六年级数学下册4比例3比例的应用比例复习课件新人教版

合集下载

人教版六年级数学下册第四单元《正比例和反比例》(复习课件)

人教版六年级数学下册第四单元《正比例和反比例》(复习课件)
3
汽车所行路程与相应耗油量是两种相关联的量,耗油量
随着所行路程的变化而变化。所行路程增加,耗油量随
着增加;所行路程减少,耗油量随着减少。
4.已知y与x成正比例关系,在下表的空格中填写合
适的数。(选题源于教材P49第4题)
5
15
8
3
12.5
25
50
5.同一时间、同一地点测得3棵树的树高及其影长如
下表。(选题源于教材P50第5题)
长劲鹿:0.8×18=14.4(千米)
答:斑马18分钟跑了21.6千米,
长颈鹿跑了14.4千米。
下面的图象表示斑马和长颈鹿的奔跑情况。
(3)从图象上看,斑马跑得快还是长颈鹿跑得快?
从图像上看,10分钟时,斑马跑了
12千米,长劲鹿跑了8千米。
答:斑马跑得快。
判断下面各题中的两种量是否成反比例关系,并说明理由。
面积与所需地砖数量如下表。
所需地砖数量与每块地砖的面积是否成反比例?
为什么?(选题源于教材P51第8题)
成反比例关系。
因为所需地砖数量与每块地砖的面积的乘
积等于教室的面积,而教室的面积一定,
所以所需地砖数量与每块地砖的面积成反
比例关系。
2.食品加工厂准备把一批新酿的醋装瓶运往商店。
所装瓶数与每瓶容量是否成反比例关系?为什么?
有x、y、z三个相关联的量,并有xy=z。
(1)当z一定时,x与y成
比例关系。

xy=z
(一定) 即xy的积一定,则xy成反比例。

(2)当x一定时,z与y成
比例关系。
z
=x
xy=z
则zy成正比例。
y (一定),
正 比例关系。

六年级下册数学小升初数学知识点精讲标准课件比例尺的应用人教版(21张)标准课件

六年级下册数学小升初数学知识点精讲标准课件比例尺的应用人教版(21张)标准课件

40000×
=5(厘米)
实际距离×比例尺=图上距离 你能在方格纸上画出教室的平面图吗?(小方格边长都是1厘米,请把平面图涂上颜色)
分析:已知比例尺1:6000000和图上距离24厘米,求实际距离 答:南京到北京的实际距离大约是1440千米。
图上距离︰实际距离=比例尺
在比例尺1:6000000的地图上,量得重庆到北京的图上距离是24厘米,重庆到北京的实际距离是多少?
40000×
=5(厘米)
图上距离÷比例尺=实际距离
800× = 8 (厘米)
8米=800厘米 6米=600厘米
实际距离×比例尺=图上距离 分析:已知比例尺1:6000000和图上距离24厘米,求实际距离
答:两地的实际距离是500km。 在一幅地图上量得AB两城市之间的距离是8厘米,而AB两城市之间的实际距离是400千米,这幅地图的比例尺是多少呢?
公式: 图上距离÷比例尺=实际距离
24÷
=144000000(厘米)
144000000厘米=1440千米 答:南京到北京的实际距离大约是1440千米。

题3 在一幅地图上量得AB两城光市之明间小的距学离到是8少厘米年,宫而A的B两距城离市之为间4的0实0际米距离,是在400比千例米,尺这1幅:地图8的0比0例0尺的是多少呢?
1厘米
÷
100厘米
1:100
解: 1厘米表示1米,比例尺是1:100
8米=800厘米 6米=600厘米
800×
= 8 (厘米)
600×
= 6 (厘米)
题2 在比例尺1:6000000的地图上,量得重庆到北京的图上
距离是24厘米,重庆到北京的实际距离是多少?
分析:已知比例尺1:6000000和图上距离24厘米,求实际距离

比和比例的应用(课件)-六年级下册数学人教版

比和比例的应用(课件)-六年级下册数学人教版

3. (阳江市江城区)被减数、减数与差的和是100,差与减数的比是 1∶4,差是( 10 ),减数是( 40 ),被减数是( 50 )。
4. (佛山市三水区)小明看一本故事书,已看的页数与未看页数的比是 3∶5,未看的有40页,这本书共有( 64 )页,已看( 24 )页。 5. (潮州市湘桥区)如图是一张地图上的比例尺,将它转换为数值比 例尺是( 1∶3000000 )。在这张地图上量得两地之间的距离为8.5 厘米,则两地之间的实际距离是( 255 )千米。
2. (深圳市福田区)《庄子·天下篇》中“一尺之棰,日取其半,万世 不竭”的意思是∶一尺长的木棒,第一天截取它长度的一半,以后每天 都截取它前一天的一半,那么将永远也截取不完。如果按照这种截取方 法,那么第3天截取的木棒长度与原来的木棒总长度的比是( D )。
A. 1∶2 C. 1∶6
B. 1∶3 D. 1∶8
x=35 答∶这些A4纸实际可用35天。
跟踪训练 1. 北京到济南高速公路距离大约为430 km,北京到天津大约为120 km。一辆汽车从北京出发开往济南,当行驶到天津时用了1.5小时。按 照这个速度,北京到济南全程需要多少小时?(用比例解) 解∶设北京到济南全程需要x小时。 120∶1.5=430∶x
解∶设小芳6分钟能做x道题。 x∶6=25∶2
2x=6×25 x=75
2. 一间房子要用方砖铺地,用面积是9平方分米的方砖,需用96块,如 果改用边长是4分米的方砖,需用多少块?(用比例解) 解∶设需要x块。 4×4x=9×96
x=54
3. (济南市市中区)公园里有一个花坛,面积是100平方米,其中的 30%种月季,剩下的面积按3∶4的比分别种玫瑰与牡丹,种玫瑰的面积 是多少平方米? 100×(1-30%)×3+34=30(平方米)

六年级下册数学讲义-第四单元——比例:比例的应用人教版(含答案)

六年级下册数学讲义-第四单元——比例:比例的应用人教版(含答案)

比例的应用【知识梳理】1.比例尺。

(1)意义:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

图上距离:实际距离=比例尺或实际距离图上距离=比例尺 (2)分类:①按表现形式分,可以分为数值比例尺和线段比例尺;② 按将实际距离缩小还是放大分,可以分为缩小比例尺和放大比例尺。

