运算放大器基本原理PPT

合集下载

运算放大器电路ppt

运算放大器电路ppt

详细内容见P233表12-1
例1:图示网络,求H参数矩阵。
解: u1 nu2
i1
1 n
i2
u2
1 g
i1
u1
1 g
i2
u1 nu2
u1 u1 u1 nu2 nu2
n(u2 u2) nu2
u1=nu2 i2=-ni1
例2:图示电路中,u1=2cos2000t, 求u2(t).
A ——— 开环电压放大系数 (非常大)
五、实际运放输入输出关系
线性工作,输出开路时:
Ri
Ro
+
现象: 1、线性工作范围很小; 2、要求前级驱动能力小; 3、具有一定的负载能力;
Ri ———输入电阻(非常大) Ro———输出电阻(非常小)
A ——— 开环电压放大系数 (非常大)
Ri ———输入电阻 Ro———输出电阻
L
解:L
C g2
10 6 (50 103 )2
2500
(H )
(2) 浮地电感:
证明以下两个二端口等效:
L C g2
下面网络A方程:
A方程为:
4、理想回转器与变压器比较 理想变压器
理想回转器
u1 nu2
n 0
i1
1 n
i
2
A 0
1 n
互易元件, 阻抗变换 非互易元件, 阻抗逆变换
12-1 运算放大器及其等效电路
一、运算放大器 (有源多端器件)
具有高放大倍数、高输入阻抗和低 输出阻抗的直接耦合(电压)放大器。
二、电路符号
通常运算放大器有5个引出端:正电源端,负电源端,同相
输入端,反相输入端,输出端。此外还有公共端通常称为“地”

基本放大电路ppt课件

基本放大电路ppt课件
首先,画出直流通路;在输入特性曲线上,作出直线VBE =VCC-IBRb,
两线的交点即是Q点,得到IBQ 。在输出特性曲线上,作出直流负载线
VCE=VCC-ICRC,与IBQ曲线的交点即为Q点,从而得到VCEQ 和ICQ 。
图12-8 静态工作情况图解
②动态工作情况分析 Ⅰ 交流通路及交流负载线 过输出特性曲线上的Q点做一条斜率为-1/(RL∥Rc)直线,该直线即为交流 负载线。交流负载线是有交流输入信号时Q点的运动轨迹。R'L= RL∥Rc,是交流负载电阻。 Ⅱ 输入交流信号时的图解分析 通过图解分析,可得如下结论:
(1)vi vBE iB iC vCE | vo | (2)vo与vi相位相反; (3)可以测量出放大电路的电压放大倍数; (4)可以确定最大不失真输出幅度。
图12-9 动态工作情况图解
3.放大电路三种 基本组态的比较
共发射极放大电路
共集电极放大电路
共基极放大电路
电 路 组 态

压 增
(RC // RL )
图12-3 放大电路的幅频特性曲线
▪ 2.共射极放大电路
根据放大器输入输出回路公共端的不同,放大器有共发射极、共集电极和共基 极三种基本组态,下面介绍共发射极放大电路。 (1)电路组成 共射极基本放大电路如图12-4所示。
图12-4 共发射极基本放大电路
▪ 具体分析如下: ▪ ①Vcc:集电极回路的直流电源 ▪ ②VBB:基极回路的直流电源 ▪ ③三极管T:放大电路的核心器件,具有电流放大
便于计算和调试。
(2)因为耦合电容的容量较
(2)电路比较简单,体积 大,故不易集成化。
较小。
(1)元件少,体积小,易 集成化。
(2)既可放大交流信号, 也可放大直流和缓变信号。

