八年级下学期期中质量检测数学试卷
人教版八年级下册数学《期中检测试卷》(含答案)
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1. 下列不等式中,属于一元一次不等式的是( )A. 4>1B. 3x –2<4C. 1x <2D. 4x –3<2y –72. 在△ABC 中,已知CA =CB ,∠A =45°,BC =5,则AB 的长为( ) A. 2 B. 5 C. 52 D. 253. 不等式3x ≥-的解集在数轴上表示为( ) A. B. C. D.4. 到三角形三条边距离都相等的点是这个三角形的( )A. 三条中线的交点B. 三条高的交点C. 三条边的垂直平分线的交点D. 三条角平分线的交点5. 等腰三角形的一个角是40°,则它的底角是( ) A. 40° B. 40°或70° C. 80°或70° D. 70° 6. 如果a b >,那么下列不等式中正确是( )A 2323a b +>+ B. 55a b < C. 22a b ->- D. 22a b -<- 7. 下列命题的逆命题是假命题的是( )A. 同旁内角互补,两直线平行B. 偶数一定能被整除C. 如果两个角是直角,那么这两个角相等D. 如果一个数能被整除,那么这个数也能被整除8. 如图,点D 、E 分别在△ABC 的边AC 、BC 上,且DE 垂直平分AC ,若△ABE 的周长为13,AD =5,则△ABC 的周长是( )A. 18B. 23C. 21D. 269. 对于任意实数a 、b ,定义一种运算:a ※b =ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式2※x >2,则不等式的解为( )A. x >1B. x >2C. x <1D. x <210. 如图,△ABC 是等边三角形,AB=12,点D 是BC 边上任意一点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,则BE+CF 的长是( )A. 6B. 5C. 12D. 8二.填空题(共4小题)11. 将不等式“62x +>-”化为“x a >”的形式为:__________.12. 在△ABC 中,若∠C =90°,∠B =30°,BC =5,则AB 的长为_____.(结果保留根号) 13. 如图,已知OA =OB =OC ,BC ∥AO ,若∠A =36°,则∠B 度数为_____.14. 一个篮球队共打了12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队贏了的场数最少为_____.三.解答题15. 解不等式:1﹣3(x ﹣1)<8﹣x .16. 已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).17. 已知:如图,△ABO是等边三角形,CD∥AB,分别交AO、BO的延长线于点C、D.求证:△OCD是等边三角形.18. 用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠1是△ABC的一个外角.求证:∠1=∠A+∠B.19. 已知关于x的方程4(x+2)-5=3a+2的解不大于12,求字母a的取值范围20. 如图,在△ABC中,∠ACB=90°,D为AB边上的一点,∠BCD=∠A=30°,BC=4cm,求AD的长.21. 已知x是1+12x+≥2﹣73x+的一个负整数解,请求出代数式(x+1)2﹣4x的值.22. 如图,四边形ABCD中,∠BCD=90°,AD⊥DB,DE=BE,BD平分∠ABC,连接EC,若∠A=30°,DB=4,求EC的长.23. 如图,△ABC 中,AB =AC ,D 为BC 边中点,DE ⊥AB .(1)求证:∠BAC =2∠EDB ;(2)若AC =6,DE =2,求△ABC 的面积.24. 某体育用品商场采购员到厂家批发购进篮球和足球共100个,两种球厂家的批发价和商场的零售价如表所示: 品名 厂家批发价(元/个)商场零售价(元/个) 篮球 140180 足球 110140(1)若付款总额不得超过12800元,则该采购员最多可购进篮球多少个?(2)若商场把100个球全部售出,为使商场的利润不低于3400元,采购员最少可购进篮球多少个? 25. 已知:如图,ADC 中, AD CD = , 且//, AB DC CB AB ⊥于, B CE AD ⊥交AD 的延长线于.(1)求证: ;CE CB =(2)如果连结BE ,请写出BE 与AC 的关系并证明答案与解析一.选择题(共10小题)1. 下列不等式中,属于一元一次不等式的是( )A. 4>1B. 3x–2<4C. 1x<2 D. 4x–3<2y–7[答案]B[解析][分析]根据一元一次不等式的概念,从未知数的次数、个数及不等式两边的代数式是否为整式的角度来解答.[详解]A、不含未知数,错误;B、符合一元一次不等式的定义,正确;C、分母含未知数,错误;D、含有两个未知数,错误.故选B.2. 在△ABC中,已知CA=CB,∠A=45°,BC=5,则AB的长为( )C. D.[答案]C[解析][分析]根据等腰直角三角形的性质利用特殊角的三角函数值求解即可;[详解]解:∵CA=CB,∠A=45°,∴∠B=∠A=45°,∴∠C=90°,∵BC=5,BC=,故选:C.[点睛]本题主要考查了解直角三角形的应用,准确计算是解题的关键.x≥-的解集在数轴上表示为()3. 不等式3A. B. C. D.[答案]A[解析][分析]根据不等式解集的表示方法即可判断.x≥-的解集在数轴上表示为[详解]3故选A.[点睛]此题主要考查不等式解集的表示,解题的关键是熟知不等式的在数轴上的表示方法.4. 到三角形三条边的距离都相等的点是这个三角形的()A. 三条中线的交点B. 三条高的交点C. 三条边的垂直平分线的交点D. 三条角平分线的交点[答案]D[解析]分析]根据角的平分线上的点到角的两边的距离相等可得答案.[详解]解:∵角平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.[点睛]该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.5. 等腰三角形的一个角是40°,则它的底角是( )A. 40°B. 40°或70°C. 80°或70°D. 70°[答案]B[解析][分析]分40︒的角为等腰三角形的顶角和40︒的角为等腰三角形的底角两种情况,再根据三角形的内角和定理、等腰三角形的定义即可得.[详解]根据等腰三角形的定义,分以下两种情况:(1)当40︒的角为等腰三角形的顶角时, 则底角18040702;(2)当40︒的角为等腰三角形的底角时,则底角为40︒;综上,它的底角是40︒或70︒,故选:B .[底角]本题考查了等腰三角形的定义、三角形的内角和定理,依据题意,正确分两种情况讨论是解题关键. 6. 如果a b >,那么下列不等式中正确的是( )A. 2323a b +>+B. 55a b <C. 22a b ->-D. 22a b -<- [答案]A[解析][分析]根据不等式性质解答即可;[详解]解:∵a >b∴22a b >∴2323a b +>+,则A 正确∵a >b∴5a >5b ;22a b -<-;22a b ->-故B 、C 、D 错误 故应选A[点睛]本题考查了不等式的性质来,解答关键是注意不等号改变方向的条件.7. 下列命题的逆命题是假命题的是()A. 同旁内角互补,两直线平行B. 偶数一定能被整除C. 如果两个角是直角,那么这两个角相等D. 如果一个数能被整除,那么这个数也能被整除[答案]C[解析][分析]先写出各命题的逆命题,分析是否为真命题,从而利用排除法得出答案.[详解]解:(1)逆命题为:两条直线被第三条直线所截,如果这两条直线平行,那么同旁内角互补,是真命题;(2)逆命题为:能被2整除的数是偶数,是真命题;(3)逆命题为:如果两个角相等,那么它们是直角,是假命题;(4)逆命题为:如果一个数能被8整除,那么这个数也能被4整除,是真命题.故选C[点睛]此题主要考查了命题的逆命题和命题的真假判断,判断命题的真假关键是要熟悉课本中的性质定理.8. 如图,点D、E分别在△ABC的边AC、BC上,且DE垂直平分AC,若△ABE的周长为13,AD=5,则△ABC 的周长是( )A. 18B. 23C. 21D. 26[答案]B[解析][分析]根据线段垂直平分线性质可得AC=2AD,AE=CE,根据三角形周长得AB+AC=13,故△ABC的周长为AB+BC+AC;[详解]解:∵DE垂直平分AC,AD=5,∴AC=2AD=10,AE=CE,∵△ABE的周长为13,∴AB+BE+AE=AB+CE+BE=AB+AC=13,∴△ABC的周长为AB+BC+AC=13+10=23,故选:B.[点睛]考核知识点:线段垂直平分线.理解线段垂直平分线性质和三角形周长公式是关键.9. 对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式2※x>2,则不等式的解为( )A. x>1B. x>2C. x<1D. x<2[答案]B[解析][分析]根据新定义运算的公式计算即可;[详解]解:∵2※x>2,∴2x﹣2+x﹣2>2,解得x>2,故选:B.[点睛]本题主要考查了新定义运算,准确理解和计算是解题的关键.10. 如图,△ABC是等边三角形,AB=12,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,则BE+CF的长是()A. 6B. 5C. 12D. 8[答案]A[解析][分析]先设BD=x,则CD=20-x,根据△ABC是等边三角形,得出∠B=∠C=60°,再利用三角函数求出BE和CF的长,即可得出BE+CF 的值.[详解]设BD=x ,则CD=20-x ,∵△ABC 是等边三角形,∴∠B=∠C=60°.∴BE=cos60°•BD=2x , 同理可得,CF= 122x -, ∴BE+CF= 12622x x -+=. 故选A .[点睛]本题考查的是等边三角形的性质,及锐角三角函数的知识,难度不大,有利于培养同学们钻研和探索问题的精神.二.填空题(共4小题)11. 将不等式“62x +>-”化为“x a >”的形式为:__________.[答案]8x >-.[解析][分析]将不等式两边同时减去6,即可得到答案.[详解]62x +>-,26x ∴>--,即8x >-,故答案为:8x >-.[点睛]本题考查不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.12. 在△ABC 中,若∠C =90°,∠B =30°,BC =5,则AB 的长为_____.(结果保留根号)[答案 [解析][分析]设AC=x,则AB=2x,再根据勾股定理求出x的值,进而得出结论.[详解]解:如图,设AC=x,∵在△ABC中,∠C=90°,∠B=30°,∴AB=2AC=2x,由勾股定理得:AC2+BC2=AB2,即x2+52=(2x)2,解得:x=533,即AB=2×533=1033,故答案为:1033.[点睛]本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.13. 如图,已知OA=OB=OC,BC∥AO,若∠A=36°,则∠B的度数为_____.[答案]72°[解析][分析]根据OA=OC,得到∠ACO=∠A,又因为BC∥AO,推出∠BCA=∠A,求出∠BCO的度数,再根据OB=OC,得到∠B=∠OCB,即可解决本题.[详解]解:∵OA=OC∴∠ACO=∠A=36°∵BC∥AO∴∠BCA=∠A=36°∴∠BCO=72°∵OB=OC∴∠B=∠OCB=72°故答案为:72°.[点睛]本题主要考查了平行线的性质以及等腰三角形的性质,熟悉平行线以及等腰三角形的性质是解决本题的关键.14. 一个篮球队共打了12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队贏了的场数最少为_____.[答案]5[解析][分析]设这个篮球队赢了x场,则最多平(x-1)场,最多输(x-2)场,由该篮球队共打12场比赛,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.[详解]解:设这个篮球队赢了x场,则最多平(x﹣1)场,最多输(x﹣2)场,根据题意得:x+(x﹣1)+(x﹣2)≥12,解得:x≥5.∴这个篮球队最少贏了5场.故答案为:5.[点睛]考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.三.解答题15. 解不等式:1﹣3(x﹣1)<8﹣x.[答案]x>﹣2[解析][分析]先去括号,移项,再合并同类项,系数化为1,即可求得不等式的解集.[详解]解:1﹣3(x﹣1)<8﹣x去括号得,1﹣3x+3<8﹣x移项得,﹣3x+x<8﹣3﹣1合并同类项得,﹣2x<4系数化为1得,x>﹣2故此不等式的解集为:x>﹣2.[点睛]本题主要考查不等式的解法,熟练不等式的解法以及注意不等号符号的改变是解决本题的关键.16. 已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).[答案]详见解析.[解析][分析]根据过直线外一点作一直直线垂线的方法即可得出结论.[详解]解:如图所示,直线CD即为所求.[点睛]本题考查作图-基本作图,解题关键是熟知线段垂直平分线的作法.17. 已知:如图,△ABO是等边三角形,CD∥AB,分别交AO、BO的延长线于点C、D.