(3)已知图上距离和实际距离,求比例尺的方法。

先把图上距离和实际距离统一单位,再用图上距离比实际距离,然后把它化简成前项是1或后项是1的比,得出比例尺。

(4)已知比例尺和图上距离,求实际距离的方法。

可以根据“实际距离图上距离=比例尺”用解比例的方法求出实际距离,也可以利用“实际距离=图上距离÷比例尺”直接列式计算。

(5)已知比例尺和实际距离,求图上距离的方法。

可以根据“实际距离图上距离=比例尺”用解比例的方法求出图上距离,也可以利用“图上距离=实际距离×比例尺”直接列式计算。

(6)应用比例尺画图。

①确定比例尺;②根据比例尺求出图上距离;③画图;④ 标出所画图的名称和比例尺。

要点提示:①比例尺是一个比,表示两个同类量间的倍比关系,不能带单位名称。

②图上距离一般用厘米作单位,实际距离一般用米或千米作单位,计算比例尺时一定要先统一单位。

③为了计算方便,一般把比例尺写成前项或后项是1的形式。

2.图形的放大与缩小。

(1)特点:形状相同,大小不同。

(2)将图形放大或缩小的方法。

一看,看原图形各边占几格;二算,按已知比计算出放大图或缩小图的各边占几格;三画,按计算出的边长画出原图形的放大图或缩小图。

要点提示:把图形每条边按相同倍数放大(或缩小)后,形状不变,相对应的角的度数也不变。

3.用比例解决问题。

根据问题中的不变量找出两种相关联的量,并判断这两种相关联的量成什么比例关系,再根据正、反比例关系列出相应的比例并求解。

要点提示:用正、反比例解决问题的关键是确定成什么比例关系。

【诊断自测】1.填空。

(1)在比例尺是1:2000000的地图上,量得两地距离是38厘米,这两地的实际距离是( )千米。

人教版六年级下册数学《比例尺的应用》说课教学复习课件

人教版六年级下册数学《比例尺的应用》说课教学复习课件
四惠东站在图中的长度大约是7.8 cm,从苹果园站至四惠东
站的实际长度大约是多少千米?
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
【方法二】
图上距离
实际距离
= 比例尺
实际距离=图上距离÷比例尺
看比例尺。
1
2
根据比例尺的定义求实际距离。
用图上距离
÷比例尺
设为x
4.3.2 比例尺的应用
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
小学数学六年级下册
先把右图中的线段比例尺改写成数值比例尺,再用直尺量出
4.3厘米,上海到杭州的实际距离是多少千米?
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
解:设实际距离是是x cm。
4.3∶ x = 1∶5000000
x=21500000
21500000cm=215km
答:上海到杭州的实际距离是215km。

小学六年级下册数学讲义第四章 比例 人教新课标版(含解析)

小学六年级下册数学讲义第四章 比例 人教新课标版(含解析)