运算放大器

运算放大器

b、vn=vf=R1vo/(R1+R2)作用在反相输入端“-”,vf表 示反馈电压。
2-15
2.3.1 同相放大电路
2、负反馈基本概念
vp (+) +
+
_
vi_ vn (+) R2
R1
(+) vp 1
Avo(vp-vn)
(+)
vo
+
++
4 v_id
+
_
_
(+) vo
25
vi_ 3 vn
R2
iR=vn/R1
2.3.2 反相放大电路
例2.3.2 将反相放大电路中的电阻R2用T型网络代
替,如下图所示。(2)该电路作为话筒的前置放大
电路,若选R1=51KΩ, R1= R2 =390KΩ,当vo=-
100vi时,求R4。
R2 v4 R3
M
i2 i4 R4 i3
vi R1 in _
n
i1 ip
vo
p+
解:(2)当R1=51KΩ, R1= R2 =390KΩ,Av=-100,有
Rs 100kΩ + vs_
+ v_o
RL
1kΩ
信号源
负载
(a)
vn _
Rs vp + + 100kΩ vs_
信号源
(b)
+ v_o
RL
1kΩ
负载
(a)
vo
RL RS RL
vs
1 100 1 vs
0.01vs
(b)
v o
v n
v p
v s

第4章-掌握集成运算放大器ppt课件(全)全篇

第4章-掌握集成运算放大器ppt课件(全)全篇

2 B
B1 B2
☆ 输入偏置电流IB是衡量差动管输入电流绝对值大小的标志
4.1.3 集成运放大器的主要参数
1. 输入误差特性
➢ 输入失调电流IOS
定义:零输入时,两输入偏置电流IB1、IB2之差称为输入失调电流, 即IOS =|IB1IB2|。
IOS反映了输入级差动管输入电流的对称性,一般希望IOS越小越好。 普通运放的IOS约为1nA0.1A。
✓UIO = 0、IIO = 0、 UIO = IIO = 0;
✓输入偏置电流 IIB = 0; ✓- 3 dB 带宽 fH = ∞ ,等等
4.1.4 集成运放的理想化模型
2. 理想运放的工作特性
理想运放的电压传输特性如图10-5所示。它分为线性区和非线
性区。
➢线性区
当理想运放工作于线性区时,VO=Ad(VPVN), 而Ad,因此VP VN) =0、VP=VN,又由输入电阻 Rid可知,流进运放同相输入端和反相输入端的
uO
+UOP
P
理想特 性
电流IP、IN为IP = IN =0;可见,当理想运放工作于线 性区时,同相输入端与反相输入端的电位相等,流 进同相输入端和反相输入端的电流为0。 IP = IN =0就 是VP和VN两个电位点短路,但是由于没有电流, 所以称为虚短路,简称虚短;而IP = IN =0表示流过 电流IP 、 IN的电路断开了,但是实际上没有断开, 所以称为虚断路,简称虚断。
4.1.3 集成运放大器的主要参数
2. 开环差模特性参数
➢-3dB带宽
定义:输入正弦小信号时, Aod是频率的函数,随着频率的增 加而下降。当下降3dB时所对应的信号频率称为-3dB带宽。一般运 放的-3dB带宽为几Hz几kHz,宽带运放可达到几MHz。

《理想运算放大器》课件

《理想运算放大器》课件

理想运算放大器的输出阻抗极 小,可以输出电流信号。
无相位差
无噪声
理想运算放大器没有相位差,可以精确放大信号。
理想运算放大器在放大信号时不会引入任何噪声。
理想运算放大器模型
输入电压
理想运算放大器可以接 受任何输入电压信号。
输入电流
理想运算放大器的输入 电流非常小,几乎可以 忽略不计。
输出电压
理想运算放大器可以输 出经过放大的电压信号。
输出电流
理想运算放大器可以输 出电流信号。
理想运算放大器的应用
1 加法器
2 减法器
使用理想运算放大器可以将多个输入信号相加。
使用理想运算放大器可以将一个输入信号减去另 一个输入信号。
3 非反相比例放大器
4 反相比例放大器
使用理想运算放大器可以放大非反相的输入信号。
使用理想运算放大器可以放大反相的输入信号。