求证:△OCD是等边三角形.[答案]证明见解析[解析][分析]根据OA=OB,得∠A=∠B=60°;根据AB∥DC,得出对应角相等,从而求得∠C=∠D=60°,根据等边三角形的判定就可证得结论.[详解]解:∵OA=OB,∴∠A=∠B=60°,又∵AB∥DC,∴∠A=∠C=60°,∠B=∠D=60°,∴△OCD是等边三角形.[点睛]本题考查等边三角形的判定.18. 用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠1是△ABC的一个外角.求证:∠1=∠A+∠B.[答案]见解析[解析][分析]首先假设三角形的一个外角不等于与它不相邻的两个内角的和,根据三角形的内角和等于180°,得到矛盾,所以假设不成立,进而证明三角形的一个外角等于与它不相邻的两个内角的和.[详解]已知:如图,∠1是△ABC的一个外角,求证:∠1=∠A+∠B,证明:假设∠1≠∠A+∠B,△ABC中,∠A+∠B+∠2=180°,如下图所示:∴∠A+∠B=180°﹣∠2,∵∠1+∠2=180°,∴∠1=180°﹣∠2,∴∠1=∠A+∠B,与假设相矛盾,∴假设不成立,∴原命题成立即:∠1=∠A+∠B.[点睛]本题考查了反证法的运用,反证法的一般解题步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.19. 已知关于x的方程4(x+2)-5=3a+2的解不大于12,求字母a的取值范围[答案]1a[解析][详解]解:∵4(x+2)-5=3a+2,∴4x+8-5=3a+2∴x=3a-1 4,∴3a-14≤12,∴a≤1.20. 如图,在△ABC中,∠ACB=90°,D为AB边上的一点,∠BCD=∠A=30°,BC=4cm,求AD的长.[答案]6cm.[解析]分析]根据含30度角的直角三角形性质求出BC和BD,再相减即可.[详解]∵△ABC中∠ACB=90°,∠A=30°,BC=4cm,∴AB=2BC=8cm,∠B=60°,∵∠BCD=∠A=30°,∴∠B+∠BCD=60°+30°=90°,∴∠CDB=90°,∴BD=12BC=2cm,∴AD=AB-BD=8cm-2cm=6cm.[点睛]此题考查含30度角的直角三角形性质的应用,解题关键在于掌握在直角三角形中,如果有一个角等于30度,那么它所对的直角边等于斜边的一半.21. 已知x是1+12x+≥2﹣73x+的一个负整数解,请求出代数式(x+1)2﹣4x的值.[答案]9或4[解析][分析]先利用不等式的性质解出不等式,再得出不等式的负整数解,最后将其代入代数式求解即可.[详解]解:不等式去分母得:6+3x+3≥12﹣2x﹣14,移项合并得:5x≥﹣11,解得:x≥﹣2.2,∴不等式的负整数解为﹣2,﹣1,当x=﹣2时,原式=(-2+1)2-4×(-2)=1+8=9;当x=﹣1时,原式=(-1+1)2-4×(-1)=4.故代数式(x+1)2﹣4x的值为9或4.[点睛]本题考查了不等式解法以及求代数式的值,掌握基本运算法则是解题的关键.22. 如图,四边形ABCD中,∠BCD=90°,AD⊥DB,DE=BE,BD平分∠ABC,连接EC,若∠A=30°,DB=4,求EC的长.[答案]27[解析][分析]利用已知得出在Rt△BCD中,∠A=30°,DB=4,在直角△DEC中利用勾股定理进而得出EC的长.[详解]如图,∵AD⊥DB,∠A=30°,∴∠1=60°,∵BD平分∠ABC,∴∠3=∠1=60°,∴∠4=30°,又∵∠BCD=90°,DB=4,∴BC=12BD=2,22BD BC3∴∠CDE=∠2+∠4=90°,∵DE=BE,∠1=60°,∴DE=DB =4, ∴EC=22DE CD +=224(23)+=27.[点睛]此题主要考查了勾股定理、含30度角的直角三角形、角平分线的性质等知识点.解题时须注意勾股定理应用的前提条件是在直角三角形中.23. 如图,△ABC 中,AB =AC ,D 为BC 边的中点,DE ⊥AB .(1)求证:∠BAC =2∠EDB ;(2)若AC =6,DE =2,求△ABC 的面积.[答案](1)见解析;(2)S △ABC =12.[解析][分析](1)根据等腰三角形的性质得到∠DAC =∠DAB ,AD ⊥BC 根据余角的性质即可得到结论;(2)根据三角形的面积公式和三角形的中线把三角形面积分为面积相等的两部分即可得到结论.[详解](1)∵AB =AC ,D 为BC 边的中点∴AD ⊥BC ,12BAD CAD BAC ∠=∠=∠ ∴∠B +∠BAD =90°∵DE ⊥AB∴∠B +∠EDB =90°∴1EDB BAD BAC 2∠=∠=∠ 即∠BAC =2∠EDB(2)∵AB =AC =6,DE =2∴16262ABD S =⨯⨯=∵D为BC边的中点∴S△ADC=S△ADB=6∴S△ABC=12[点睛]本题考查等腰三角形“三线合一”,同角的余角相等.在等腰三角形中,顶角的角平分线,底边的中线,底边的高线,三条线互相重合.熟练掌握这一性质是解决此题的关键.24. 某体育用品商场采购员到厂家批发购进篮球和足球共100个,两种球厂家的批发价和商场的零售价如表所示:(1)若付款总额不得超过12800元,则该采购员最多可购进篮球多少个?(2)若商场把100个球全部售出,为使商场的利润不低于3400元,采购员最少可购进篮球多少个?[答案](1)60只;(2)40个.[解析][分析](1)设采购员购进篮球x个,则足球购进为(100-x)个,根据表格的批发价,列出不等式即可解决本题;(2)设篮球a个,则足球是(100﹣a)个,一个篮球的利润为40元,一个足球的利润为30元,再分别乘对应的数量,相加后大于等于3400,列出不等式,即可解决.[详解]解:(1)设采购员购进篮球x个,根据题意得:140x+110(100﹣x)≤12800解得x≤60所以x的最大值是60.答:采购员最多购进篮球60个;(2)设篮球a个,则足球是(100﹣a)个根据题意得:(180﹣140)a+(140﹣110)(100﹣a)≥3400解得:a≥40则采购员最少可购进篮球40个.答:采购员最少可购进篮球40个.[点睛]本题主要考查了一元一次不等式的应用题,能够读懂题意以及合理的设出未知数是解决本题的关键. 25. 已知:如图,ADC 中, AD CD = , 且//, AB DC CB AB ⊥于, B CE AD ⊥交AD 的延长线于.(1)求证: ;CE CB =(2)如果连结BE ,请写出BE 与AC 的关系并证明[答案](1)详见解析;(2) AC 垂直平分BE[解析][分析](1)证明AC 是∠EAB 的角平分线,根据角平分线的性质即可得到结论;(2)先写出BE 与AC 的关系,再根据题意和图形,利用线段的垂直平分线的判定即可证明.[详解](1)证明:∵AD=CD ,∴∠DAC=∠DCA ,∵AB ∥CD ,∴∠DCA=∠CAB ,∴∠DAC=∠CAB ,∴AC 是∠EAB 的角平分线,∵CE ⊥AE ,CB ⊥AB ,∴CE=CB ;(2)AC 垂直平分BE ,证明:由(1)知,CE=CB ,∵CE ⊥AE ,CB ⊥AB ,∴∠CEA=∠CBA=90°,在Rt △CEA 和Rt △CBA 中,CE CB AC AC =⎧⎨=⎩, ∴Rt △CEA ≌Rt △CBA (HL ),∴AE=AB ,CE=CB ,∴点A 、点C 在线段BE 的垂直平分线上, ∴AC 垂直平分BE .[点睛]本题考查等腰三角形的性质、角平分线的性质、线段垂直平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.。
八年级下学期数学期中考试试卷含答案(共5套,人教版)
人教版八年级第二学期期中考试试卷数学试题校区 班级 姓名本试卷考试时间为:90分钟 满分为:100分一、选择题(每题3分,共24分)1.下列各组数据中的三个数,可作为三边长构成直角三角形的是A .4,5,6B .2,3,4C .11,12,13D .8,15,17 2.方程0)1()23(22=++--x x x 的一般形式是A .0552=+-x x B . 0552=++x x C . 05-52=+x x D . 052=+x 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x += C .122=-)(x D .2(2)5x -=4.2016年国内某地产公司投资破8亿元,连续两年增长后,2018年国内地产投资破9.5亿元, 设这两年平均地产投资年平均增长率为x ,根据题意,所列方程中正确的是A .819.52=+)(xB .8-19.52=)(xC .9.5218=+)(xD .9.5182=+)(x 5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,CE ∥BD ,若AC =2,则四边形OCED的周长为A .16B .8C .4D .25题图 6题图 7题图6.如图,△ABC 中,AB =AC =12,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是A .20B .16C .13D .127.如图,在平行四边形ABCD 中,AB=3,AD =5,∠BCD 的平分线交BA 的延长线于点E ,则AE 的长为 A .3 B .2.5 C .2 D .1.58.为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、 B 与D 两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如下右图). 观察所得到的四边形,下列判断正确的是 A .∠BCA =45° B .BD 的长度变小 C .AC =BD D .AC ⊥BDA BCDDCBA →二、填空题(每题3分,共24分)9.若关于x 的方程042=-+-a x x 有两个不相等的实数根,写出一个满足条件的整数a 的值:a =____________.10.如下图,作一个以数轴的原点为圆心,长方形对角线为半径的圆弧,交数轴于点A ,则点A 表示的数是____________.11.在平面直角坐标系中,四边形AOBC 是菱形。
2024年人教版八年级数学下册期中考试卷(附答案)
2024年人教版八年级数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在直角三角形中,如果一个角是30度,那么它的对边长度是斜边长度的多少?A. 1/2B. 1/3C. 1/4D. 1/63. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 所有选项都正确4. 下列哪个选项是正方形的性质?A. 对边平行B. 四个角都是直角C. 对角线相等D. 所有选项都正确5. 下列哪个选项是圆的性质?A. 半径相等B. 直径相等C. 圆心到圆上任意一点的距离相等D. 所有选项都正确二、判断题5道(每题1分,共5分)1. 勾股定理只适用于直角三角形。
()2. 平行四边形的对角线互相平分。
()3. 正方形的对角线相等且互相垂直。
()4. 圆的半径是圆心到圆上任意一点的距离。
()5. 圆的直径是圆上任意两点之间的距离。
()三、填空题5道(每题1分,共5分)1. 勾股定理的表达式是:a^2 + b^2 = ______。
2. 平行四边形的对角线互相平分,所以它的对角线长度是______。
3. 正方形的四个角都是______度。
4. 圆的半径是圆心到圆上______的距离。
5. 圆的直径是圆上______点之间的距离。
四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。
2. 简述平行四边形的性质。
3. 简述正方形的性质。
4. 简述圆的性质。
5. 简述圆的直径和半径之间的关系。
五、应用题:5道(每题2分,共10分)1. 在直角三角形ABC中,已知AC = 6cm,BC = 8cm,求AB的长度。
2. 在平行四边形ABCD中,已知AB = 10cm,BC = 8cm,求CD的长度。
2022-2023学年八年级下学期期中数学试卷及答案解析
到达点 B 时,点 Q 恰好到达点 D. (1)当点 P 到达点 A 时,△CPQ 的面积为 3cm2,求 CD 的长; (2)在(1)的条件下,设点 P 运动时间为 t(s),运动过程中△BPQ 的面积为 S(cm2), 请用含 t(s)的式子表示面积 S(cm2),并直接写出 t 的取值范围.
22.(10 分)已知,如图,等腰△ABC 的底边 BC=10cm,D 是腰 AB 上一点,且 CD=8cm, BD=6cm,求 AB 的长.
23.(10 分)如图所示,在菱形 ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,
第 4 页 共 23 页
点 E、F 分别在菱形的边 BC、CD 上滑动,且 E、F 不与 B、C、D 重合. (1)证明:不论 E、F 在 BC、CD 上如何滑动,总有 BE=CF; (2)当点 E、F 在 BC、CD 上滑动时,探讨四边形 AECF 的面积是否发生变化?如果不 变,求出这个定值;如果变化,求出最大(或最小)值.
17.(8 分)计算:2 齈t 6 齈 t5
18.(8
分)先化简,再求值:(x﹣2
t斠 斠t
)
斠 斠t
,其中 x
t 齈.
19.(8 分)如图,在▱ ABCD 中,E、F 是对角线 AC 上的两点,AE=CF.
(1)求证:四边形 BEDF 是平行四边形;
(2)连接 BD 交 EF 于点 O,当 BE⊥EF 时,BE=8,BF=10,求 BD 的长.