人教版小学六年级数学下册同步复习与测试讲义第四章比例【知识点归纳总结】故选:B.点评:本题主要考查比例的意义,注意判断能否组成比例可以用求比值的方法,求出比值,比值相等两个比就能组成比例.例2:在比例3:4=9:12中,若第一个比的后项加上8,要使比例仍然成立,则第二个比的后项应加上()A、8B、12C、24D、36分析:在比例3:4=9:12中,若第一个比的后项加上8,由4变成12,这样两内项的积就成了108,根据比例的性质,两外项的积也得是108,再用108除以前一个比的前项3即得后一个比的后项,进而求出第二个比的后项应加上几即可.解:比例3:4=9:12中,第一个比的后项加上8,由4变成12,则两内项的积:12×9=108,两外项的积也得是108,第二个比的后项应是:108÷3=36,第二个比的后项应加上:36-12=24;故选:C.点评:此题主要考查比例的基本性质:在比例里,两内项的积等于两外项的积.点评:此题属于辨识两种相关联的量成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,再做出判断.例2:长方形的面积一定,长和宽()A、成正比例B、成反比例C、不成比例分析:根据正比例的意义x:y=k(一定)和反比例的意义xy=k(一定),因为长×宽=长方形的面积(一定),符合反比例的意义.解:根据长方形的面积公式,长×宽=长方形的面积(一定),符合反比例的意义xy=k(一定),所以长方形的面积一定,长和宽成反比例.故选:B.点评:此题主要考查正、反比例的意义,以及长方形的面积公式.3. 解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项.求比例中的未知项,叫做解比例.一般来说,求比例的未知项有以下两种情况:例2:如果比例的两个外项互为倒数,那么比例的两个内项()A、成反比例B、成正比例C、不成比例分析:根据互为倒数的定义和比例的两内项之积等于两外项之积,可得比例的两个内项之积等于1,再根据成反比例的定义即可求解.解:因为比例的两个外项互为倒数,那么比例的两个内项之积=1(为恒指),则比例的两个内项成反比例.故选:A.点评:本题考查了倒数的定义和成反比例的条件,两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定.这两种量叫做成反比例的量.它们的关系叫做反比例关系.4. 比例的应用根据问题中的不变量找出两种相关联的量,并判断这两种相关联的量成什么比例关系,根据正、5. 比的应用1.按比例分配问题的解题方法:(1)把比看作分得的份数,用先求出每一份的方法来解答.解题步骤:a.求出总份数;b.求出每一份是多少;c.求出各部分相应的具体数量.(2)转化成份数乘法来解答.解题步骤:a.先根据比求出总份数;b.再求出各部分量占总量的几分之几;c.求出各部分的数量.2.按比例分配问题常用解题方法的应用:(1)已知一个数量的各部分的比和其中某一部分的量,求另外几个部分量;(2)已知两个量或几个量的比和其中两个量的差,求总量.【经典例题】例1:一个三角形与一个平行四边形的面积和底部都相等,这个三角形与平行四边形高的比是()A、2:1B、1:2C、1:1D、3:1分析:根据三角形和平行四边形的面积公式可得:三角形的高=面积×2÷底;平行四边形的高=面积÷底,由此即可进行比较,解答问题.解:三角形的高=面积×2÷底,平行四边形的高=面积÷底,当三角形和平行四边形的面积和底分别相等时,三角形的高是平行四边形的高的2倍.所以这个三角形与平行四边形高的比是2:1.故选:A.点评:考查了平行四边形的面积和三角形的面积公式,解题的关键是知道底相等、面积也相等的三角形和平行四边形中三角形的高是平行四边形的高的2倍.例2:甲、乙两人各走一段路,他们的速度比是3:4,路程比是8:3,那么他们所需时间比是()答:甲乙所需的时间比是32:9.故选:B.点评:关键是把速度和路程设出来,然后根据时间=路程÷速度,先求得各自用的时间,再写出所用的时间比并化简比.6.辨识成正比例的量与成反比例的量1.成正比例的量:(1)“变化方向”相同,一种量扩大或缩小,另一种量也扩大或缩小.2.成反比例的量:(1)“变化方向”相反,一种量扩大或缩小,另一种量反而缩小或扩大.(2)相对应的两个数的乘积一定.(3)关系式:xy=k(一定).3.判断方法:关键是看着两种相关量中相对应的两个数是商一定还是积一定,如果商一定,所以xy=1,是乘积一定,x和y成反比例;故选:D.点评:此题属于根据正、反比例的意义,辨识两种相关联的量是否成反比例,就看这两种量是否是对应的乘积一定,再做出选择.【同步测试】单元同步测试题一.选择题(共8小题)1.当:4=x:5时,x的值是()A.B.C.D.2.根据6×7=2×21,写出下面的比例中正确的一组是()A.6:7=2:24B.6:2=7:21C.6:2=21:7 3.如表,如果x和y成反比例,那么“?”处应填()x3?y56A.2B.3.6C.2.5D.104.语文书和数学书共40本,语文书的本数和数学书的本数的比可能是()A.4:3B.4:5C.5:3D.无法确定5.煤的总量一定,每天烧煤量和烧煤的天数()关系.A.成正比例B.成反比例C.不成比例D.无法判断6.A=,如果B一定,A和C这两种量成()关系.A.正比例B.反比例C.不成比例D.按比例分配7.一个三角形三个内角度数的比是1:3:4,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形8.一个长4cm,宽2cm的长方形按4:1放大,得到的图形的面积是()cm2.A.32B.72C.128二.填空题(共8小题)9.甲数与乙数的比例为5:3,甲数为60,乙数为.10.解比例:3.5:x=0.5:20%则x=11.表中x和y是两个成反比例的量,请将表格填写完整.x36120.18y10154012.一个最简分数的分母减去一个数,分子加上同一个数,所得的新分数可以约简为,这个数是.13.按照如图的配方,做5人份炒面,需要购买克面.14.利用正比例图象解决问题时,想找出已知量所在的数轴及位置,然后在另一数轴上找出已知量相的数值.15.一个比例中,两个内项的积是1,其中一个外项是1.25,另一个外项是.16.在3,15,12,5,9,30,20中,把可以组成的比例写出两组、.三.判断题(共5小题)17.比例2:a=b:3,那么a与b的积是6.(判断对错)18.甲数的与乙数的相等,且甲、乙均不为零,则甲数大于乙数..(判断对错)19.a:b=2:4,则b是a的2倍.(判断对错)20.小明上学,已经走的路程与剩下的路程,是两个相关联的量.(判断对错)21.如果小华与小红体重的比是7:8,那么小华就比小红轻.(判断对错)四.计算题(共1小题)22.解比例.=4:2.4x:=15:五.应用题(共6小题)23.一种酒精溶液,水和酒精的比是4:1.如果要调3.2升的酒精溶液,水和酒精分别需要多少毫升?24.学校体育组购进12根大绳,准备按年级学生人数分配给参加“蓓蕾计划”的一、二、三年级学生.一年级45人,二年级75人,三年级60人,二年级能分到多少根大绳?25.修路队修一段铁路,修了一天后,已修路程和未修路程的比是1:4,第二天修了3600米,正好修完这条铁路的一半,这段铁路长多少米?26.甜甜学习做面包,她搜索得知,做面包需要的面粉、全麦、黄油可以按10:4:1配制.如果三样食材配成后共重3000克,其中含有全麦多少克?如果这三样食材各有200克制作这种面包,当面粉全部用完时,黄油还剩多少克?27.六年级一、二、三3个班献爱心捐书,一班捐的本数是三个班总数的,二、三两个班捐的本数比是4:3.已知三个班捐书总数为700本.求三班捐了多少本?28.解决问题.参考答案与试题解析一.选择题(共8小题)1.【分析】根据比例的性质,把比例先改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,再进行选择.【解答】解::4=x:5,4x=×5,4x=3,x=.故选:B.【点评】此题考查比例性质的运用即解比例.2.【分析】根据比例的性质:两内项的积等于两外项的积,据此逐项写出等式,与等式6×7=2×21比较得解.【解答】解:A、因为6:7=2:24,6×24不等于7×2,所以选项A不正确.B、因为6:2=7:21,6×21不等于7×2,所以选项B不正确.C、因为6:2=21:7,所以6×7=2×21,所以选项C正确.由此得出C是正确的.故选:C.【点评】此题考查比例性质的灵活运用,即:两内项的积等于两外项的积.3.【分析】如果x和y成反比例,则x和y的乘积一定,由此列出比例解答即可.【解答】解:6x=3×56x=15x=2.5答:如果x和y成反比例,那么“?”处填2.5.故选:C.【点评】此题属于根据反比例的意义解题,如果两种相关联的量成反比例,则对应的乘积一定;再根据乘积一定列出比例,求得未知数的数值即可.4.【分析】要求这两种书的本数比是几比几,因为数的本数应该为整数,所以只要40能整除比的前项和后项份数的和即可.【解答】解:A、因为4+3=7,7不能整除40,所以这两种书的本数比不可能是4:3;B、因为4+5=9,9不能整除40,所以这两种书的本数比不可能是4:5;C、5+3=8,40能被8整除,所以这两种书的本数比可能是5:3;故选:C.【点评】此题考查了学生对比的应用以及分析判断的能力.5.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:因为:每天烧煤量×烧煤天数=煤的总量(一定),是乘积一定,所以每天烧煤量和烧煤天数成反比例;故选:B.