5 低通滤波器
使用理想运算放大器可以滤除高频信号。
6 高通滤波器
使用理想运算放大器可以滤除低频信号。
理想运算放大器与现实运算放大器的差异
1
实际运算放大器的输入阻抗不是无
2
限大的
现实运算放大器的输入阻抗会有一定的限制。
3
实际运算放大器的相位差不是零
4
现实运算放大器的相位差是存在的。
5
实际运算放大器的增益不是完美的
理想运算放大器在电子电路中有广 泛的应用。
现实运算放大器与理想运算 放大器有很大的差别,但它 们仍然非常有用
虽然现实运算放大器与理想运算放 大器存在差异,但它们仍然在实际 应用中发挥着重要作用。
现实运算放大器的增益会受到一些限制。
实际运算放大器的输出阻抗不是无 限小的

运放原理图

运放原理图

运放原理图运放(Operational Amplifier,简称Op-Amp)是一种常用的电子元件,它具有高增益、高输入阻抗、低输出阻抗等特点,因此在电子电路中应用广泛。

本文将介绍运放的基本原理和运放的原理图。

首先,我们来了解一下运放的基本原理。

运放是一种差分放大器,它有两个输入端和一个输出端。

其中,一个输入端称为非反相输入端(+),另一个输入端称为反相输入端(-)。

运放的输出电压与非反相输入端和反相输入端之间的电压差成正比,比例系数由运放的增益决定。

运放的增益非常高,通常可以达到几万甚至几十万倍,因此即使输入信号非常微弱,经过运放放大后也能得到较大的输出信号。

接下来,我们将介绍一些常见的运放原理图。

首先是非反相放大电路。

非反相放大电路的原理图如下所示:(图1,非反相放大电路原理图)。

在非反相放大电路中,输入信号通过电阻R1连接到非反相输入端(+),而反相输入端(-)接地。

输出信号则通过电阻R2连接到运放的输出端,同时也通过电阻Rf反馈到非反相输入端。

这样就形成了一个反相放大电路,输入信号经过运放放大后,输出信号与输入信号同相,并且幅度放大了。

另外一个常见的运放原理图是反相放大电路。

反相放大电路的原理图如下所示:(图2,反相放大电路原理图)。

在反相放大电路中,输入信号通过电阻R1连接到反相输入端(-),而非反相输入端(+)接地。

输出信号则通过电阻Rf连接到运放的输出端,同时也通过电阻R2连接到非反相输入端。

同样地,这样就形成了一个反相放大电路,输入信号经过运放放大后,输出信号与输入信号反相,并且幅度放大了。

除了非反相放大电路和反相放大电路,运放还可以用于求和电路、比较器电路、积分电路、微分电路等。

这些原理图都是基于运放的基本原理和特点设计的,通过合理地连接运放的输入端和反馈回路,可以实现各种不同的功能。

总结一下,运放是一种非常重要的电子元件,它具有高增益、高输入阻抗、低输出阻抗等特点,可以用于各种不同的电路设计。

《运算放大器》课件

《运算放大器》课件

《运算放大器》PPT 课件目录CONTENTS•运算放大器概述•运算放大器的工作原理•运算放大器的应用•运算放大器的选择与使用•运算放大器的性能指标•运算放大器的设计实例01运算放大器概述0102运算放大器的定义它能够实现加、减、乘、除等基本算术运算,因此得名“运算放大器”。