;②EF
A.1 个
B.2 个
C.3 个
D.4 个
二.填空题(共 6 小题,满分 18 分,每小题 3 分)
11.若 x<2,化简 斠 t t|4﹣x|的结果是
八年级下学期期中考试数学试卷(含有答案)
八年级下学期期中考试数学试卷(含有答案)一.单选题。
(每小题4分,共40分)1.已知x >y ,则下列不等式中,不成立的是( )A.3x >3yB.x -9>y -9C.﹣x >﹣yD.﹣x2<﹣y2 2.下列各式从左到右的变形是因式分解的是( )A.(x -3)(x+1)=x 2-2x -3B.x 2-xy=x (x -y )C.ab+bc+d=b (a+c )+dD.6x 2y=3xy•2x 3.若分式x -1x的值为0,则x 的值是( )A.1B.﹣1C.0D.24.把多项式2a 2-4a 分解因式,应提取的公因式是( ) A.a B.2 C.a 2 D.2a5.已知两个不等式的解集在数轴上如图所示,那么组成的不等式组的解集是( ) A.x >1 B.x ≥﹣1 C.﹣3<x ≤﹣1 D.x >﹣3(第5题图) (第6题图) (第10题图) 6.如图,将△COD 绕点O 按顺时针方向旋转一定角度后得到△AOB ,旋转角为( ) A.∠AOB B.∠BOC C.∠AOC D.∠COD 7.在下列分式的变形中,从左到右一定正确的是( ) A.a b =a+1b+1 B.2a 2b =ab C.a b =a 2b 2 D.a b =acbc 8.下列各式中能用平方差公式因式分解是( )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 2 9.如果把xyx+y 中x ,y 的值都扩大2倍,那么这个分式的值( ) A.不变 B.缩小到原来的12 C.扩大4倍 D.扩大2倍10.如图,一次函数y=kx+b 的图象经过点A (﹣1,﹣2)和B (﹣2,0),一次函数y=2x 的图象经过点A ,则不等式2x ≤kx+b 的解集为( )A.x ≤﹣1B.x ≤﹣2C.x ≥1D.﹣2≤x <﹣1 二.填空题。
(每小题4分,共24分) 11.因式分解:a 3-4a 2= 。
12.要使分式2x -5有意义,则x 的取值范围应满足的条件是 .13.已知x+y=5,xy=2,则x 2y+xy 2的值是 .14.如图,将周长为8的△DEF 沿EF 方向平移3个单位长度得到△ABC ,则四边形ABFD 的周长为 .(第14题图)15.若a+1a =4,则a 2+1a 2= . 16.若1a +1b =5,则分式2a -5ab+2b﹣a+3ab -b的值为 .(填序号)①第3分时,汽车的速度是40千米/时;②从第3分到第6分,汽车行驶了120千米;③第12分时,汽车的速度是0千米/时;④从第9分到12分,汽车的速度从60千米/时减少到0千米/时. 三、解答题。
河南省南阳市2023-2024学年八年级下学期4月期中考试数学试题
2024年春期期中质量评估检测八年级数学试题卷注意事项:1. 本试卷共8页, 三个大题, 23个小题, 满分120分, 考试时间100分钟.2.答题前考生务必将自己的姓名、考号、学校等填写在试题卷和答题卡相应的位置.3.考生作答时,将答案涂、写在答题卡上,在本试题卷上答题无效........... 4. 考试结束,将答题卡交回.一、选择题:(每小题3分,共30分.)(下列各小题中只有一个答案是正确的.) 1.若分式 1x+1有意义,则x 的取值范围是A. x≠-1B. x≠0C. x≠1D. x≠22.在平面直角坐标系中,点 M(-1,2)在A. 第一象限B. 第二象限C.第三象限D.第四象限 3. 2024年3月 14日是第5个国际数学日, 主题是 Playing with Math(玩数学).我国古代数学家祖冲之推算出无理数π的近似值为 355113,,它与π的误差小于 0.0000003. 将0.0000003 用科学记数法可以表示为A.3×10⁻⁶B.0.3×10⁻⁶C.3×10⁻⁷D.3×10⁷ 4. 化简m−1m +1m的结果是 A. 0 B. 1 C. m D. m-15.将直线y=2x+1向下平移2个单位长度,所得直线对应的函数表达式是A. y=2x-3B. y=2x+3C. y=2x-1D. y=2x+56.将分式 2xyx+y 中的x 、y 的值都变为原来的3倍,则该分式的值 A.扩大为原来的3倍 B.扩大为原来的9倍 C.保持不变 D.缩小为原来的 16 7.若函数 y =kx 的图象位于第一、三象限, 则直线y=kx-k 一定不经过A. 第一象限B.第二象限C. 第三象限D. 第四象限 8. 分式的最简公分母是A. 3xyB.6x³y²C.6x⁶y⁶D.x³y³八年级数学试题卷 第1页 (共 8 页)9.汽车油箱中有汽油50L ,如果不再加油,那么油箱中的油量 y(L)随行驶路程x(km)的增加而减少, 平均耗油量为10L/100km. 当0≤x<500时, y 与x 的函数关系式是A. y=0.1xB. y=50-0.1xC.y =500xD. y=50-10x10.在平面直角坐标系中,按如图所示方式放置正方形OABC ,点A 的坐标为(1, 2), 将正方形OABC 绕坐标原点 O 逆时针旋转, 每秒旋转90°, 第2024秒旋转结束时点 C 的对应点 C'的坐标为A. (-2, 1)B. (1, 2)C. (2, -1)D. (-1, 2)二、填空题(每小题3分,共15 分)11.一个函数图象过点(0,2),且y 随x 增大而增大,请写出一个符合上述条件的函数解析式: .12. 若分式 x 2−1x−1的值为0,则x 的值是 . 13.如图,过反比例函数 y =kx的图象上任意一点 P 作 PM⊥x 轴于点 M ,若△POM 的面积等于5, 则k= .14.如图,在平面直角坐标系中,根据尺规作图痕迹可知,当( OA =√2时,点M 的坐标是 .15. 如图, 直线 y =−34x −3与x 轴、y 轴分别交于点 A 、B, 点 C 是 x 轴上的一个动点,将直线BA 沿直线 BC 翻折,当点 A 的对应点 D 恰好落在y轴上时,点 C 的横坐标...为 .八年级数学试题卷 第2页 (共 8页)三、解答题(共8个小题,满分75分)16.(10分)(1)计算:−12024+(π−3)0+√4+(−12)−2;(2)化简:(4a+5a+1+a−1)÷a+2a+1.17.(9分)如图,平面直角坐标系中,反比例函数y=kx的图象经过点A.(1)求k的值;(2)若一次函数y=2x+b的图象经过点 A, 求b的值;(3)当x>3时,都有一次函数y=2x+b的值大于反比例函数y=kx的值,请直接写出b的取值范围.八年级数学试题卷第3页 (共8页)18.(9分)赛龙舟是传统节日端午节的主要习俗.某市在端午节期间举行赛龙舟比赛,已知甲、乙两队参加比赛时的路程s(米)与时间t(分钟)之间的关系如图所示,请观察图象,回答下列问题:(1)这次龙舟比赛全程为米;(2)龙舟比赛先到达终点的是队;(填“甲”或“乙”)(3)比赛时甲队龙舟的平均速度是米/分钟;(4)甲队和乙队相遇时,乙队龙舟的速度是米/分钟;(5)直接写出相遇之前甲队和乙队龙舟何时相距10米.19.(9分)已知关于x的分式方程2x−ax−1−11−x=3.(1)当a=1时,求该分式方程的解;(2)若该分式方程的解为非负数,求a的取值范围.20. (9 分) 如图,已知直线 l₁:y =2x +3与x 轴、y 轴的交点分别为A 、B ,请在图中作出直线 l₂:y =−x.(1)直接写出二元一次方程组 {2x −y =−3,x +y =0的解: ;(2)直线 l₂上是否存在点 C ,使 △AOC 与 △AOB 的面积相等,若存在,求出C 点坐标;否则,说明理由.21.(9分)春节过后,我市又降大雪给交通带来了一定影响.为保证市民第二天的正常出行,某社区计划调用甲、乙两个工程队合作清扫1800平方米的积雪.已知甲工程队每小时能清雪的面积是乙工程队每小时能清雪的面积的2倍,并且在独立清扫面积为300 平方米的积雪时,甲工程队比乙工程队少用3 小时.(1)求甲、乙两个工程队每小时能独立清雪多少平方米;(2)已知甲工程队清雪的费用是 6 元/平方米,乙工程队清雪的费用是 5元/平方米.在合作完成这1800 平方米的清雪任务中,如果乙工程队的施工时间为t(小时),两个工程队的总费用为w(元),求w关于t的函数关系式.22.(10 分) 【发现问题】我国是世界上水资源最缺乏的国家之一,同时又有很多水龙头由于漏水造成大量的浪费,某校园内有一个漏水的水龙头,数学活动小组要探究其漏水造成的浪费情况.【提出问题】小明用一个带有刻度的量筒放在水龙头下面接水,探究量筒中的总水量y(毫升)是否为时间 t(分钟)的函数?【分析问题】小明每隔1分钟记录量筒中的总水量,但因操作延误,开始计时.............(1)请在下图的平面直角坐标系内描出上表中数据对应的点;(2)根据上表中的数据和所描的点,判断 y =kt和y=kt+b(k 、b 为常数)哪一个能正确反映总水量y 与时间t 的函数关系?求出这个关系式; 【解决问题】(3)小明继续实验,当量筒中的水刚好有60毫升时,所需时间为 分钟;(4)按此漏水速度,半小时会浪费..毫升水.(5)若一个人一天大约饮用1500 毫升水,请你估算这个水龙头一个月(按30天计)的漏水量可供一个人饮用多少天.八年级数学试题卷 第7页 (共8页)23.(10分)如图,在一段长为660km的高速公路上,规定汽车行驶速度最低为60km/h, 最高为110km/h.(1)直接填空:①当行驶速度为100km/h, 需要 h走完这段路;②行驶完这段路恰好用了8.8h,行驶速度是 km/h.(2)请你根据以上背景,设定变量建立一个合理的函数关系,这个函数关系式中要把数据“660km”用上,并写出自变量的取值范围.(3)请你先提出一个问题,然后再回答它.要求:这个问题的解决要把“(2)中的函数关系式”、“60km/h”和“110km/h”都用上.八年级数学试题卷第8页 (共8页)。
精品解析:湖北省武汉市硚口区2023-2024学年八年级下学期期中数学试题(原卷版)
2023~2024学年度第二学期期中质量检测八年级数学试卷一、选择题(共10 小题,每小题3分,共30分)下列各题均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.有意义,则x 的取值范围是( )A. x>3 B. x≠3 C. x ≥3 D. x ≤32.下列各式计算正确的是( )A. B.C. D. 3. 在 中,,则的大小是()A. B. C. D. 4.在中,,,的对边分别是,下列条件不能判断是直角三角形的是( )A. B.C. D. 5. 《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折高者几何?意思是:一根竹子,原高一丈(一丈尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部尺远,问折断处离地面的高度是多少?设折断处离地面的高度为 尺,则下列方程正确的是( )A. B. C. D. 6. 如图,在 中,下列结论中错误的是( )A. 当时,它是菱形B. 当平分 时,它是菱形6=2÷==1-=ABCD Y 40A ∠=︒C ∠40︒140︒50︒70︒ABC A ∠B ∠C ∠a b c ,,ABC A B ∠∠=︒+90::3:4:5A B C ∠∠∠=::3:4:5a b c =222a b c =+10=3x ()222310x x +=-()22310x x -=-()22310x x +=-()222310x x -=-ABCD Y AB BC =AC BAD ∠C. 当时,它是矩形D. 当时,它是正方形7. 如图,是菱形 的对角线的交点,是边中点,若,,则长是( )A. B. 3 C. D. 58. 在四边形中,.下列说法能使四边形为矩形的是( )A. B. C. D. 9. 如图,在矩形中,为对角线的中点,.动点在线段上,动点在线段上,点同时从点出发,分别向终点运动,且始终保持.点关于的对称点为;点关于的对称点为.在整个过程中,四边形形状的变化依次是( )A. 菱形→平行四边形→矩形→平行四边形→菱形B. 菱形→正方形→平行四边形→菱形→平行四边形C 平行四边形→矩形→平行四边形→菱形→平行四边形D. 平行四边形→菱形→正方形→平行四边形→菱形10. 已知的值是( )A. B. C. 5 D. 6二、填空题(共6 小题,每小题 3 分,共 18 分)11. 写出一个小于3的正无理数___________.12.的结果是_________..OA OB =AC BD =O ABCD E AD 6AC =8BD =OE 2.5 3.5ABCD ,AD BC AB CD =∥ABCD AB CD AD BC =A B ∠=∠A D∠=∠ABCD O BD 60ABD ∠=︒E OB F OD ,E F O ,B D OE OF =E ,AD AB 12,E E F ,BC CD 12,F F 1212E E F F 1x +=32321x x x +-+13. 多项式分解因式的结果是_____________.14. 如图,在正方形中,已知,,则的长是_____________,其对角线的交点坐标是_____________.15. 出入相补原理是我国古代数学重要成就之一,最早是由三国时期数学家刘徽创建.“将一个几何图形,任意切成多块小图形,几何图形的总面积保持不变,等于所分割成的小图形的面积之和”是该原理的重要内容之一、如图,在矩形中,,,对角线与交于点O ,点E 为边上的一个动点,,,垂足分别为点F ,G ,则___________.16. 如图,在四边形中,,,,,则的长是________.三、解答题(共8 小题,共 72 分)17. 计算:(1;(218. 已知,(1)直接写出,的值;(2)求的值.19. 如图,四边形中,.的在27x -ABCD ()30A ,()04B ,AB ABCD 5AB =12AD =AC BD BC EF AC ⊥EG BD ⊥EF EG +=ABCD AB BC =60ABC ∠=︒75ADC ∠=︒=AD 3DC =BD --+3a =+3b =-a b +ab 22a ab b -+ABCD 201572490AB BC CD AD B ====Ð=°,,,,(1)求证:(2)求四边形的面积.20. 如图,在中,是边的中点,过点 作直线,交的角平分线于点E ,交的外角的角平分线于点,连接.(1)求证:四边形为矩形.(2)请添加一个条件,使四边形为正方形,直接写出该条件.21. 如图,在中,两点分别在边 上,连接, 且.(1)求证:四边形为平行四边形;(2)若平分,,且,,求的长.22. 如图是由小正方形组成的网格,每个小正方形的顶点叫做格点,的顶点都是格点,点 P 在AC 上,仅用无刻度的直尺在给定网格中完成画图.(1)在图1中,先画,再在上画点H ,使,然后在上画点Q,使CD AD ⊥ABCD ABC O AC O MN BC ∥ACB ∠CE ABC ACG ∠CF F AE AF ,AECF AECF ABCD Y E F ,AB CD ,DE BF AF ,,ADE CBF ∠=∠DEBF AF BAD ∠DE AB ⊥6AD =10AF =AE 86⨯ABC ABDC BD BH CP =CD;(2)在图2中,先画的中线,再在上画点F ,使.23. 如图1,在菱形中,E 是边上的点,是等腰三角形,,().(1)如图2,当时,连接交于点P ,①直接写出的度数;②求证:.(2)如图1,当时,若,求的值.24. 平面直角坐标系中,已知矩形,其中.(1)如图1,若点,E 在边上,将沿翻折,点C 恰好落在边上点F 处,①直接写出点 F 的坐标及的长;②如图 2,将沿y 轴向上平移m 个单位长度得到,平面内是否存在点G ,使以、O 、、G 为顶点的四边形是菱形,若存在,求点G 的坐标,若不存在,请说明理由.(2)如图3,若点,连接,M ,N 两点分别是线段 上的动点,且,求的最小值.在的∥QH BC ABC CE AC 12EF AC =ABCD BC AEF △AE EF =AEF ABC α∠=∠=90α≥︒90α=︒BD AF DCF ∠2CF DP +=135DCF ∠=︒23BE EC =2CF CD ⎛⎫ ⎪⎝⎭AOBC ()06A ,()100B ,BC ACE △AE OB EF AOF A O F ''' A 'F '()60B ,AB BC AB ,2AN CM =12OM ON +。