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.6.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:A=,如果B一定,即AC=B(一定),是乘积一定,则A和C成反比例;故选:B.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.7.【分析】根据题意可得:三角形的三个内角分别占三角形内角和的、和,三角形的内角和是180度,根据一个数乘分数的意义分别求出三个角,进而进行判断即可.【解答】解:1+3+4=8180°×=22.5°180°×=67.5°180°×=90°所以该三角形是直角三角形.故选:B.【点评】解答此题的关键是先根据一个数乘分数的意义分别求出三个角,进而根据三角形的分类,判断即可.8.【分析】先根据按4:1放大,放大后长和宽是原来的4倍,求出放大后的长和宽,再求出面积.【解答】解:放大后的长:4×4=16(厘米);放大后的宽:2×4=8(厘米);面积:16×8=128(平方厘米);故选:C.【点评】先根据比例求出放大后的长和宽,再求出面积.二.填空题(共8小题)9.【分析】利用比例的基本性质即可求解,即两内项之积等于两外项之积.【解答】解:设乙数为x,则5:3=60:x,5x=180,x=36.故答案为:36.【点评】此题主要考查比例的基本性质.10.【分析】根据比例的基本性质,原式化成0.5x=3.5×20%,再依据等式的性质,方程两边同时除以0.5求解.【解答】解:3.5:x=0.5:20%0.5x=3.5×20%0.5x÷0.5=0.7÷0.5x=1.4;故答案为:1.4.【点评】本题主要考查学生依据等式的性质以及比例基本性质解方程的能力,解方程时注意对齐等号.11.【分析】根据x和y两个量成反比例关系,可知x和y这两个量对应的乘积一定,进而根据乘积一定得解.【解答】解:12×15=180180÷36=5180÷10=18180÷0.18=1000180÷40=4.5如图:x36180120.18 4.5y51015100040故答案为:5,180,1000,4.5.【点评】此题属于考查正、反比例的意义,如果两种相关联的量成反比例关系,那么它们对应的乘积一定相等.12.【分析】若设这个数为x,则的分母减去一个数,分子加上同一个数后,新分数的分子与分母的比是,据此就可以列比例求解.【解答】解:设这个数为x,则=,5×(13+x)=3×(27﹣x),65+5x=81﹣3x,8x=16,x=2;答:这个数是2.故答案为:2.【点评】解答此题的关键是明白的分母减去一个数,分子加上同一个数后,新分数与成比例,从而问题得解.13.【分析】通过观察配方表可知,2人份炒面需要600克面粉,由此可以求出1人份炒面需要面粉多少克,再根据乘法的意义,用乘法解答即可.【解答】解:600÷2×5=300×5=1500(克)答:需要购买1500克面粉.故答案为:1500.【点评】此题考查的目的是理解比的意义,掌握比与除法之间的联系及应用.14.【分析】根据正比例的定义,以及函数图象的对应关系即可求解.【解答】解:利用正比例图象解决问题时,想找出已知量所在的数轴及位置,然后在另一数轴上找出已知量相对应的数值.故答案为:对应.【点评】考查了正比例图象,关键是熟练掌握正比例的定义,以及利用正比例图象解决问题.15.【分析】根据比例的基本性质:在比例中,两个外项的积等于两个内项的积;已知两个内项的积是1,则两个外项的积也是1;用1除以1.25,即为另一个外项.【解答】解:因为两内项之积等于两外项之积,所以另一个外项是:1÷1.25=0.8.故答案为:0.8.【点评】本题主要考查比例基本性质的应用.16.【分析】根据比例的基本性质“两外项的积等于两内项的积”,只要找出四个数中任意两个数的积等于另外两个数的积,就说明这四个数能组成比例.据此解答.【解答】解:在3,15,12,5,9,30,20中3×20=12×5所以可以组成比例:3:12=5:20、3:5=12:20.故答案为:3:12=5:20、3:5=12:20.【点评】此题考查比例的意义和比例的性质的运用:验证所给的四个数能否组成比例,可以根据比例的性质:两外项的积等于两内项的积;也可以用求比值的方法,任意两个数的比值和另外两个数的比值相等,就能组成比例,否则就不能组成比例.三.判断题(共5小题)17.【分析】根据比例的性质,两个内项之积等于两个外项之积,进行判断即可.【解答】解:2:a=b:3,ab=2×3=6;所以原题计算正确;故答案为:√.【点评】此题考查比例性质的运用.18.【分析】利用比例的性质,将两个内项积等于两个外项积先改写成比例,再进一步化简比得解.【解答】解:甲数×=乙数×,则甲数:乙数=:=24:25,因为24份的数<25份的数,所以甲数<乙数.故答案为:错误.【点评】此题考查比例的运用,关键是把两个内项积等于两个外项积先改写成比例的形式.19.【分析】在比例中,两个外项的积等于两个内项的积,据此先把a:b=2:4改写成2b=4a,再根据等式的性质,两边同除以2得到b=2a,即b是a的2倍;据此判断即可.【解答】解:a:b=2:4,即2b=4a,则b=2a,即b是a的2倍;所以原题说法正确.故答案为:√.【点评】此题考查了比例的基本性质和等式性质的运用.20.【分析】已经走的路程与剩下的路程相加是总路程,它们是加数、加数与和的关系,所以已经走的路程与剩下的路程是两个相关联的量,据此判断.【解答】解:已经走的路程与剩下的路程相加是总路程,所以已经走的路程与剩下的路程是两个相关联的量.原题说法正确.故答案为:√.【点评】此题考查了两种相关联的量,成正比例、反比例,不成比例,有三种情况.21.【分析】如果小华与小红体重的比是7:8,把小华的体重看作7份数,把小红体重看作8份数,据此解答.【解答】解:小华与小红体重的比是7:8,把小华的体重看作7份数,把小红体重看作8份数,7<8,所以小华就比小红轻;原题说法正确.故答案为:√.【点评】此题考查了比的运用,把比看作份数比来理解.四.计算题(共1小题)22.【分析】(1)根据比例的性质,两外项之积等于两内项之积,把比例转化成一般方程4x=0.2×2.4,再根据等式的性质,方程两边都除以4即可得到原比例的解.(2)根据比例的性质,两外项之积等于两内项之积,把比例转化成一般方程x=×15,再根据等式的性质,方程两边都除以即可得到原比例的解.【解答】解:(1)=4:2.44x=0.2×2.44x÷4=0.2×2.4÷4x=0.12(2)x:=15:x=×15x÷=×15÷x=8【点评】解比例时,先根据比例的性质,两外项之积等于两内项之积,把比例转化成一般方程,然后再根据解方程的方法解答.五.应用题(共6小题)23.【分析】先求出总份数,即4+1=5份,然后分别求出水和酒精各占3.2升的几分之几,最后根据分数乘法的意义解答即可.【解答】解:4+1=53.2×=2.56(升)3.2×=0.64(升)答:水需要2.56毫升;酒精需要0.64毫升.【点评】此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.24.【分析】把大绳的根数看作单位“1”,先求出总人数,再求出二年级学生人数占总人数的几分之几,然后根据一个数乘分数的意义,用乘法解答.【解答】解:45+75+60=180(人)12×=5(根)答:二年级能分到5根大绳.【点评】此题考查的目的是理解掌握按比例分配应用题的结构特征及解答规律.即先求出总份数,再求出各部分占总数的几分之几,然后根据一个数乘分数的意义解答.25.【分析】把这段铁路的总长度看作单位“1”,修了1天后,已修的占总长度的,第二天修3600米,已修的占总长度的,则3600的对应分率是(﹣),用对应量除以对应分率,就是这段铁路的总长度.【解答】解:3600÷(﹣)=3600÷=12000(米)答:这段铁路长12000米.【点评】解答此题的关键是:求出3600的对应分率,用对应量除以对应分率,就是这条段路的总长度.26.【分析】已知一种面包需要的面粉、全麦、黄油可以按10:4:1配制.又知三样食材配成后共重3000克,先求出一份是多少克,进而求出含有全麦多少克;如果这三样食材各有200克制作这种面包,先求出面粉200克对应的黄油克数,再用200克减去对应的黄油克数即可求解.【解答】解:3000×=3000×=800(克)200﹣200÷10×1=200﹣20=180(克)答:其中含有全麦800克,黄油还剩180克.【点评】此题考查的目的是掌握按比例分配应用题的结构特征和解答规律,此题关键是求出一份是多少千克.进而求出缺少和剩余的各是多少千克.27.【分析】把六年级三个班捐书的总数看作单位“1”,一班捐的本数是三个班总数的,根据一个数乘分数的意义,用乘法即可得出一班捐的本数,用总数减去一班捐的本数就是二班和三班共捐书多少本,已知二、三两个班捐的本数比是4:3,也就是三班捐书的本数占二、三班捐书本数的,根据一个数乘分数的意义,用乘法即可求得三班捐了多少本.【解答】解:700×=280(本)(700﹣280)×=420×=180(本)答:三班捐书180本.【点评】此题考查的目的是理解掌握比的意义及应用,以及比与分数之间的联系及应用.28.【分析】根据高年级和低年级所分的本数比,求出各占剩余本数的几分之几,进而根据分数乘法解决问题.【解答】解:640×=400(本)640×=240(本)答:高年级分得400本图书,低年级分得240本图书.【点评】本题考查了分数问题和按比例分配的实际问题,按比例分配的方法求出两个年级的本数,是比较难的问题.。