运算放大器(简称运放)是一种具有高放大倍数的电路单元,其输出信号与输入信号之间存在一定的数学关系。

运算放大器的开环放大倍数极高,一般在10^4~10^6之间。

高放大倍数运算放大器的输入阻抗很大,使得它对信号源的影响很小。

输入阻抗高运算放大器的输出阻抗很小,使得它对负载的影响也很小。

输出阻抗低运算放大器对共模信号的抑制能力很强,能够有效地抑制温漂和干扰信号。

共模抑制比高运算放大器的基本特点可以分为通用型、高精度型、高速型、低功耗型等。

按性能指标分类按电路结构分类按工作原理分类可以分为分立元件型和集成电路型。

可以分为线性运放和开关电容型运放。

030201运算放大器的分类02运算放大器的工作原理1 2 3差分输入是指运算放大器使用两个输入信号的差值作为输入,以实现更高的精度和抑制噪声。

差分输入电路可以消除共模信号,只对差模信号进行放大,从而提高信号的信噪比。

差分输入电路的对称性和平衡性对放大器的性能有重要影响,因此需要精心设计和选择合适的元件。

差分输入放大倍数01放大倍数是运算放大器的重要参数,表示输出电压与输入电压的比值。

02运算放大器的放大倍数很高,通常在100dB以上,即放大10万倍以上。

03放大倍数可以通过外接电阻和电容进行调节,以满足不同的应用需求。

输出电压与输入电压的关系01输出电压与输入电压的关系是运算放大器的基本工作特性之一。

02当输入电压变化时,输出电压会相应地变化,以保持放大倍数恒定。

03输出电压与输入电压的关系是非线性的,但在一定的线性范围内,可以近似认为放大倍数是恒定的。

非线性范围是指输入电压超过一定范围时,输出电压与输入电压不再成正比关系,放大倍数发生变化。

理想运算放大器

理想运算放大器

理想运算放大器可以构成比较器,用于对 两个输入信号进行比较,输出相应的逻辑 电平。
当前存在问题和挑战
非线性失真
实际运算放大器由于存在非 线性元件,如晶体管和二极 管等,会导致输出信号产生 失真。
噪声干扰
频率响应限制
功耗问题
实际运算放大器内部存在噪 声源,如热噪声和闪烁噪声 等,会对输出信号造成干扰。
电流流入运算放大器的同相输入端。
电压跟随
02
输出电压与同相输入电压成正比,且比例系数为1,实现电压跟
随功能。
相位相同
03
输出电压与同相输入电压的相位相同。
反相输入电路分析
01 02
虚短和虚断
由于运算放大器的开环增益非常高,反相输入电路中的两个输入端可以 近似看作等电位点(虚短),且流入运算放大器的电流几乎为零(虚 断)。
补偿措施及优化方法探讨
频率补偿
通过引入负反馈或采用超前-滞后补 偿网络,改善放大器的频率响应特性, 提高带宽。
输入阻抗提高
采用高输入阻抗的运算放大器或引入 电压跟随器,减小输入阻抗对电路的 影响。
输出阻抗降低
在输出端并联电阻或采用共集电极电 路,降低输出阻抗,提高带负载能力。
失真抑制
选用低失真运算放大器、合理设置静 态工作点、采用负反馈等措施,减小 失真对信号质量的影响。
失真
实际运算放大器存在失真,如 谐波失真、交越失真等。
实际运算放大器与理想差异分析
有限带宽
限制信号放大范围, 可能引发信号失真。
非零输出阻抗
在输出端产生电压 降,影响负载上的 电压幅度。
有限开环增益
导致闭环增益误差, 影响放大精度。
有限输入阻抗
影响电路输入端的 电压分配,降低放 大效果。

运算放大器

运算放大器

输入正弦波
(vi:正弦波,频率500Hz,幅度1V)
思考: 输入信号 频率对输 出信号幅 度的影响?
§8.4 对数和指数运算电路
8.4.1 对数电路

vI
+ vD _ D A
vI iD iI R

R
iI
iD

id
+
vD vO
vO
iD Is (e 1)
Is e
vD VT
vD VT
平衡电阻 R3= R1// R2// Rf1= 12.5K
R6= R4// R5// Rf2= 8.3K
例2: 如图电路,求Avf,Ri 解: V = - R3 V o i
R2
R3 Avf R2
Vo2
2R2
Vo 2
2 R2 =Vo = 2Vi R3
A2
R3
Vi R1R 2 Ri Ii R1 R 2
R'
vO VT
Is e
vD VT 时
vI R
vI vO VT ln RIs
对数电路改进
基本对数电路缺点:

运算精度受温度影响大
小信号时exp(vD/vT)与1差不多大,所以误差很大 二极管在电流较大时伏安特性与PN结伏安特性差别较大, 所以运算只在较小的电流范围内误差较小。
v3
R3
R4
由于第一级差放 电路上下对称,R1的 中点可视为接地点, 所以:
R1
vs2
A2
+
vo2
R3
v4
R4
+
-
+
-
A3
vo
R2 vo1 = (1 + )vs1 R1/2 R2 vo2 = (1 + )vs 2 R1/2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档