八年级数学下学期期中测试卷(含答案)
八年级数学下学期期中测试卷考试时间:120分钟;总分:100分题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 使得式子有意义的x的取值范围是( )√4−xA. x≥4B. x>4C. x≤4D. x<42. 下列根式中属于最简二次根式的是( )C. √8D. √27x3A. √a2+2B. √1123. 如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,AD=1,则BD的长为( )A.√2B. 2B.C. √3 D. 34. 如图,在▱ABCD中,∠ABC的平分线交AD于点E,∠BCD的平分线交AD于点F,若AB=3,AD=4,则EF的长是( )A. 1B. 2C. 2.5D. 35. 如下图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判定四边形ABCD 是平行四边形的是( )A. AB//DC,AD//BCB. AB=DC,AD=BCC. AB//DC,AD=BCD. OA=OC,OB=OD6. 下列各式计算正确的是( )A. √2+√3=√5B. 2+√2=2√2C. 3√2−√2=2√2D. √12−√10=√6−√527. 已知√a−13+√13−a=b+10,则√2a−b的值为( )A. 6B. ±6C. 4D. ±48. 如图,小巷左、右两侧是竖直的墙壁,一架梯子斜靠在左墙上时,梯子底端到左墙角的距离为1米,梯子顶端距离地面3米,若梯子底端位置保持不动,将梯子斜靠在右墙上,此时梯子顶端距离地面2米,则小巷的宽度为( )A. (√6+1)米B. 3米C. 5米 D. 2米2二、填空题(本大题共8小题,共24.0分)9. 在数轴上表示实数a的点如图所示,化简√(a−5)2+|a−2|的结果为.10. 计算√28的结果是.√711. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A、B、C、D的面积之和为cm2.12. 如图,四边形ABCD是平行四边形,若S □ ABCD=12,则S阴影=.13. 如图,在四边形ABCD中,∠C=∠D=90°,若再添加一个条件,就能推出四边形ABCD 是矩形,你所添加的条件是__________.(写出一个条件即可).14. 如图,▱ABCD的对角线AC、BD相交于点O,P是AB边上的中点,且OP=2,则BC的长为.15. 如图,矩形ABCD中,AD=12,AB=8,E是AB上一点,且EB=3,F是BC上一动点,若将△EBF沿EF对折后,点B落在点P处,则点P到点D的最短距离为______.16. 观察下列等式:x 1=√1+112+122=32=1+11×2;x 2=√1+122+132=76=1+12×3;x 3=√1+132+142=1312=1 +13×4;⋯;根据以上规律,计算x 1+x 2+x 3+⋯+x 2022−2023= .三、解答题(本大题共7小题,共52.0分)17. 计算:√18−√32+√2(√2+1).(本小题6.0分)18. 计算:(12)−1+(π−3)0−√12×√33.(本小题6.0分)19. (本小题8.0分)如图,已知AD =4,CD =3,∠ADC =90°,AB =13,∠ACB =90°,求图形中阴影部分的面积.20. (本小题8.0分)如图,在▱ABCD 中,点E 是BC 边的中点,连接AE 并延长与DC 的延长线交于F . (1)求证:四边形ABFC 是平行四边形;(2)若AF 平分∠BAD ,∠D =60°,AD =8,求▱ABCD 的面积.21. (本小题8.0分)如图,四边形ABCD 是平行四边形,E ,F 是对角线AC 上的两点,∠1=∠2. (1)求证:AE =CF .(2)求证:四边形EBFD 是平行四边形.22. (本小题8.0分)在小学,我们已经初步了解到,长方形的对边平行且相等,每个角都是90°.如图,长方形ABCD 中,AD=9cm,AB=4cm,E为边AD上一动点,从点D出发,以1cm/s向终点A运动,同时动点P从点B出发,以acm/s向终点C运动,运动的时间为ts.(1)当t=3时,若EP平分∠AEC,求a的值;(2)若a=1,且△CEP是以CE为腰的等腰三角形,求t的值;(3)连接DP,直接写出点C与点E关于DP对称时的a与t的值.23. (本小题8.0分)我们将(√a+√b)、(√a−√b)称为一对“对偶式”,因为(√a+√b)(√a−√b)=(√a)2−(√b)2=a−b,所以构造“对偶式”再将其相乘可以有效的将(√a+√b)和(√a−√b)中的“√”去掉于是二次根式除法可以这样解:如√3=√3√3√3=√33,√22−√2=√2)2(2−√2)(2+√2)=3+2√2.像这样,通过分子,分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)比较大小√7−2√6−√3用“>”、“<”或“=”填空);(2)已知x=√5+2√5−2y=√5−2√5+2,求x−yx2y+xy2的值;(3)计算:3+√35√3+3√57√5+5√7⋯+99√97+97√99答案1.【答案】D2.【答案】A3.【答案】C4.【答案】B5.【答案】C6.【答案】C7.【答案】A8.【答案】A9.【答案】310.【答案】011.【答案】4912.【答案】313.【答案】∠A=90°(答案不唯一)14.【答案】415.【答案】1016.【答案】−1202317.【答案】解:原式=3√2−4√2+2+√2=2.18.【答案】解:原式=2+1−√12×33=3−√363=3−63=3−2=1.19.【答案】解:在Rt△ABC中,AD=4,CD=3,∴AC=√AD2+CD2=5.在△ABC中,AB=13,AC=5,∠ACB=90°.∴BC=√AB2−AC2=12..20.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,∴∠ABE=∠FCE,∵点E是BC边的中点,∴BE=CE,在△ABE和△FCE中,{∠ABE=∠FCE BE=CE∠AEB=∠FEC,∴△ABE≌△FCE(ASA),∴AB=CF,又∵AB//CF,∴四边形ABFC是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=60°,BC=AD=8,AD//BC,∴∠BEA=∠DAE,∵AF平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BA=BE=12BC=CE=4,∴△ABE是等边三角形,∴∠BAE=∠AEB=60°,∵AE=CE,∴∠EAC=∠ECA=12∠AEB=30°,∴∠BAC=∠BAE+∠EAC=90°,∴AC⊥AB,AC=√BC2−AB2=√82−42=4√3,∴▱ABCD的面积=AB⋅AC=4×4√3=16√3.21.【答案】(1)证明:如图:∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∠3=∠4,∵∠1=∠3+∠5,∠2=∠4+∠6,∠1=∠2,∴∠5=∠6,∵在△ADE与△CBF中,{∠3=∠4 AD=BC ∠5=∠6,∴△ADE≌△CBF(ASA),∴AE=CF;(2)证明:∵∠1=∠2,∴DE//BF.又∵由(1)知△ADE≌△CBF,∴DE=BF,∴四边形EBFD是平行四边形.22.【答案】解:(1)当t=3时,DE=3,而CD=4,由勾股定理得,CE=5,∵四边形ABCD是长方形,∴AB=CD,AD=BC,AD//BC,∴∠AEP=∠CPE,∵EP平分∠AEC,∴∠AEP=∠CEP,∴∠CPE=∠CEP,∴CP=CE=5,CP=BC−BP,即9−3a=5,∴a=43;(2)当a=1时,由运动过程可知,DE=t,BP=t,∴CP=9−t,在Rt△CDE中,CE2=CD2+DE2=16+t2,△CEP是以CE为腰的等腰三角形,分情况讨论:∴①CE=CP,∴16+t2=(9−t)2,∴t=65,18②CE=PE,CP=DE,由等腰三角形的性质,得12于是,9−t=2t,∴t=3,;即:t的值为3或6518(3)如图,由运动过程知,BP=at,DE=t,∴CP=BC−BP=9−at,∵点C与点E关于DP对称,∴DE=CD,PE=PC,∴t=4,∴BP=4a,CP=9−4a,DE=4,过点P作PF⊥AD于F,∴四边形CDFP是长方形,∴PF=CD=4,DF=CP,在Rt△PEF中,PF=4,EF=DF−DE=9−4a−4=5−4a,根据勾股定理得,PE2=EF2+PF2=(5−4a)2+16,PE2=PC2∴(5−4a)2+16=(9−4a)2,∴a=54.23.【答案】解:(1)>;(2)∵x=√5+2√5−2=(√5+22(√5+2)(√5−2)=5+4√5+4=9+4√5,y=√5−2√5+2=(√5−22(√5+2)(√5−2)=5−4√5+4=9−4√5,∴x+y=9+4√5+9−4√5=18,x−y=9+4√5+−9+4√5=8√5,xy=(9+4√5)(9−4√5)=81−80=1,∴x−y x2y+xy2=x−yxy(x+y)=8√51×18=4√59;3+√35√3+3√57√5+5√7+⋯99√97+97√99=√3)(3+√3)(3−√3)+√3√5)(5√3+3√5)(5√3−3√5)√97√99(7√5+5√7)(7√5−5√7)+⋯+√97√99)(99√97+97√99)(99√97−97√99)=1−√33+√33−√55+√55−√77+⋯+√9797−√9999=1−√99 99=1−√1133.。
2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)
20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。
2. 3x+5y=10,求y的值。
3. 4x2y=6,求x的值。
4. 5x+3y=15,求y的值。
5. 2x4y=8,求x的值。
6. 3x+5y=10,求y的值。
7. 4x2y=6,求x的值。
8. 5x+3y=15,求y的值。
9. 2x4y=8,求x的值。
10. 3x+5y=10,求y的值。
三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。
辽宁省抚顺市新宾县2023-2024学年八年级下学期期中教学质量检测数学试题
辽宁省抚顺市新宾县2023-2024学年八年级下学期期中教学质量检测数学试题一、单选题1.下列二次根式是最简二次根式的是( )A B C D2x 的取值范围是( )A .1x ≥B .1x ≥-C .1x ≤D .1x ≤- 3.在单位长度为1的正方形网格中,下面的三角形是直角三角形的是( ) A .B .C .D .4.下列说法正确的是( )A .菱形的四个内角都是直角B .矩形的对角线互相垂直C .正方形的每一条对角线平分一组对角D .平行四边形是轴对称图形5.如图,Rt ABC △中,9086C AC CB ∠=︒==,,,AB 的垂直平分线分别交AB ,AC 于点D ,E ,则线段CE 的长为( )A .74B .2C .154D .2546.有一辆装货的汽车,为了方便装运货物,使用了如图所示的钢架,其中90ACB ∠=︒,1.2m AC =,0.9m BC =,则AB 的长为( )A .1.2mB .1.5mC .1.8mD .15m7.如图,AC 和BD 是菱形ABCD 的对角线,若再补充一个条件能使其成为正方形,下列条件:①AC BD =;②AC BD ⊥;③222AB AD BD +=;④ACD ADC ∠=∠,其中符合要求的是( )A .①②B .①③C .②③D .②④8.如图,在Rt ABC △中,90ACB ∠=︒,CD 是斜边AB 上的中线.若4CD =,则AB 的长为( )A .2B .4C .6D .89.如图,在Rt △ABC 中,90ACB ∠=︒,点D ,E 分别是边AB ,BC 的中点,延长AC 至F ,使12CF AC =,若10AB =,则EF 的长是( )A .4.8B .6C .5D .410.如图,分别以ABC V 的三边AB BC 、,AC 为边向外侧作正方形AFGB .正方形BHLC .正方形ACDE ,连接EF ,再过A 作AK BC ⊥于K .延长KA 交EF 于点M .①BHLO AFGB S S ACDE S +=正方形正方形正方形;②EM MF =;③当3,5,90AB BC BAC ==∠=︒时,20S =阴影部分.其中正确的结论共有( )个.A .0B .1C .2D .3二、填空题11.计算的结果等于.12.在直角坐标系中,点()43P -,到原点的距离是.13与最简二次根式a =.14.如图,在Rt ABC △中,90C ∠=︒,5AB =,3BC =,以点B 为圆心,BC 的长为半径画弧,交AB 于点D ,再以点A 为圆心,AD 为半径画弧,交AC 于点E ,则CE 的长为.15.如图所示,在边长为2的菱形ABCD 中,60DAB ∠=︒,点E 为AB 中点,点F 是AC 上一动点,则EF BF +的最小值为.三、解答题16.计算:2-+-;17.已知1x ,1y ,求代数式22x xy y -+的值.18.如图,长方形ABCD 的长为(1)长方形ABCD 的周长是多少?(2)在长方形ABCD 19.如图,点O 是菱形ABCD 对角线的交点,过点C 作CE OD ∥,过点D 作DE AC ∥,CE 与DE 相交于点E .求证:四边形OCED 是矩形.20.如图,在△ABC 中,AB =4,AC =3,BC =5,DE 是BC 的垂直平分线,DE 分别交BC 、AB 于点D 、E.(1)求证:△ABC 为直角三角形.(2)求AE 的长.21.如图,在四边形ABCD 中,,AB DC AB AD =∥,对角线,AC BD 交于点,O AC 平分BAD ∠,过点C 作CE AB ⊥,交AB 的延长线于点E .(1)求证:四边形ABCD 是菱形.(2)若13,10AB BD ==,求CE 的长.22.某校八年(1)班的小华和小轩学习了“勾股定理”之后,为了测得风筝的垂直高度CE ,他们进行了如下操作:①测得水平距离BD 的长为12米:②根据手中剩余线的长度计算出风筝线BC 的长为20米:③牵线放风筝的小明的身高为1.62米.(1)求风筝的垂直高度CE :(2)如果小明想风筝沿CD 方向再上升4米,则他应该再放出多少来线?23.【三角形中位线定理】已知:在ABC V 中,点D 、E 分别是边AB AC 、的中点.直接写出DE 和BC 的关系;【应用】如图②,在四边形ABCD 中,点E 、F 分别是边AB AD ,的中点,若5BC =,3CD =,2EF =,45AFE ∠=︒.求ADC ∠的度数;【拓展】如图③,在四边形ABCD 中,AC 与BD 相交于点E ,点M ,N 分别为AD BC ,的中点,MN 分别交AC BD 、于点F 、G ,EF EG =.求证:BD AC =.。