人教版六年级数学下册第4单元--比例(比例的应用共7课时)

人教版六年级数学下册第4单元--比例(比例的应用共7课时)

第4单元比例第1课时比例尺(1)【教学目标】知识目标:使学生在具体情境中理解比例尺的意义,能看懂线段比例尺。

能力目标:会求一幅图的比例尺,会把数值比例尺与线段比例尺进行转化。

情感目标:培养分析、抽象、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。

【教学重难点】重点:使学生在具体情境中理解比例尺的意义,能看懂线段比例尺。

难点:会求一幅图的比例尺,会把数值比例尺与线段比例尺进行转化。

【教学过程】一、创境激疑, 情境导入谈话:同学们,我国历史悠久,地域辽阔,国土面积大约有960万平方千米。

但这么辽阔的地域却可以用一张并不很大的纸画下来。

出示大小不一的中国地图,并提问:想知道这些地图是怎样绘制出来的吗?今天我们就学习这方面的知识——比例尺。

板书课题:比例尺二、自主探究,理解比例尺的意义1、出示例1,在学生理解题意后提问:题目要求我们写出几个比?这两个比分别是哪两个数量的比?什么是图上距离?什么是实际距离?2、探索写图上距离和实际距离的比的方法。

提问:图上距离和实际距离单位不同,怎样写出它们的比?引导学生通过交流,明确方法:先要把图上距离和实际距离统一成相同的单位,写出比后再化简。

学生独立完成后,展示、交流写出最简的比。

3、揭示比例尺的意义以及求比例尺的方法。

谈话:像刚才写出的两个比,都是图上距离和实际距离的比。

我们把图上距离和实际距离的比,叫做这幅图的比例尺。

提问:这张长方形草坪平面图的比例尺是多少?图上距离:实际距离=比例尺120km=12000000cm24 :12000000=1 :5000000三、拓展应用教材56页1、2题四、总结这节课你学会了什么?你有哪些收获和体会?计算一幅图的比例尺时要注意什么?五、作业布置教材56页3、4题【板书设计】比例尺的意义例1 图上距离:实际距离=比例尺120km=12000000cm24 :12000000=1 :5000000【教学反思】在教学比例尺的过程中,针对课本上出现的两种问题,一类是已知比例尺和图上距离求实际距离,另一类是已知比例尺和实际距离求图上距离。

人教版六年级数学下册第四单元 比例PPT

人教版六年级数学下册第四单元 比例PPT

2.4:1.6=
3 2
国旗长60cm,宽40cm。
教室里的国旗:
60:40=
3 2
我发现,它们长和宽的比值都相等。
国旗长5m,宽 10 m。 国旗长2.4m,宽1.6m。 国旗长60cm,宽40cm。
3
所以,2.4:1.6=60:40。也可以写成
2.4 = 1.6
60 40

国旗长5m,宽 10 m。 国旗长2.4m,宽1.6m。 国旗长60cm,宽40cm。 3
(二)解决问题
1. 李叔叔承包了两块水稻田,面积分别是0.5公顷和0.8公顷。秋收时, 两块水稻田的产量分别为3.75吨和6吨。
(2)如果可以组成比例,指出比例的内项和外项。
人教版六年级数学下册 第四单元 比例
比例的意义
一、复习导入
求比值:
12:16
3/4
4.5:2.7
5/3
10:6
5/3
3/4: 1/8
6
二、自主探究,构建新知
我们都在哪些地方见过中国国旗?
国旗长5m,宽 10 m。 国旗长2.4m,宽1.6m。 国旗长60cm,宽40cm。 3
这三幅图都是什么地方的场景?有什么共同点?
你能发现什么?
(2)
3= 9 5 15
3×15= 45 5×9= 45
先计算,再观察,看看有什么发现?
(二)比例的基本性质
你能举一个例子,验证你的发现吗?
在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。
你能用字母表示这个性质吗?
用字母表示比例的基本性质:a:b=c:d(b、d≠0)
a= c
1. 下面哪组中的两个比可以组成比例?把能组成的比例写出来。

人教版六年级数学下册第四单元 比例复习课件

人教版六年级数学下册第四单元  比例复习课件
城市之间高速公路的距离是5.5cm。在另一幅比例尺是
1:5000000的地图上,这条公路的图上距离是多少?
(教材P66第3题)
5.5×2000000= 11000000(cm)
1
11000000÷
= 2.2(cm)
5000000
答:这条公路的图上距离是2.2 cm。
3
同一时间、同一地点测得旗杆高度和影长的数据如下表。
7 :14 和 6 :12
0.4 :1.6 和 3 :12
0.5
0.5
7 :14 = 6 :12
0.25
0.25
0.4 :1.6 = 3 :12
0.5 :2 和
0.25
1
4
1

16
1
3
1

4

4
3
4
1
3
1

4
=
1
6
1

8
4
3
1
1

6
8
2
解比例。
0.6 1.5
=
12

解:0.6x = 1.5×12
1.5×12
01 计算表中两种量的比值或乘积。
若两种量的比值一定,则成正比例;
02
若两种量的乘积一定,则成反比例。
(1)从甲地到乙地的路程是240km,汽车行驶的速度与时间如下表。
速度/(千米/时)
40
50
60
80
100
时间/时
6
4.8
4
3
2.4
(1)40×6 = 50×4.8 = 60×4=80×3 = 100×2.4 = 240

