Jung et al./International Journal of Heat and Mass Transfer 52(2009)466–472fractions of nanoparticles.As can be seen in thisfigure,two distinct lines were appeared for the nanofluids having quite different Pra-ndtl number.However,the experimental data of the Nusselt num-ber do not vary very much with the volume fraction of nanoparticles for the Reynolds number ranges tested.As confirmed from Figure8,the Nusselt number obtained for nanofluids in microchannels for laminarflow regime is no longer constant [3,24]and considerably less than the theoretical value of4.0–5.6 in microchannel[25].Qu et al.[26]obtained nearly constant value of Nusselt number for laminarflow of water in trapezoidal silicon microchannels.They agued that the measured lower Nusselt num-ber of1–2might be due to the surface roughness of the channel walls,which induced roughness viscosity.However,Qu et al.’s experimental results contradict the observed result of linearJ.-Y.Jung et al./International Journal of Heat and Mass Transfer52(2009)466–472471dependence of Nusselt number on Reynolds number for laminar flow regime in microchannels in this study and in minichannels [17].The Nusselt number less than0.5which was observed in our study indicates that the convective heat transfer in micro/nano channels does not increase linearly with the decrease in the chan-nel size.Certainly one cannot get infinite convective heat transfer coefficient with the nanosize channel.With slight modification of the a type of the Dittus–Boelter cor-relation for turbulentflow in macrochannels,the measured data of the Nusselt number for the various nanofluids of laminarflow re-gime in microchannels can be correlated by the following equation with considering the volume fraction of nanoparticles as shown in Fig.10.Nu¼0:014/0:095Re0:4Pr0:6ð5ÞThe above correlation is reasonably good for the water-based nano-fluids as shown in the insert of pared to the type of the Dittus-Boelter correlation for turbulentflow,the Nusselt number data for the nanofluids tested depend more strongly on thefluid properties.The fact that the Nusselt number obtained has moderate dependence on the Peclet number,Pe=RePr,which is quite differ-ent from the heat transfer mechanism for the laminarflow in mac-rochannels[26].Similar correlation given in Eq.(5)with less dependence on the volume fraction of nanoparticles was obtained when one employed the thermal conductivity of basefluids.Fig.11shows the friction factors for the nanofluids with several volume fractions of nanoparticles in different dimension of micro-channels.As can be seen in thisfigure,the measured values of the friction factor are close to the theoretical value from the correla-tion for theflow in microchannels,f¼56:9=Re Dh[27].Minor losses at microchannel inlet and outlet were analyzed and,conse-quently,could be neglected at microchannelflow of pure water [27],where the details were described.Obviously,the friction fac-tors of the tested nanofluids are close to those of water at the same Reynolds number.Even in the smaller dimension of microchannel (50Â50l m2),the measured friction factors decrease somewhat compared to those for the larger channel.6.ConclusionsThe convective heat transfer coefficient and the friction coeffi-cient of nanofluids of Al2O3with diameter of170nm in microchan-nels were measured.Appreciable enhancement of the convective heat transfer coefficient of the nanofluids with the basefluid of water and a mixture of water and ethylene glycol at the volume fraction of1.8volume percent was obtained without major friction loss.It has been found that the Nusselt number increases with increasing the Reynolds number in laminarflow regime,which is contradictory to the result from the conventional analysis.AcknowledgementsTwo(Jung-Yeul Jung and Hoo-Suk Oh)of authors have been supported by the Second Stage of BK21program.References[1]D.B.Tuckerman,R.F.W.Pease,High-performance heat sinking for VLSI,IEEEElectr.Device Lett.EDL-2(1981)126–129.