人教版2022-2023学年八年级下册数学期中考试数学试卷含答案
2022-2023学年度下学期期中质量测评八年级数学试卷温馨提示:1.答题前,考生务必将自己所在学校、姓名、考号填写在试卷上指定的位置.2.选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题的答案必须写在答题卡的指定位置,在本卷上答题无效.3.本试卷满分120分,考试时间120分钟.一、精心选一选,相信自己的判断!(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)1.下列各式中,一定是二次根式的是A6B5-C38D a2.下列各组数中,能构成勾股数的是A.1,12B.132C.6,8,10D.5,12,153.平行四边形ABCD中,若∠A=50°,则∠B的度数为A.40°B.50°C.120°D.130°4.设一个直角三角形的两直角边分别是a,b,斜边是c.用一把最大刻度是10cm的直尺,可以一次直接测得c的长度,则a,b的长可能是A.a=5,b=12B.a=6,b=8C.a=4,b=10D.a=3,b=11 5.下列命题的逆命题成立的是A.平行四边形的对角线相等B.菱形的对角线互相垂直C.矩形的对角线互相平分且相等D.对顶角相等6244-+=2-a成立的条件是a aA.a≥2B.a≤2C.a≥-2D.a≤-27.如图,AB=BC=CD=DE=EF=1,AB⊥BC,AC⊥CD,AD⊥DE,AE⊥EF,则AF的长为A2B3C.2D58.如图,在菱形ABCD 中,连接AC ,AB =AC ,点E 、F 分别是AB 、BC 上的点,且AE =BF ,连接AF 、CE 交于点H ,连接DH 交AC 于点O .则下列结论:①AF =CE ;②∠CHF =60°;③DH 平分∠AHC ;④若AB =1,则S 菱形ABCD =32.其中正确的个数是A .4B .3C .2D .1二、细心填一填,试试自己的身手!(本大题共8小题,每小题3分,共24分.请将结果直接填写在答题卡相应位置上)91x -有意义,则x 的取值是★.(写一个正确即可)10.已知一个直角三角形的两直角边的长分别为6cm ,8cm ,那么这个直角三角形斜边上中线的长为★cm .11.已知a ,b 为两个连续整数,且a7<b ,则a +b =★.12.如图,数轴上点A 表示的数为a ,化简式子:a +442+-a a 的结果为★.13.如图,已知OA =OB ,∠C =90°,OC =1,BC =2.数轴上点A 表示的数是★.14.如图,在平行四边形ABCD 中,以点A 为圆心,AB 的长为半径画弧交AD 于点E ,再分别以点B 、E 为圆心,大于12BE 的长为半径画弧,两弧交于点H ,连接AH 并延长交BC 于点F ,连接EF ,AF 与BE 相交于点O ,如果BE =8,AB =5,那么四边形AEFB 的面积为★.15.勾股定理相传最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数组:3,4,5;5,12,13;7,24,25;….这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;….若此类勾股数的勾为2m (m ≥3,m 为正整数),则其弦是★.(结果用含m 的式子表示)16.如图,Rt △ABC 中,∠C =90°,AC =4,BC =6,D 是AB 的中点,P 是BC 边上的一动点,则PA +PD 的最小值为★.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上)17.(本题满分8分=4分+4分)计算(1)(2)×4+318.(本题满分8分=3分+5分)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,设顶点在格点上的三角形为格点三角形,按下列要求画图.(1)请你在网格图中画出边长为AB=,BC,AC=的格点三角形;(2)判断△ABC的形状,说明理由,并求出△ABC的面积.19.(本题满分8分=4分+4分)如图,在△ABC中,点D,E,F分别是AB,AC,BC的中点,连接DE,BE,FE.(1)求证:四边形BDEF为平行四边形;(2)若∠BEC=90°,BC=8,求四边形BDEF的周长.20.(本题满分8分)春天到了,奇奇和妙妙一同去春游.如图,有一座景观桥AB,他俩一同坐在离桥头A100m 的凉亭D处,准备从桥的不同方向到达景点C.奇奇先走到桥尾B到岸边后再坐船到景点C,妙妙先走到桥头A到岸边,再沿与桥AB垂直的小路AC走200m到达景点C,若距离均以直线计算,且两人所经过的距离相等,请利用所学知识计算桥AB的长是多少?21.(本题满分8分=2分+2分+4分)学习完《二次根式》后,思思发现了下面这类有趣味的试题,请你根据她的探索过程,解答下列问题:(1)具体运算,发现规律-1=2……=★;计算(2)观察归纳,写出结论=★;(n≥1且n为正整数)(3)灵活运用,提升能力++1).计算:22.(本题满分10分=2分+4分+4分)如图1,在硬纸板□ABCD中,过点D作DE⊥BC于点E,沿DE剪下△DEC,平移至△AFB处.(1)四边形ADEF的形状为★;(2)已知AD=10,□ABCD的面积为60.在(1)中的四边形ADEF的EF边上取一点M,使EM=8,如图2,剪下△DME,平移至△AHF处,拼成四边形AHMD.①求证:四边形AHMD是菱形;②求四边形AHMD的两条对角线的长.23.(本题满分10分=5分+3分+2分)如图1,在矩形ABCD中,点E为对角线AC上的一点(不与点A重合).将△ADE沿射线AB方向平移到△BCF的位置,点E的对应点为点F.过点E作EG∥BC,交FB的延长线于点G,连接AG.(1)求证:△EGA≌△BCF;(2)求证:四边形ACFG是平行四边形;(3)如图2,连接CG,若AB=4,BC=2,当CF最小时,则CG的长为★.24.(本题满分12分=4分+4分+4分)如图,矩形ABCD中,CD=4,∠CBD=30°.一动点P从B点出发沿对角线BD方向以每秒2个单位长度的速度向点D匀速运动,同时另一动点Q从D点出发沿DC方向以每秒1个单位长度的速度向点C匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点P、Q运动的时间为t秒(t>0).过点P作PE⊥BC于点E,连接EQ,PQ.(1)求证:PE=DQ;(2)四边形PEQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△PQE为直角三角形?请说明理由.2022-2023学年度下学期期中质量测评八年级数学参考答案及评分说明一、选择题:题号12345678答案ACDBCBDB二、填空题:9.1(答案不唯一)10.511.512.21314.2415.m 2+116.3三、解答题:17.解:(1)22×……………3分=-……………4分(2)×4+32×4+3×……………7分=8×3+3×2=30;……………8分18.解:(1)如图所示.……………3分(2)△ABC 是直角三角形.理由如下:……………4分∵()2)22,∴AB 2+AC 2=BC 2……………5分∴△ABC 是直角三角形……………6分∴S △ABC =12×2……………7分∴△ABC 的面积为2.……………8分19.解:(1)证明:∵点D ,E 分别是AB ,AC 的中点,∴DE ∥BC ,DE =12BC ……………1分又∵点F 是BC 的中点,∴BF =12BC ,……………2分∴DE =BF .……………3分∵DE ∥BF ,∴四边形BDEF 为平行四边形.……………4分(2)∵∠BEC=90°,点F是BC的中点,∴EF=12BC=BF=4……………5分又∵四边形BDEF为平行四边形,∴四边形BDEF为菱形.……………6分∴四边形BDEF的周长=4×4=16……………7分∴四边形BDEF的周长为16.……………8分20.解:设桥AB长为x米,则BD=(x-100)米,由题可知,……………1分AD+AC=BD+BC,……………2分∴100+200=x-100+BC,……………3分∴BC=400-x,……………4分∵△ABC为直角三角形,∴AB2+AC2=BC2,……………5分∴x2+2002=(400-x)2,……………6分解得x=150,……………7分答:桥AB长150米.……………8分21.解:(1)-……………2分(2)……………4分(3)+1)=(-1+1)…5分=(-+1)……………6分=2024-1……………7分=2023……………8分22.解:(1)矩形;……………2分(2)①∵在硬纸板□ABCD中,AD=10,□ABCD的面积为60,∴AD×DE=10DE=60,DE=6,……………3分∵△AHF是由△DME平移得到,∴AH∥DM,AH=DM,∴四边形AHMD是平行四边形,……………4分在Rt△DEM中,DM……………5分=10=AD,∴平行四边形AHMD是菱形.……………6分②如图,连接AM ,DH ,……………7分在Rt △AFM 中,FM =EF ―EM =10―8=2,∴AM……………8分在Rt △DEH 中,HE =MH +EM =10+8=18,∴DH,……………9分∴四边形AHMD 的两条对角线的长分别为、……………10分23.(1)证明:由平移可知:AE =BF ,AE ∥BF ,∴∠ACB =∠FBC ,……………1分∵EG ∥BC ,∴∠AEG =∠ACB ,∴∠AEG =∠FBC ,……………2分∵EG ∥BC ,CE ∥BG ,∴四边形CEGB 是平行四边形,∴EG =BC……………3分在△EGA 和△BCF 中AE BF AEG FBC EG BCì=ïïÐ=Ðíï=ïî……………4分∴△EGA ≌△BCF (SAS )……………5分(2)证明:∵四边形CEGB 是平行四边形,∴CE =GB .∵AE =BF ,∴CE +AE =GB +BF .∴AC =GF ,……………6分∵△EGA ≌△BCF ∴GA =CF……………7分∴四边形ACFG 是平行四边形.……………8分(3)5……………10分24.解:(1)证明:∵PE ⊥BC ,∴∠BEP =90°,……………1分在Rt △BEP 中,BP =2t ,……………2分∵∠CBD =30°,∴PE =t ,……………3分又∵DQ =t ,∴PE =DQ .……………4分(2)能.理由如下:……………5分∵四边形ABCD为矩形,PE⊥BC,∠BEP=∠C=90°,∴PE∥DQ,由(1)知,PE=DQ,∴四边形PEQD为平行四边形,……………6分在Rt△CBD中,CD=4,∠CBD=30°,∴BD=2CD=8,∵BP=2t,∴PD=BD-BP=8-2t,若使平行四边形PEQD为菱形,则需PD=DQ,即8-2t=t,……………7分∴t=8 3,即当t=83时,四边形PEQD为菱形.……………8分(3)①当∠EPQ=90°时,四边形EPQC为矩形,∴PE=QC,∵PE=t,QC=4-t,∴t=4-t,即t=2;……………9分②当∠PQE=90°时,∠DPQ=∠PQE=90°,在Rt△DPQ中,∠PQD=90°-60°=30°,∴DQ=2DP,∵DQ=t,DP=8-2t,∴t=2(8-2t),即t=165.……………10分③当∠PEQ=90°时,此种情况不存在.……………11分综上所述,当t=2或165时,△PQE为直角三角形.……………12分注:1.按照评分标准分步评分,不得随意变更给分点;2.第17题至第24题的其它解法,只要思路清晰,解法正确,都应按步骤给予相应分数.。
2022-2023学年八年级下期中考试数学试卷及答案
=6,则 BE 的长为
.
16.点 P,Q,R 在反比例函数 y (常数 k>0,x>0)图象上的位置如图所示,分别过这
三个点作 x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为 S1,S2,S3.若
OE=ED=DC,S1+S3=27,则 S2 的值为
.
17.如图,反比例函数 y 位于第二象限的图象上有 A,B 两点,过 A 作 AD⊥x 轴于点 D,
22.【阅读】如图 1,四边形 OABC 中,OA=a,OC=8,BC=6,∠AOC=∠BCO=90°, 经过点 O 的直线 l 将四边形分成两部分,直线 l 与 OC 所成的角设为θ,将四边形 OABC 的直角∠OCB 沿直线 l 折叠,点 C 落在点 D 处,我们把这个操作过程记为 FZ[θ,a].
1~1.5 小时;C、0.5~1 小时;D、0.5 小时以下.图 1、2 是根据调查结果绘制的两幅不
完整的统计图,请你根据统计图提供的信息,解答以下问题:
(1)本次一共调查了多少名学生?
(2)在图 1 中将选项 B 的部分补充完整;
(3)若该校有 3000 名学生,你估计全校可能有多少名学生平均每天参加体育活动的时
间在 1 小时以下.
20.(12 分)如图,已知△ABC 的三个顶点的坐标分别为 A(﹣2,3)、B(﹣6,0)、C(﹣ 1,0). (1)将△ABC 绕坐标原点 O 逆时针旋转 90°.画出图形,直接写出点 B 的对应点的坐 标; (2)请直接写出:以 A、B、C 为顶点的平行四边形的第四个顶点 D 的坐标.
(1)若平均每人每小时植树 4 棵,则这次共计要植树
棵;
(2)当 x=80 时,求 y 的值;
(3)为了能在 1.5h 内完成任务,至少需要多少人参加植树?