人教版六年级数学下册第四单元《比例尺的应用、正比例与反比例的应用》技巧课件

人教版六年级数学下册第四单元《比例尺的应用、正比例与反比例的应用》技巧课件

应 用 3 根据比例尺求图上距离并绘图
3.学校在广场的正东方向方向,距离广场350 m;文化宫在广场
图上距离3.5cm 的南偏西30°方向,距离广场300 m;体育馆在广场
图上距离3cm 的北偏东40°方向,距离广场400 m。在下图中画出
它们的位置平面图。
x= 23 70×(23-5)=1260(m) 答:小东家到学校的路程是1260 m。
类 型 3 列比例解答工程问题
每小时燃烧
1 2
求出粗蜡烛和细蜡烛 的剩余长度
每小时燃烧
1 3
4.有长度相等,粗细不同的两根蜡烛,粗的可燃3小时,
细的可燃2小时。一天晚上8:00停电了,小明把这
两根蜡烛同时点燃照明。来电时,小明同时吹灭这
1500x=1200×(6-x) x=83
1500×83=4000(km) 答:这架飞机最多飞行 4000 km 就需要返回。
类 型 5 已知变化前后的比和变化的数量,求
原来的数量 6.某次测试中,甲、乙两个同学的分数比为5∶4,如
果甲少得25分,乙多得25分,那么他们的分数比是 5∶7。甲、乙各得多少分? 设甲得5x分,乙得4x分
2.小明家住在八楼,一天停电,小明只好从一楼走楼梯
回家,当他上到四楼时用了36秒,假设小明上每层楼所
用的时间相同,那么小明从一楼回到家需要多少秒?
爬了3层楼
从1楼爬到8楼
爬了7层楼
爬1层楼用的时间一定
爬楼用的时间与爬楼的层数成正比
解:设小明从一楼回到家需要 x 秒。 43-61=8-x 1
x=84 答:小明从一楼回到家需要 84 秒。
园的长是4.5 cm,宽是3.6 cm。学校植物园的实际面
积是多少平方米? 长方形面积的比是其长度比的平方 图上面积与实际面积的比:1²∶2000² 实际面积=5×3×2000²

六年级下册数学教案-4.3 比例的应用 第3课时∣人教新课标

六年级下册数学教案-4.3 比例的应用 第3课时∣人教新课标

六年级下册数学教案-4.3 比例的应用第3课时∣人教新课标教学目标:1. 知识与技能:让学生理解比例在实际生活中的应用,掌握比例的基本性质,并能够运用比例解决实际问题。

2. 过程与方法:通过实际操作、观察、思考和讨论,培养学生运用比例解决问题的能力。

3. 情感态度价值观:培养学生认真观察生活,发现生活中的数学问题,提高学生对数学学习的兴趣。

教学内容:1. 比例的概念:引导学生回顾比例的定义,即表示两个比相等的式子。

2. 比例的基本性质:引导学生掌握比例的基本性质,如比例中的四个数相乘相等,比例中任意三项可以求出第四项等。

3. 比例的应用:通过实际例子,让学生了解比例在实际生活中的应用,如按比例分配物品、按比例计算费用等。

教学步骤:1. 导入:利用生活实例引入比例的概念,如学校运动会,男生和女生的人数比是多少?激发学生的学习兴趣。

2. 探究:让学生观察生活中的比例现象,如购物时按比例计算费用,引导学生发现比例的应用。

3. 讲解:讲解比例的基本性质,通过具体例子让学生理解比例的性质,如比例中的四个数相乘相等,比例中任意三项可以求出第四项等。

4. 练习:设计一些实际问题,让学生运用比例知识解决,如按比例分配物品,按比例计算费用等。

5. 总结:通过本节课的学习,让学生掌握比例的基本性质,理解比例在实际生活中的应用。

教学评价:1. 课堂表现:观察学生在课堂上的参与程度,积极回答问题,与同学互动情况。

2. 作业完成情况:检查学生的作业完成情况,是否能够正确运用比例知识解决实际问题。

3. 课后反馈:收集学生的课后反馈,了解学生对比例知识掌握的情况,对教学进行改进。

教学建议:1. 注重实际应用:在教学中,注重比例在实际生活中的应用,让学生在实际问题中感受比例的重要性。

2. 鼓励学生思考:鼓励学生观察生活,发现生活中的比例现象,培养学生的观察能力和思维能力。

3. 注重个体差异:关注学生的学习差异,针对不同学生的学习情况进行个别指导,让每个学生都能掌握比例知识。

比例的基本性质(说课课件)-六年级下册数学人教版

比例的基本性质(说课课件)-六年级下册数学人教版
比例的基本性质
说教材
比、除法和分数的知识
比例的意义
比 例 的 项
外内 项项 积积
分 数 形 式
比 例 基 本 性 质
解 决 问 题
说学生
比的知识
理解问题、归纳总结 算术的思考方式
自主探索
说目标
使学生了解和掌握比例的基本性质, 能用比例的基本性质判断两个比是否成比 例;认识比例各部分名称,并能正确地组
1、把 4.5,7.5, 1 , 1 和四个数组成比例,其中内项的积是(

A.33.75 B.2.2253
C.1.35
D.4.65
2、明辨是非
(1)因为5a=6b,所以a:b=6:5.
()
(2)在比例中,“:”左边两个数的乘积等于“:”右边两个数的乘积.
()
(3)运用比例的基本性质能判断两个比是否成比例.
组长
李响 付晓娜 胥日发 胡悦
武丛 王璐萍 贾舒然
组员
侯志臣 周星月 吕奇鹏 佟曦辉 王 书 李星辰 姜 楠王 硕
李思朦 刘可鑫 李思博 尹雁超 郑文巧 刘倬蓉 刘博闻 李 彤
郭亚楠 李 岩 王 淇姜珊
许强崔 昊 霍天赐 张云鹏
潘晓刚 冯天阳 尹燕楠 陈 宇
时间
互助情况



的设
基 本 性
计 亮
质点
突破难点
教学时有意识创设情境,激发学生探索问题 的欲望,根据后进生理解知识慢的情况,我想在介绍了比 例中各部分的名称后,可以再举一些比例,让学生说说每 个比例中的外项、内项分别是哪些数. 因为是刚认识比例 中各部分的名称,学生一般会与以前学习的比的前项与后 项发生混淆,而一旦混淆会影响后一部分的学习. 所以这 里可以适当放慢节奏. 另外在习题的训练过程中,将教材 中的习题重新设置补充,分层次由易变难.