[2]T.Kishimoto,T.Ohsaki,VLSI packaging technique using liquid-cooledchannels,IEEE pon.Hybr.CHMT-9(1986)328–335.[3]B.X.Wang,X.F.Peng,Experimental investigation on forced convection heattransfer through microchannels,Int.J.Heat Mass Transfer17(1994)73–82.[4]L.Jiang,J.Mikkelson,J.Koo,D.Huber,S.Yao,L.Zhang,P.Zhou,J.G.Maveety,R.Prasher,J.G.Santiago,T.W.Kenny,K.E.Goodson,Closed-loop electroosmotic microchannel cooling system for VLSI circuits,IEEE pon.Pack.Tech.25(2002)347–355.[5]H.Masuda, A.Ebata,K.Teramae,N.Hishinuma,Alteration of thermalconductivity and viscosity of liquid by dispersing ultrafine particles (dispersion of c-Al2O3,SiO2and TiO2ultrafine particles),Netsu Bussei (Japan)4(1993)227–233.[6]S.Lee,S.U.S.Choi,S.Li,J.A.Eastman,Measuring thermal conductivity offluidcontaining oxide nanoparticles,ASME J.Heat Transfer121(1999)280–289.[7]J.A.Eastman,S.U.S.Choi,S.Li,W.Yu,L.J.Thompson,Anomalously increasedeffective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,Appl.Phys.Lett.78(2001)718–720.[8]Q.-Z.Xue,Model for effective thermal conductivity of nanofluids,Phys.Lett.A307(2003)313–317.[9]S.P.Jang,S.U.S.Choi,Role of Brownian motion in the enhanced thermalconductivity of nanofluids,Appl.Phys.Lett.84(2004)4316–4318.[10]J.Koo,C.Kleinstreuer,A new thermal conductivity model for nanofluids,J.Nanopart.Res.6(2004)577–588.[11]P.Bhattacharya,S.K.Saha, A.Yadav,P.E.Phelan,R.S.Prasher,Browniandynamics simulation to determine the effective thermal conductivity of nanofluids,J.Appl.Phys.95(2004)6492–6494.[12]R.Prasher,P.Bhattacharya,P.E.Phelan,Thermal conductivity of nanoscalecolloidal solutions(nanofluids),Phys.Rev.Lett.94(2005)025901.[13]R.Prasher,P.Bhattacharya,P.E.Phelan,Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids,ASME J.Heat Transfer128(2006)588–595.[14]C.H.Chon,K.D.Kihm,Thermal conductivity enhancement of nanofluids byBrownian motion,ASME J.Heat Transfer127(2005)810.[15]B.C.Pak,Y.I.Cho,Hydrodynamic and heat transfer study of dispersedfluidswith submicron metallic oxide particles,Exp.Heat Transfer11(1998)151–170.[16]S.Lee,S.U.S.Choi,Applications of metallic nanoparticle suspensions inadvanced cooling system,in:Y Kwon,D.C.Davis,H.H.Chung(Eds.),Recent Advances in Solid/Structures and Application of Metallic Materials,PVP-vol.342/MD-vol.72,ASME,New York,1996,pp.227–234.[17]Y.Xuan,Q.Li,Investigation on convective heat transfer andflow features ofnanofluids,ASME J.Heat Transfer125(2003)151–155.[18]D.Wen,Y.Ding,Experimental investigation into convective heat transfer ofnanofluids at the entrance region under laminarflow conditions,Int.J.Heat Mass Transfer47(2004)5181–5188.[19]J.Buongiorno,Convective transport in nanofluids,ASME J.Heat Transfer128(2006)240–250.[20]J.Y.Lee,H.C.Park,J.Y.Jung,H.Y.Kwak,Bubble nucleation on micro line heaters,ASME J.Heat Transfer125(2003)687–692.[21]J.Y.Jung,J.Y.Lee,H.C.Park,H.Y.Kwak,Bubble nucleation on micro line heatersunder steady orfinite pulse of voltage input,Int.J.Heat Mass Transfer46 (2003)3897–3907.[22]R.C.Reid,J.M.Prausnitz,B.E.Poling,The Properties of Gases&Liquids,fourthed.,McGraw-Hill,Singapore,1986.[23]D.S.Wen,Y.Ding,Effect of particle migration on heat transfer in suspensionsof nanoparticlesflowing through minichannels,Microfluids and Nanofluids1 (2005)183–189.[24]H.Y.Wu,P.Cheng,An experimental study of convective heat transfer in siliconmicrochannels with different surface conditions,Int.J.Heat Mass Transfer46 (2003)2547–2556.[25]D.B.Tuckerman,Heat-Transfer Microstructures for Integrated Circuits,Ph.D.Thesis,Stanford University,1984.[26]W.Qu,G.M.Mala,D.Li,Heat transfer for waterflows in trapezoidal siliconmicrochannels,Int.J.Heat Mass Transfer43(2000)3925–3936.[27]J.Y.Jung,H.Y.Kwak,Fluidflow and heat transfer in microchannels withrectangular cross section,Heat Mass Transfer44(2008)1041–1049.472J.-Y.Jung et al./International Journal of Heat and Mass Transfer52(2009)466–472。