湖北省武汉市东西湖区2023-2024学年八年级下学期期中考试数学试卷(含详细答案)
湖北省武汉市东西湖区2023-2024学年八年级下学期期中考试数学试卷学校:___________姓名:___________班级:___________考号:___________A. B. C. D.2.下列二次根式是最简二次根式的是( )3.下列计算正确的是( )4.满足下列条件时,不是直角三角形的是( )A.,,C. D.5.如图,已知四边形是平行四边形,下列结论中不正确的是( )A.当时,它是菱形B.当时,它是菱形C.当时,它是矩形D.当时,它是正方形6.如图,矩形中,,,点A ,B 在数轴上,若以点A 为圆心,对角线的长为半径作弧交数轴的正半轴于点M ,则点M 表示的数为( ).7.如图,矩形ABCD 沿直线BD 折叠,使点C 落在点E 处,BE 交AD 于点F ,,,则( )3x ≥3x ≥-3x ≠-0x ≥=-=÷==ABC △1AB =2BC =AC =222AB BC AC -=::3:4:5A B C ∠∠∠=A B C∠-∠=∠ABCD AB BC =AC BD ⊥90ABC ∠=︒AC BD =ABCD 3AB =1AD =AC 8BC =4AB =DF =A.2B.3C.4D.58.两张全等的矩形纸片、按如图方式交叉叠放在一起.若,,则图中重叠(阴影)部分的面积为( )9.如图,已知圆柱底面的周长为,圆柱高为,为底面圆的直径,一只蚂蚁在圆柱的表面上从点A 爬到点C的最短距离为( )m.A.10.如图,在中,,,,,,为边向外作正方形,正方形,正方形.若直线、交于点N ,过点M 作交于点K ,过点H 作与、分别交于点P 、Q .则四边形的面积为( )ABCD AECF 2AB AF ==8AE BC ==12m 4m BC Rt ABC △90ABC ∠=︒1AB =BC =AB AC BC ABC △ABFG ACHM BCED ED FG //KQ DE FG //PQ FG DE KQ KQPNA. B. C. D.和于点E 、F ,,,则图中阴影部分的面积为______.14.一个平行四边形的一条边长是6,两条对角线的长分别是8和形的周长是______.15.如图,在中,E 是的中点,D 是在上且,连接,______.16.如图,正方形和正方形中,A ,D ,E 在同一条直线上,,P 为的中点,延长交于点Q ,连接,,连接分别交,于点M ,N ,下列说法:①;②;③;④;⑤平分,其中正确的结论有______.6+5+6AD BC 3AB =4BC =ABC △BC AC 3AC AD =BD AE =ABCD DEFG 2AD DE =BC FG AB PQ CQ PF CQ CD FNG PNC ≌△△BCQ PFQ ∠=∠:3:7CFN BPMQ S S =四边形△2FN PM =FP CFQ ∠三、解答题17.计算:(2).18.如图,在平行四边形中,对角线、相交于点O ,E ,F是上的两点,,连接,,求证:.19.如图,在矩形中,按以下步骤作图:①以点B圆心,以任意小于的长为半径画弧,分别交、于点M、N ;的长为半径画弧、两弧相交于点P ;③连接并延长交于点Q .据此回答以下问题:(1)求的度数;(2)若,求矩形的周长.20.如图,一架梯子斜靠在一竖直的墙上,这时为米,为米.⨯ABCD AC BD BD DE BF =AE CF AE CF =ABCD AB AB BC MN BP AD AQB ∠BQ =3DQ =ABCD AB AO AO 2.4BO 0.7(1)梯子的长为______米;(2)如果梯子的顶端A 下滑米,那么梯子的底端B 也外移米吗?请说明理由.21.如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.正方形四个顶点都是格点,E 是上的格点,仅用无刻度的直尺在给定网格中完成画图.(1)在图(1)中,先将线段绕点B 顺时针旋转,画对应线段,再在上画点G ,并连接,使;(2)在图(2)中,M 是与网格线的交点,先画点M 关于的对称点N ,再在上画点H ,使得四边形为菱形.22.如图1,四边形中,,,,,,动点P 在线段边上以每秒1个单位的速度由点A 向点D 运动,动点Q 从点C 同时出发,以每秒3个单位的速度向点B 运动,设动点P 的运动时间为t 秒.(1)当t 为何值时,满足和?请说明理由.(2)如图2,若H 是上一点,,那么在线段上是否存在一点R ,使得四边形是菱形?若存在,请求出t 的值;若不存在,请说明理由.23.综合与实践0.40.486⨯ABCD AD BE 90︒BF CD BG 45GBE ∠=︒BE BD BD BNHM ABCD //AD BC 90B ∠=︒8AB =26BC =24AD =AD PQ CD =//PQ CD BC 10BH =AD BHRP在一次综合实践活动课上,老师组织学生开展“如何仅通过折纸的方法来确定正方形一边上的一个三等分点”.操作探究:“求索”小组的实践过程,展示如下:操作过程:第1步:如图1所示,先将正方形纸片对折,使点A 与点B 重合,折痕为,然后展开铺平;第2步:将边沿翻折到的位置;第3步:延长交于点H ,则点H 为边的三等分点.证明过程:连接,如图2,正方形沿折叠,,①____________.又由题可知E 是中点,设,,则,在中,,可列方程:②____________(方程不要求化简),解得:③____________,即H 是边上的三等分点.拓展应用:“励志”小组联想课本折角的方法,探究出了一种折矩形纸片一边的三等分点的方法:操作过程:ABCD EF BC CE GC EG AD AD CH ABCD CE 90B CGE ∴∠=∠=︒CB CG=90D CGH ∴∠=∠=︒CH CH= CGH CDH∴≌△△GH DH∴=AB 2AB x =DH y =AE BE EG x ===Rt AEH △222AE AH EH +=AD 30︒第1步:对折矩形纸片,使与重合,得到折痕,把纸片展平;第2步:折叠纸片,使点A 落在上,并使折痕经过点B ,得到折痕.同时,得到了线段.第3步:再一次折叠纸片,使点A 落在上,并使折痕经过点G ,得到折痕,M 即为边上的三等分点.(1)补全“求索”小组的证明过程.①______,②______,③______.(2)结合“励志”小组的操作过程,猜想,,这三个角之间有什么关系?证明你的猜想;(3)在(2)的条件下,请你判断“励志”小组的操作是否可以得到M 为边上的三等分点说明理由.24.如图1,在平面直角坐标系中,,且a ,b 满足,过点B 分别作轴于点A ,轴于点C .(1)直接写出B 点坐标为______;(2)点E 是边上的点,点F 、M 是边上的点,若为等边三角形,,试探究、、之间的数量关系,并说明理由;(3)如图2,连接,点H 、G 分别在、上,且,请直接写出的最小值为______.ABCD AD BC EF EF BG BH EF GM AB ABG ∠GBH ∠HBC ∠AB (),B ab 4b =BA y ⊥BC x ⊥OA OC BEF △60EMO ∠=︒BM EM FM AC AC BC AH BG =OH OG +参考答案1.答案:A解析:,解得,故选:A.2.答案:D故选:D.3.答案:C解析:A :该选项不符合题意;B :该选项不符合题意;C :该选项符合题意;D :该选项不符合题意;故选:C.4.答案:C解析:A 、,是直角三角形;B 、,,即是直角三角形;C 、,,,,,即不是直角三角形;D 、,,∴30x -≥3x ≥= -= == =22212+= ABC ∴△222AB BC AC -= 222AB BC AC ∴=+ABC △::3:4:5A B C ∠∠∠= 180A B C ∠+∠+∠=︒45A ∴∠=︒60B ∠=︒75C ∠=︒ABC △A B C ∠-∠=∠ 180A B C ∠+∠+∠=︒,即是直角三角形.故选:C .5.答案:D解析:A 、根据邻边相等的平行四边形是菱形可知:四边形是平行四边形,当时,它是菱形,故A 选项正确,不符合题意;B 、四边形是平行四边形,,四边形是菱形,故B 选项正确,不符合题意;C 、有一个角是直角的平行四边形是矩形,故C 选项正确,不符合题意;D 、根据对角线相等的平行四边形是矩形可知当时,它是矩形,不是正方形,故D 选项错误,符合题意.故选:D.6.答案:A 解析:矩形中,,,,,;故选:A.7.答案:D解析:如图,由翻折的性质得,,矩形ABCD 的边,,,,,,在中,,,解得:.90A ∴∠=︒ABC △ABCD AB BC = ABCD AC BD ⊥∴ABCD AC BD = ABCD 3AB =1AD =1BC AD ∴==90ABC ∠=︒AC =∴==AM AC ∴==1-12∠=∠ //AD BC 13∴∠=∠23∴∠=∠BF DF ∴=8AD BC == 8AF DF ∴=-Rt ABF △222AB AF BF +=()22248DF DF ∴-=+5DF =故选:D.8.答案:C 解析:设交于点G ,交于点H ,如图所示:矩形,矩形是全等的矩形,,,,,四边形是平行四边形,在和中,,,平行四边形是菱形,设,则,在中,,,解得:菱形的面积为BC AE AD FC ABCD AECF ∴AB CE =90B E ∠=∠=︒//AD BC //AE CF ∴AGCH ABG △CEG △B E AGB CGEAB CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴(AAS)ABG CEG ≌△△AG CG ∴=∴AGCH AG CG x ==8BG BC CG x =-=-Rt ABG △222AB BG AG +=∴2222(8)x x +-=x =∴CG =∴AGCH AGCH 1742S CG AB =⨯=⨯=菱形故选:C.9.答案:B 解析:如图,把圆柱的侧面展开,线段的长度即为蚂蚁在圆柱的表面上从点A爬到点C 的最短距离,圆柱底面的周长为,,,蚂蚁在圆柱的表面上从点A 爬到点C 的最短距离为.故选:B.10.答案:C解析:在中,,,由勾股定理得,四边形,,都是正方形,四边形,,的四个角都是,四条对边平行且相等,,,,四边形为矩形,,,四边形是矩形,,,延长交于点O ,延长交于L ,则,,如图所示,AC 12m ∴11262BC =⨯= 4AB =∴AC ====∴Rt ABC △90ABC ∠=︒1AB =BC =AC == ABFG ACHM BCED ∴ABFG ACHM BCED 90︒∴90N EDB ∠=∠=︒//ND FB //NF DB ∴NDBF //KQ DE //PQ FG ∴KQPN ∴1FG FB AB ===BD BC DE ===AC CH AM ===∴1ND FB ==NF BD ==BC PQ BA KQ CO PQ ⊥BL KQ ⊥,,,又,,,,同理可证,,,已证四边形是矩形,且四边形,为正方形,,,,四边形为矩形,,同理可证,四边形为矩形,,四边形的面积为:故选:C.11.答案:故答案为:12.答案:2解析:90BAC BCA ∠+∠=︒90BCA HCO ∠+∠=︒∴BAC HCO ∠=∠AC CH =90ABC COH ∠=∠=︒∴ABC COH △△≌∴1CO AB ==ABC MLA △△≌∴AL BC == //PQ FG KQPN ABFG BCED ∴//PO EC //CO EP 90P ∠=︒∴EPOC ∴1EP CO AB ===GALK ∴GK AL BC ===∴11NK NF FG GK =++==112NP ND DE EP =++=+=∴KQPN 1)(26S NK NP =⋅=++=+== 4==故答案:2.13.答案:6解析:四边形是矩形,,,,,在和中,,,,,,.故答案为:614.答案:解析:如图,四边形是平行四边形,,,根据平行四边形的性质可得:,,,,这个平行四边形是菱形,周长为,故答案为:.为 ABCD ∴3CD AB ==OA OC =//AD BC ∴AEO CFO ∠=∠AOE △COF △AEO CFO OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA AOE COF ≌△△∴AOE COF S S =△△∴BOF AOE COD BOF COF COD BCD S S S S S S S S =++=++=阴影△△△△△△△ 1143622BCD S BC CD =⋅=⨯⨯=△∴6BCD S S ==阴影△24ABCD 6AD =AC =8=AO =4DO =∴(2222224366OA OD AD +=+===∴90AOD ∠=︒∴∴4624⨯=24解析:分别取,,的中点G ,H ,连接,,,设的面积为S ,E 为的中点,,都是的中位线,,,,,,,,,,,,,,,,,BD CD EG EH DE ABC △ BC ∴EG EH BCD △∴//EG AC EG DH =BG DG =∴2DC GE = 3AC AD =∴:1:1AD GE = //EG AC ∴EGF FDA ∠=∠GEF FAD ∠=∠∴DAF GEF ∽△△∴::1:1DF FG AD EG ==∴:1:4DF BD =ABC S S= △12AEC S S ∴=△13ADB S S=△111144312ADF ADB S S S S ∴==⨯=△△∴11521212AEC ADF DCEF S S S S S S =-=-=四边形△△1133124ABF ADF S S S S ==⨯=△△∴1345512ABFCDFE SS S S ==四边形△16.答案:①②④解析:①四边形和都是正方形,,P 为的中点,,,,,,()故结论①符合题意.②四边形和都是正方形,,正方形的边长为正方形,Q ,G 为、的中点,又P 为的中点,,,都是等腰直角三角形,且,,,,又,,,,,,故结论②符合题意.④(结论②的证明中已证),,,,,,ABCD DEFG 2AD DE =BC ∴1122PC BC AD ==12GF DE AD ==90DGF PCN ∠=∠=︒∴PC GF =90FGN PCN ∠=∠=︒GNF CNP ∠=∴FNG PNC ≌△△AAS ABCD DEFG 2AD DE =∴DEFG ∴AB DC BC ∴GF GC BQ BP ===∴QBP △FGC △QBP FGC △△≌∴QP FC =45QPB GCF ∠=∠=︒∴135QPC FCP ∠=∠=︒PC PC =∴QPC FCP △△≌∴BCQ FPC ∠=∠ //QF BC ∴PFQ FPC ∠=∠∴BCQ PFQ ∠=∠ BCQ FPC ∠=∠∴PM MC = 90FPC PNC ∠+∠=︒90BCQ MCN ∠+∠=︒∴PNC MCN ∠=∠∴MN MC =,即M 为中点,又(结论①的证明中已证),,故结论④符合题意.③M 为的中点(结论④的证明过程中已证),过点M 作于H ,如图所示,设正方形的边长为a ,则正方形边长为,则,,,,故结论③不符合题意.⑤,,,,又,,,不平分,故结论⑤不符合题意;综上所述,结论①②④符合题意.故答案为:①②④.的∴12PM MC MN PN ===PN FNG PNC ≌△△∴FN PN =∴2FN PM = PN MH PC ⊥DEFG ABCD 2a 1124MH NC a ==211112224CFN S CN GF a a a =⋅=⨯⨯=△21111172222248QBC MPC BPMQ S S S QB BC PC MH a a a a a =-=⋅⋅-⋅=⋅-⋅=四边形△△∴:2:7CFN BPMQ S S =四边形△ PC GC GF ==FC =∴PC FC ≠∴FPC PFC ∠≠∠ //QF BC ∴QFP FPC ∠=∠∴QFP PFC ∠≠∠∴FP CFQ ∠(2)2;(2).18.