人教版六年级下册数学教材解读ppt课件

人教版六年级下册数学教材解读ppt课件
28
第五单元 数学广角 —鸽巢问题
一、教学内容 抽屉原理
29
三、具体编排
30
31
抽屉原理的一般形式
把m个物体任意分放进n个空抽屉里(m>n, n是非0自然数),那么一定有一个抽屉中放 进了至少2个物体。 把多于个kn物体任意分放进n个空抽屉里(k 是正整数),那么一定有一个抽屉中放进了 至少(k+1)个物体 。
人教版数学 六年级下册 教材解读
1
2
第一单元 负数
一、教学内容 认识生活中的情境中,了解负数的 意义,会用负数表示日常生活中的一 些量。
4
三、具体编排
5
6
7
编排特点 :
本节课教材编排特点是选取学生 感兴趣的教材,唤起学生已有的生活 经验,引导学生建立负数的概念,体会 正数和负数可以表示两种相反意义的 量。
识动置 与 测 量
绿北邮有 色京票趣 出五中的 行日的平
行数衡


题 35
三、复习中需注意的问题
1、加强整理和复习的系统性。 2、关注概念的理解。 3、启发、引导学生在理解的基础上自主整理 知识。
4、在系统整理、复习的过程中注意查漏补缺。 5、加强练习的针对性、有效性。 6、注意引导学生积累数学学习的经验,总结 问题解决的策略。
36
感谢聆听 敬请指正
37
8
四、教学建议
1、本章课主要要求有:让学生掌握正、 负的写法、读法,正确理解正、负数表示 的意义,会比较正负数的大小,会在(直 线)坐标轴上表示正数和负数。
2、在实际的问题当中,负数表示的 意义是重要内容之一,在学习这个知识时, 一定要多结合具体的实例,比如和学生探 究温度,收支,方向和海拔等等问题中负 数表示的意义,一定要拓宽学生的视眼, 让学生在实际的问题当中感受负数表示的 意义。

人教版六年级数学下册第四单元比例PPT教学课件全套

人教版六年级数学下册第四单元比例PPT教学课件全套

4.判断。(对的画“√”,错的画“×”)
(1)在比例里,两个外项的积与两个内项的积的差等于0。 ( √ )
(2)已知xy=32,则可以有比例x:4=8:y。 (3)2:3和4:5可以组成比例。 ( ( √) ) ×
(4)如果5a=8b,那么a:b=5:8。
(5)8:4
1 3 和12:7 可以组成比例。 8 4
6∶ 4= 3 ∶ 2
1 1 所以, 2 : 3 和6∶4可以组成比 1 1 例,所以, : =6:4 。 2 3
方法提示:
判断两个比能不能组成比例,关键看它们的比值是否相等。
比例的意义:
1.比例的意义:表示两个比相等的式子叫做比例。
2.判断两个比能否组成比例的方法:根据比例的 意义,看两个比的比值是否相等,相等就能组 成比例。
夯实基础 (选题源于《典中点》)
1.填空。
2 在比例 3 :2=0.2:0.6里,( 0.9 18 = 40 里,( 2
2 3
)和( 0.6 )是外项;在
2
)和( 18
)是内项。
2.指出下面比例的外项和内项。 (1) 4.5:2.7=10:6 4.5和6是外项,2.7和10是内项。 (2)
x 1.2 = 25 75
像这样表示两个比相等的式子叫做比例。
提示: 写比例时,组成比例的两个比既可以写成带比号
的形式,也可以写成分数的形式,但读法相同。
国旗长5m,宽
10 m。 国旗长2.4m,宽1.6m。 国旗长60cm,宽40cm。 3
想一想,在上图的三面国旗的尺寸中, 还有哪些比可以组成比例?
归纳总结:
1.比例的意义:表示两个比相等的式子叫做比例。
(3) (
易错辨析 (选题源于《典中点》)

人教版小学六年级下册数学 4 比例 3 比例的应用用比例尺绘制平面图

人教版小学六年级下册数学  4 比例 3 比例的应用用比例尺绘制平面图

体育馆
电影院
学校
文化宫
五 课堂小结
应用比例尺画图的步骤: ①根据实际距离与纸张的大小确定平面图的比
例尺; ②根据比例尺求出图上距离; ③根据题意确定方位; ④根据图上距离画出相应的平面图,并标明平
面图的名称及比例尺。
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
③ 1:500
0 20 40 60km

② 实际距离是图上距离的2000000倍 ③ 实际距离与图上距离的比为1:2000000
四 培优训练
学校在广场的正东方向,距离广场 500 m;电影院 在广场的正西方向,距离广场 200 m;文化宫在广 场的正南方向,距离广场 300 m;体育馆在广场的 正北方向,距离广场 400 m。在下图中画出它们的 位置平面图。
小明家到学校的图上距离: 小亮家到学校的图上距离:
小红家到学校的图上距离:
画一画:
小红家

小明家
学校
小亮家 0( 100 )m
还有什么办法能解决这个问题? 设未知数 解:设小明家到学校的图上距离是 x cm 。
x : 20000 = 1 : 10000 10000 x = 20000
x=2 答:小明家到学校的图上距离是 2 cm 。
4 比例
3 比例的应用
第3课时 用比例尺绘制平面图
一 复习导入
右边是一幅按比例尺 为 1 : 10 缩小的风景画,若 量得风景画的长为 10 cm , 宽为 8 cm 。为这幅画做边 框需要多长的木条?
风景画实际长:10×10=100(cm) 风景画实际宽:8×10=80(cm) 需要木条:(100 + 80)×2 = 360(cm)

人教版六年级数学下册毕业总复习第七章解决实际问题第四课时课件

人教版六年级数学下册毕业总复习第七章解决实际问题第四课时课件

10.用一种方砖铺一间长12米,宽8米的实验室地 面。先用400块方砖铺设了64平方米,余下的还 要用这种砖多少块?
解:设余下的还要用这种砖x块。
12×8=96(平方米)
4_0_0_ 64
=
__x__ 96-64
x=200
答:余下的还要用这种砖200块。
4
几个月?(用比例解)
解:设一个人完成全部工程需要x个月。 1∶x= 1 ∶6
4
x=24
答:一个人完成全部工程需要24个月。
题型三 【例3】在比例尺是1∶5000000的地图上量得两个
城市相距4.5厘米,一辆客车和一辆货车同时从两个 城市相对开出,2 1 小时相遇。火车速度和客车速度
2
的比是9∶11,求客车平均每小时行驶多少千米。
x=192 答:如果改用边长为0.5米的正方形砖铺地需要192块。
2. 书架里有《小文学》25本,《作文笑传》21 本。增加多少本《小文学》,可使书架上《小文 学》与《作文笑传》的本数比是9∶7?
解:设增加x本《小文学》。 (25+x)∶21=9∶7 x=2 答:增加2本《小文学》,可使书架上《小学》 与《作文笑传》的本数比是9∶7。
答案:假设两个长方形周长的一半均为60。
3+2=5 7+5=12 甲长方形的长是60× —3 =36,宽是60-36=24,
5 面积是36×24=864 乙长方形的长是60× 1—72 =35,宽是60-35=25, 面积是35×25=875
甲、乙两个长方形面积的比是 864∶875
答:甲、乙两个长方形面积的比是 864∶875。
9 =x 36 3x=9×6
x=18 答:需要18分钟。
分析:此题错在认为锯的时间与锯的段数成正比 例,其实是锯一下的时间一定,也就是锯的时间 与锯的下数成正比例。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图上距离∶实际距离=比例尺

图上距离 实际距离
=比例尺
根据比例尺的表现形式分为:数值比例尺和线段比例尺
1∶100000000
根据比例尺的作用不同分为:放大比例尺和缩小比例尺
2∶1
1∶100000000
对应训练5 北京到天津的实际距离是120 km,在地图上量 得的距离是6 cm.下面是这幅地图的比例尺,你 能把它补充完整吗?
2.如果x=6y(y≠0),那么x和y成( 正)比例关系.
3.三角形的面积一定,底和高成( 反)比例关系.
4.线段比例尺,表示图上( 1 cm)相当于( 实际距离 50 km).按这样的比例尺,图上4 cm表示实际距 离( 200 km).
二、判断.
1.如果4m=5n,那么m:n=4:5.
()
2.比例尺实际上是一个比.
对应训练2
解比例:21.24=x3 解: 12x=2.4×3 12x=7.2 x=0.6
3.正比例
判断两个量是否成正比例关系的基本步骤: 1. 首先判断两个量是否是相关联的量. 2. 然后再看两个量的商是否为定值. y
x = k(一定)
正比例图象的特点: 正比例关系的图象是一条直线.从图象中
可以直观地看到相对应两种量的变化情况.不 用计算,由一个量的值可以直接找到相对应的 另一个量的值.
图形的放大与缩小 形状相同,大小不同
1.比例的意义
判断两个比能否组成比例的方法: 根据比例的意义,看两个比的比值是否相等,
相等就能组成比例.
对应训练1 判断下列各组中的四个数能否组成比例,如果能,把 组成的比例写下来. (1) 4,20,5和1 ( ) _能____2_0_:4_=__5_:_1_(_所__写__比__例__不__唯__一__) _______________ (2) 2,0.6,5和2.5 ( ) _不__能________________________________________
2.比例的基本性质 什么叫做比例的项?比例的外项?比例的内项?举例.
用字母表示比例的基本性质:
a∶b=c∶d(b、d≠0)
a
c
= b
d
ad=bc
对应训练2
把a×b=c×d(a,b,c,d均不为0)改写成比例式,
你可以写出几个?
8个,分别是
a:c=d:b b:c=d:a c:a=b:d d:a=b:c a:d=c:b b:d=c:a c:b=a:d d:b=a:c
完全程还要几小时?(用比例解)
解:设行完全程还要x小时.
350 = 490 350
5
x
x=2
答:行完全程还要2小时.
3.一个长方形的长是12 cm,宽是5 cm.如果按3:1 放 大,得到的长方形的面积和周长分别是多少?
12×3=36(cm) 5×3=15(cm) S=36×15=540(cm2) C=(36+15)×2=102(cm)
(2) 每天看的页数和需要的天数成什么关系?为什么? 每天看的页数和需要的天数成反比例关系. 因为每天看的页数×需要的天数=总页数(一定).
(3) 已经看了4天,剩下的页数和已看的页数成反比例关系吗?
每天看的页数和需要的天数成反比例关系. 因为每天看的页数×需要的天数=总页数(一定).
5.比例尺
的距离是40 cm.一辆汽车从甲地到乙地,要求4小时 到达,平均每小时行多少千米?
40÷
1 600000
=40×600000=24000000(cm)=240(km)
240÷4=60(km)
答:平均每小时行60千米.
2.甲、乙两地间的距离是490 km,一辆汽车从甲 地
出发去乙地,5小时行驶了350 km.照这样计算,行
20 40 60 80
6.图形的放大与缩小 图形的放大与缩小是生活中常见的现象,把一
个图形放大或缩小后所得的图形与原来的图形相比, 形状相同,大小不同.
对应训练6
判断: 一个正方形按4:1放大后,面积扩大为原来的16倍.
()
一、填空.
1.甲数的
3 等于乙数的
4
5 6
(甲数、乙数均不为0),则
甲数:乙数=( 10 ):( 9 ).
比例
在一个比例里,两个内项互为倒数,其中一个外项是10以 内既是奇数又是合数的数,则另一个外项是( ).1
9
比例的意义 表示两个比相等的式子叫做比例.
比例的基本性质 比 例
在比例里,两个外项的积 等于两个内项的积
解比例
正比例 x y=k(一定)
反比例 y k(一定)
x
比 比例尺 图上距离∶实际距离=比例尺 例
4.反比例
判断两个量是否成反比例关系的基本步骤: 1. 首先判断两个量是否是相关联的量. 2. 然后再看两个量的积是否为定值. xy=k(一定)
对应训练4 甲、乙、丙、丁每人买一本《童话故事》,他们每天 看的页数与看完这本书需要的天数的情况如下:
(1) 把下表补充完整.
甲乙丙丁
每天看的页数/页 10 15 265 350 需要的天数/天 15 10
()
3.同一时间、同一地点,物体的影长源自物体的高度成正比例关系.()
三、选择. 下面每组的两个量中,成反比例关系的是( C). A.一袋大米,已经吃了的和没吃的 B.乐乐的年龄和体重 C.一个圆锥的体积是48 dm3,它的底面积和高 D.房间的面积一定,每块正方形瓷砖的边长和所
需的块数
四、解决问题. 1. 在一幅比例尺是1:600000的地图上, 量得甲、乙两地
对应训练3
下表中关于正方体的一些数量,哪两种量成正比例
关系?说明理由.
棱长/cm 1 2
3
4
底面积/cm2 1 4
9
16
表面积/cm2 6 24 54
96
体积/cm3 1 8
27
64
正方体的表面积和底面积成正比例关系. 因为:表面积÷底面积=6. 正方体的质量与体积成正比例关系. 因为:质量÷体积=每立方厘米的质量(一定).
相关文档
最新文档