答案:见解析解析:证法1:四边形是平行四边形,,,,在和中,,,;证法2:连接,,四边形是平行四边形,,,,,,四边形是平行四边形,3+3=+3=+⨯22=-53=-2= ABCD ∴BC AD =//BC AD ∴ADE CBF ∠=∠ADE △CBF △AD CB ADE CBF DE BF =⎧⎪∠=∠⎨⎪=⎩∴()SAS ADE CBF ≌△△∴AE CF =AF CEABCD ∴OB OD =OA OC = BF DE =∴OB BF OD DE -=-∴OF OE =∴AECF.19.答案:(1)(2)26解析:(1)四边形是矩形,,由作图过程知平分,,是等腰直角三角形,;(2)由(1)得:是等腰直角三角形,,,,又,,矩形的周长为:.20.答案:(1)(2)梯子的底端B 向外移米,理由见解析解析:(1)由题意得,在中,,,由勾股定理得米,故答案为:;(2)梯子的底端B 向外移米,理由如下:由题意得,此时在中,,,由勾股定理得,梯子的底端B 向外移米21.答案:(1)见解析(2)见解析解析:(1)如图,线段和G 点为所求;∴AE CF =45AQB ∠=︒ABCD ∴90A ABC ∠=∠=︒BQ ABC ∠∴45ABQ ∠=︒∴ABQ △∴45AQB ∠=︒ABQ △∴AB AQ = 222AB AQ BQ +=BQ =∴5AB AQ ==3DQ =∴8AD AQ DQ =+=∴ABCD 2()2(58)26AB AD +=⨯+=2.50.8Rt ABO △ 2.4m AO =0.7m BO =90AOB ∠=︒∴ 2.5AB ==2.50.8Rt ABO △ 2.40.42m AO =-= 2.5m AB =90AOB =︒∠∴ 1.5m BO ==∴ 1.50.70.8-=BF理由:,,,,,线段绕点B 顺时针旋转得,,,,,;(2)如图,点N 和点H 即为所求,理由:,,,,,,BC BA =CF AE =90BCF BAE ∠=∠=︒∴()SAS BCF BAE ≌△△∴CBF ABE ∠=∠BF BE =∴90FBE CBF CBE ABE CBE CBA ∠=∠+∠=∠+∠=∠=︒∴BE 90︒BF //PE FC∴PEQ CFQ ∠=∠EPQ FCQ ∠=∠∴PE FC =∴()ASA PEQ CFQ ≌△△∴EQ FQ =∴1452GBE EBF ∠=∠=︒ BC BA =90BCF BAE ∠=∠=︒CF AE =∴BCF BAE ≌△△()SAS ∴BF BE = DF DE =与关于对称,,M ,N 关于对称,,,,.,,,,由轴对称可得,.,又,四边形为平行四边形,又,四边形是菱形.22.答案:(1),理由见解析(2),理由见解析解析:(1)连接,如图所示,∴BF BE BD BN BM =∴BD //PE FC ∴POE QOF ∽△△∴EQ PE OF FQ == //MG AE ∴24EM AG MB GB ===∴EM EO EB EF == MEO BEF ∠=∠∴MEO BEF V ∽△∴EMO EBF ∠=∠∴//OM BF ∴MHB FBH ∠=∠FBH EBH ∠=∠∴BHM MBD ∠=∠∴BM HM = BM BN =∴MH BN=∴BNHM BN BM =∴BNHM 6t =6t =PQ若满足和,则四边形为平行四边形,,设动点P 的运动时间为t 秒,则,,,,解得:,符合题意,当,满足和(2)假设在线段上存在一点R ,使得四边形是菱形,连接,,设动点P 的运动时间为t 秒,则,,要使得四边形是菱形,则需要,,,,在中,PQ CD =//PQ CD PDCQ ∴PD CQ =AP t =3CQ t = 24PD AD AP t =-=-∴243t t -=6t =∴6t =PQ CD =//PQ CDAD BHRP BP RH AP t = //AD BC BHRP 10BP PR BH === //AD BC 90B ∠=︒∴90A ∠=︒Rt BAP △,解得:,(舍去),此时,,当时,在线段上存在一点R ,使得四边形是菱形.23.答案:(1)①②③(2),证明见解析(3)M 为边上的三等分点,理由见解析解析:(1)连接,如图2,正方形沿折叠,,.又,,,由题可知E 是中点,设,则,在中,,,,可列方程:,解得:③,即H 是边上的三等分点.故答案为:①;②;③;10BP ===16t =26t =-6AP =1624AR AP PR =+=<∴6t =AD BHRP CD CG=222(2)()x x y x y +-=+23y x =30ABG GBH HBC ∠=∠=∠=︒AB CH ABCD CE ∴90B CGE CB CG ∠=∠=︒=,∴90D CGH ∠=∠=︒CD CG = CH CH =∴CGH CDH ≌△△∴GH DH =AB 2AB x =DH y =AE BE EG x ===Rt AEH △222AE AH EH +=2AH AD DH x y =-=-EH EG GH x y =+=+222(2)()x x y x y +-=+23y x =AD CD CG =222(2)()x x y x y +-=+23y x =(2)将矩形沿着折叠,A 点落在了折痕的H 点,根据翻折的特征,,,,将矩形沿着折叠,使与重合,四边形为矩形,且,,取中点P ,连接,在中,,又,,是等边三角形,,,,又,,.(3),,ABCD BG EF ∴ABG HBG △△≌ABG GBH ∠=∠AB BH = ABCD EF AD BC ∴EFCB 12AE BE AB ==∴90BEF ∠=︒BH EP Rt BEH △12EP BP BH ==1122BE AB BH ==∴BE BP EP ==∴BEP △∴60EBH ∠=︒∴903060BHE ∠=︒-︒=︒∴90906030HBC EBH ∠=︒-∠=︒-︒=︒ABG GBH ∠=∠∴30ABG GBH ∠=∠=︒∴30ABG GBH HBC ∠=∠=∠=︒ //AD BC ∴AGB GBC ∠=∠由第二问可知,,,为折痕,根据翻折的特征,,在中,又,为等腰三角形,有,,,M 为边上的三等分点.24.答案:(1)(2),证明见解析(3)解析:(1),,解得,,;故答案为:;(2),理由如下:如图,延长至点N ,使得,60GBC GBH HBC ∠=∠+∠=︒∴60AGB GBC ∠=∠=︒ MG ∴1302AGM MGN AGB ∠=∠=∠=︒Rt MAG △∴12AM MG = 30ABG ∠=︒∴BMG △MB MG =∴1122AM MG MB ==∴13AM AB =∴AB ()4,4BM EM FM =+4b =+∴4040a a -≥⎧⎨-≥⎩4a =∴4b =∴()4,4B ()4,4BM EM FM =+BM MN MF =,是等边三角形,,,是等边三角形,,,,,,在和中,,,,;(3)如图,过点B 作,且,连接,60FMN EMO ∠=∠=︒∴FMN △∴60MFN ∠=︒FM FN = BEF △∴60BFE ∠=︒BF EF = 60BFM BFE EFM EFM ∠=∠+∠=︒+∠60EFN EFM MFN EFM ∠=∠+∠=∠+︒∴BFM EFN ∠=∠BFM △EFN △BF EF BFM EFN FM FN =⎧⎪∠=∠⎨⎪=⎩∴()SAS BFM EFN ≌△△∴BM EN = EN EM MN EM FM =+=+∴BM EM FM =+//BD AC BD OA =DG,,,,,,四边形为正方形,且,,,在和中,,,的最小值即为的最小值.连接,则,的最小值为的长.过点D 作轴于点P ,作于点Q ,在正方形中,平分,,,,//BD AC ∴DBG BCA ∠=∠ ()4,4B BA OA ⊥BC OC⊥∴4OA OC BC AB ==== OA OB ⊥∴OABC //AO BC ∴BCA OAC ∠=∠∴DBG OAH ∠=∠BGD △AHO △BD AO DBG OAH BG AH =⎧⎪∠=∠⎨⎪=⎩∴()SAS BGD AHO ≌△△∴DG OH =∴OH OG +DG OG +OD DG OG OD +≥∴DG OG +OD DP x ⊥DQ BC ⊥ ABCO AC BCO ∠90BCO ∠=︒∴1452BCA BCO ∠=∠=︒∴45DBQ ∠=︒,即,,,,在中,,,轴,,四边形是矩形,,在中,的最小值为故答案为:DQ BC ⊥90DQB ∠=︒∴9045BDQ DBQ ∠=︒-∠=︒∴DBQ BDQ ∠=∠∴BQ DQ = Rt BDQ △22224BQ DQ BD +==∴BQ DQ ==∴4CQ BC BQ =-=- 18090QCP BCO ∠=︒-∠=︒DP x ⊥DQ BC ⊥∴CPDQ ∴4DP QC ==-QD ==∴4OP OC CP =+=+∴Rt OPD △OD ===∴OH OG +。
人教版八年级下册数学《期中检测试卷》及答案
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题:(每小题4分,共48分)1.下列各式中,运算正确的是( ) A. 222()-=-B.284⨯=C.2810+= D. 222-=2.下列四组线段中,能构成直角三角形的是( ) A. a =1,b =2,c =3 B. a =2,b =3,c =4 C. a =2,b =4,c =5D. a =3,b =4,c =53.函数y=2x ﹣5的图象经过( ) A. 第一、三、四象限 B. 第一、二、四象限 C. 第二、三、四象限D. 第一、二、三象限 4.关于数据-4,1,2,-1,2,下面结果中,错误的是( ) A. 中位数为1B. 方差为26C. 众数为2D. 平均数为05.要得到函数y =2x +3的图象,只需将函数y =2x 的图象( ) A 向左平移3个单位 B. 向右平移3个单位 C. 向下平移3个单位D. 向上平移3个单位6.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,已知∠AOD=120°,AB=2,则AC 的长为( )A. 2B. 4C. 6D. 87.已知()()12223,,2,P y P y -是一次函数1y x =--的图象上的两个点,则12,y y 的大小关系是( ) A. 12y y =B. 12y y <C. 12>y yD. 不能确定8.2022年将在北京-张家口举办冬季奥运会,很多学校开设了相关课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差2s :队员1 队员2 队员3 队员4 平均数(秒) 51 50 51 50 方差2s (秒2) 3.53.514.515.5根据表中数据,要从中选择一名成绩好又发挥稳定运动员参加比赛,应该选择( ) A. 队员1B. 队员2C. 队员3D. 队员49.如图,函数3y x b =+和3y ax =-的图像交于点(2,5)P --,则根据图像可得不等式33x b ax +>-的解集是( )A. 5x >-B. 3x >-C. 2x >-D. 2x <-10.21025x x -+5﹣x ,则x 的取值范围是( ) A. 为任意实数B. 0≤x≤5C. x≥5D. x≤511.直角三角形的面积为 ,斜边上的中线为 ,则这个三角形周长为 ( ) A22d S d +B. 2d S d -C. 22d S d ++D. )22d S d +12.设max 表示两个数中的最大值,例如:max{0,2}2=,max{12,8}12=,则关于的函数max{3,21}y x x =+可表示为( )A. 3y x =B. 21y x =+C. 3(1)21(1)x x y x x <⎧=⎨+≥⎩D. 21(1)3(1)x x y x x +<⎧=⎨≥⎩二.填空题(每小题4分,共24分)13.若x 2+在实数范围内有意义,则x 的取值范围是______.14.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,那么另一组数据3x 1﹣2,3x 2﹣2,3x 3﹣2,3x 4﹣2,3x 5﹣2的平均数是_____. 15.计算3393aaa a +-=__________. 16.如图,两张等宽纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.17.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.18.一般地,在平面直角坐标系中,我们求点到直线间的距离,可用下面的公式求解: 点()00P x ,y 到直线Ax By C 0++=的距离()d 公式是:0022Ax By Cd A B++=+如:求:点()P 1,1到直线2x 6y 90+-=的距离. 解:由点到直线的距离公式,得222161910d 204026⨯+⨯-===+ 根据平行线的性质,我们利用点到直线的距离公式,也可以求两平行线间的距离. 则两条平行线1l :2x 3y 8+=和2l :2x 3y 180++=间的距离是______.三.解答题:(本大题共7小题,共78分)19.0201827233(2π)(1)--+-20.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.21.某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示. (1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好; (3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定. 22.如图,一次函数y ax b =+的图象与正比例函数y kx =的图象交于点M .(1)求正比例函数和一次函数的解析式;(2)根据图象写出使正比例函数的值大于一次函数的值的的取值范围; (3)求MOP △的面积.23.如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.24.已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车离出发地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(2)它们出发92小时时,离各自出发地的距离相等,求乙车离出发地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.25.现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.(1)如图1,若点O与点A重合,则OM与ON的数量关系是;(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)答案与解析一.选择题:(每小题4分,共48分)1.下列各式中,运算正确的是()A.=- B. 4= C. = D. 2= 2[答案]B[解析][分析],=a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.[详解]A2=,故原题计算错误;B=,故原题计算正确;C=故原题计算错误;D、2不能合并,故原题计算错误;故选B.[点睛]此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.2.下列四组线段中,能构成直角三角形的是()A. a=1,b=2,c=3B. a=2,b=3,c=4C. a=2,b=4,c=5D. a=3,b=4,c=5[答案]D[解析][分析]根据勾股定理的逆定理对各选项进行逐一分析即可.[详解]解:A、∵12+22=5≠32,∴不能构成直角三角形,故本选项错误;B、∵22+32=13≠42,∴不能构成直角三角形,故本选项错误;C、∵22+42=20≠52,∴不能构成直角三角形,故本选项错误;D、∵32+42=25=52,∴能构成直角三角形,故本选项正确.故选:D.[点睛]本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.3.函数y=2x﹣5的图象经过( )A. 第一、三、四象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、二、三象限[答案]A[解析][分析]先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可.[详解]∵一次函数y=2x-5中,k=2>0,∴此函数图象经过一、三象限,∵b= -5<0,∴此函数图象与y轴负半轴相交,∴此一次函数的图象经过一、三、四象限,不经过第二象限.故选A.[点睛]本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,函数图象经过一、三象限,当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.4.关于数据-4,1,2,-1,2,下面结果中,错误的是( )A. 中位数为1B. 方差为26C. 众数为2D. 平均数为0[答案]B[解析][详解]A.∵从小到大排序为-4,-1,,1,2,2,∴中位数为1,故正确;B.412125x-++-+==,()()()()222224010102022655s--+--+-+-⨯==,故不正确;C.∵众数是2,故正确;D.412125x-++-+==,故正确;故选B.5.要得到函数y=2x+3的图象,只需将函数y=2x的图象()A. 向左平移3个单位B. 向右平移3个单位C. 向下平移3个单位D. 向上平移3个单位[答案]D[解析][分析]平移后相当于x不变y增加了3个单位,由此可得出答案.[详解]解:由题意得x值不变y增加3个单位应向上平移3个单位.故选D.[点睛]本题考查一次函数图象的几何变换,注意平移k值不变的性质.6.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为( )A. 2B. 4C. 6D. 8[答案]B[解析][分析]已知四边形ABCD是矩形,∠AOD=120°,AB=2,根据矩形的性质可证得△AOB是等边三角形,则OA=OB=AB=2,AC=2OA=4.[详解]∵四边形ABCD是矩形∴AC=BD,OA=OC,OB=OD∴OA=OB∵∠AOD=120° ∴∠AOB=60°∴△AOB 是等边三角形 ∴OA=OB=AB=2 ∴AC=2OA=4 故选:B[点睛]本题考查了矩形的基本性质,等边三角形的判定和性质.7.已知()()12223,,2,P y P y -是一次函数1y x =--的图象上的两个点,则12,y y 的大小关系是( ) A. 12y y = B. 12y y <C. 12>y yD. 不能确定[答案]C [解析] [分析]根据()()12223,,2,P y P y -是一次函数y=-x-1图象上的两个点,由-3<2,结合一次函数y=-x-1在定义域内是单调递减函数,判断出12,y y 的大小关系即可.[详解]∵()()12223,,2,P y P y -是一次函数y=−x−1的图象上的两个点,且−3<2, ∴12>y y . 故选C[点睛]此题考查一次函数图象上点的坐标特征,解题关键在于结合一次函数y=-x-1在定义域内是单调递减函数8.2022年将在北京-张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差2s :根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )A. 队员1B. 队员2C. 队员3D. 队员4[答案]B[解析][分析]据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.[详解]因为队员1和2的方差最小,但队员2平均数最小,所以成绩好,所以队员2成绩好又发挥稳定. 故选B .[点睛]考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9.如图,函数3y x b =+和3y ax =-的图像交于点(2,5)P --,则根据图像可得不等式33x b ax +>-的解集是( )A. 5x >-B. 3x >-C. 2x >-D. 2x <-[答案]C[解析][分析] 根据一次函数的图象和两函数的交点坐标即可得出答案[详解]解:从图象得到,当x >-2时,3y x b =+的图象在函数y=ax-3的图象上∴不等式3x+b>ax-3的解集是x>-2,故选:C[点睛]此题考查一次函数和一元一次不等式的应用,解题关键在于看懂函数图象10.5﹣x,则x的取值范围是( )A. 为任意实数B. 0≤x≤5C. x≥5D. x≤5 [答案]D[解析][分析]根据二次根式的性质得出5-x≥0,求出即可.[详解]|5|5x x==-=-,∴5-x≥0,解得:x≤5,故选D.[点睛]本题考查了二次根式的性质的应用,注意:当a≥0时,当a≤0时.11.直角三角形的面积为,斜边上的中线为,则这个三角形周长为()2d dC. dD. )2d[答案]D[解析][分析]根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可.[详解]解:设直角三角形的两条直角边分别为x、y,∵斜边上的中线为d,∴斜边长2d,由勾股定理得,x2+y2=4d2,∵直角三角形的面积为S,∴12S xy=,则2xy=4S,即(x+y)2=4d2+4S,∴x y+=∴这个三角形周长为:)2d ,故选D. [点睛]本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2. 12.设max 表示两个数中的最大值,例如:max{0,2}2=,max{12,8}12=,则关于的函数max{3,21}y x x =+可表示为( )A. 3y x =B. 21y x =+C. 3(1)21(1)x x y x x <⎧=⎨+≥⎩D. 21(1)3(1)x x y x x +<⎧=⎨≥⎩[答案]D[解析][分析]由于3x 与21x +的大小不能确定,故应分两种情况进行讨论.[详解]当321x x ≥+,即1x ≥时,{}3,213y max x x x =+=;当321x x <+,即1x <时,{}3,2121y max x x x =+=+.故选D .[点睛]本题考查的是一次函数的性质,解答此题时要注意进行分类讨论. 二.填空题(每小题4分,共24分)13.,则x 的取值范围是______.[答案]x≥-2[解析]分析:根据二次根式有意义条件:被开方数为非负数,列不等式求解即可.详解:∵x+2≥0∴x≥-2.故答案为x≥-2.点睛:此题主要考查了二次根式有意义的条件,明确被开方数为非负数是解题关键.14.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,那么另一组数据3x 1﹣2,3x 2﹣2,3x 3﹣2,3x 4﹣2,3x 5﹣2的平均数是_____.[答案]4[解析][分析]平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据x 1,x 2,x 3,x 4,x 5的和,然后再用平均数的定义求新数据的平均数.[详解]一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,有15(x 1+x 2+x 3+x 4+x 5)=2, 那么另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数是15(3x 1-2+3x 2-2+3x 3-2+3x 4-2+3x 5-2)=4. 故答案是:4.[点睛]考查的是样本平均数的求法及运用,解题关键是记熟公式:12n x nx x x ++⋯+=. 15.计算3393a a a a +-=__________. [答案]3a[解析]分析:先把各根式化简,然后进行合并即可得到结果.详解:原式=333a a a +-=3a点睛:本题主要考查二次根式的加减,比较简单.16.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.[答案]2[解析][分析]首先由对边分别平行可判断四边形ABCD 为平行四边形,连接AC 和BD ,过A 点分别作DC 和BC 的垂线,垂足分别为F 和E ,通过证明△ADF ≌△ABC 来证明四边形ABCD 为菱形,从而得到AC 与BD 相互垂直平分,再利用勾股定理求得BD 长度.[详解]解:连接AC 和BD ,其交点为O ,过A 点分别作DC 和BC 的垂线,垂足分别为F 和E,∵AB ∥CD,AD ∥BC,∴四边形ABCD 为平行四边形,∴∠ADF=∠ABE,∵两纸条宽度相同,∴AF=AE,∵90ADF ABE AFD AEB AF AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ADF ≌△ABE,∴AD=AB,∴四边形ABCD 为菱形,∴AC 与BD 相互垂直平分,∴BD=22242AB AO -=故本题答案为:2[点睛]本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.17.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.[答案]①③④[解析][分析]根据y 1=kx+b 和y 2=x+a 图象可知:k <0,a <0,所以当x >3时,相应的x 的值,y 1图象均低于y 2的图象.[详解]根据图示及数据可知:①k <0正确;②a <0,原来的说法错误;③方程kx+b=x+a 的解是x=3,正确;④当x >3时,y 1<y 2正确.故答案是:①③④.[点睛]考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b 的图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限.18.一般地,在平面直角坐标系中,我们求点到直线间的距离,可用下面的公式求解:点()00P x ,y 到直线Ax By C 0++=的距离()d 公式是:0022Ax By C d A B ++=+ 如:求:点()P 1,1到直线2x 6y 90+-=的距离.解:由点到直线的距离公式,得222161910d 4026⨯+⨯-===+ 根据平行线的性质,我们利用点到直线的距离公式,也可以求两平行线间的距离.则两条平行线1l :2x 3y 8+=和2l :2x 3y 180++=间的距离是______.[答案]13[解析][分析]根据题意在1l :238x y +=上取一点()4,0P ,求出点P 到直线2l :23180x y ++=的距离d 即可.[详解]在1l :238x y +=上取一点()4,0P ,点P 到直线2l :23180x y ++=的距离d 即为两直线之间的距离:d ==故答案为[点睛]本题考查了两直线平行或相交问题,一次函数的性质,点到直线距离,平行线之间的距离等知识,解题的关键是学会利用公式解决问题,学会用转化的思想思考问题.三.解答题:(本大题共7小题,共78分)19.02018π)(1)--+- [答案]1.[解析][分析]首先计算乘方、开方,然后计算乘法,最后从左向右依次计算即可[详解02018)(1)π--+-,=1=.[点睛]本题考查了实数的运算,解题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.20.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.[答案]24m 2.[解析][分析]连接AC ,先利用勾股定理求出AC ,再根据勾股定理的逆定理判定△ABC 是直角三角形,根据△ABC 的面积减去△ACD 的面积就是所求的面积.[详解]解:连接AC∵AD DC ⊥∴90ADC ∠=︒在Rt ADC ∆中,根据勾股定理 2222435(m)AC AD CD =+=+=在ABC ∆中,∵22222251213AC BC AB +=+==ABC ∆是直角三角形∴()25123424m 22ABC AC A CD D B S S S ∆∆⨯⨯=-=-=四边形.[点睛]本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC 是直角三角形是解题的关键.同时考查了直角三角形的面积公式.21.某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.[答案](1)填表:初中平均数为85(分),众数85(分);高中部中位数80(分);(2)初中部成绩好些;(3)初中代表队选手成绩较为稳定.[解析][分析](1)根据成绩表加以计算可补全统计表;根据平均数、众数、中位数的统计意义回答;(2)根据平均数和中位数的统计意义分析得出即可;(3)分别求出初中、高中部的方差即可.[详解]解:(1)填表:(1)填表:初中平均数为:15(75+80+85+85+100)=85(分), 众数85(分);将高中部的数据从小到大进行排列得:70,75,80,100,100,∴高中部中位数80(分);(2)初中部成绩好些,因为两个队的平均数都相同,初中部的中位数高,∴在平均数相同的情况下中位数高的初中部成绩好些;(3)∵21s =15[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70, 22s =15[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160. ∴21s <22s ,因此,初中代表队选手成绩较为稳定.[点睛]此题主要考查了平均数、众数、中位数、方差的统计意义,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.22.如图,一次函数y ax b =+的图象与正比例函数y kx =的图象交于点M .(1)求正比例函数和一次函数的解析式;(2)根据图象写出使正比例函数的值大于一次函数的值的的取值范围;(3)求MOP △的面积.[答案](1)一次函数表达式为y=2x-2;正比例函数为y=x ;(2)x<2;(3)1.[解析][分析](1)将(0,-2)和(1,0)代入y ax b =+解出一次函数的解析式,将M(2,2)代入正比例函数y kx =解答即可;(2)根据图象得出不等式的解集即可;(3)利用三角形的面积公式计算即可.[详解]()1y ax b =+经过()1,0和()0,2-,0=2k b b+⎧∴⎨-=⎩ 解得k 2=,b 2=-,一次函数表达式为:y 2x 2=-;把()M 2,m 代入y 2x 2=-得m 2222∴=⨯-=,点()M 2,2,直线y kx =过点()M 2,2,22k ∴=,k 1∴=,正比例函数解析式y x =.()2由图象可知,当x 2=时,一次函数与正比例函数相交;x 2<时,正比例函数图象在一次函数上方, 故:x 2<时,x 2x 2>-.()3如图,作MN 垂直x 轴,则MN 2=,OP 1=,MOP ∴的面积为:11212⨯⨯=.[点睛]本题考查了一次函数的图象和性质问题,解题的关键是根据待定系数法解出解析式.23.如图,矩形ABCD 的对角线AC 、BD 交于点O ,且DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED 的面积.[答案](1)证明见解析;(2)3[解析][分析](1)由平行四边形的判定得出四边形OCED 是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.(2)解直角三角形求出BC=2.3连接OE,交CD 于点F,根据菱形的性质得出F 为CD 中点,求出OF=12BC=1,求出OE=2OF=2,求出菱形的面积即可.[详解]()1证明:CE //OD ,DE //OC ,四边形OCED 是平行四边形,矩形ABCD,AC BD ∴=,1OC AC 2=,1OD BD 2=, OC OD ∴=,四边形OCED 菱形;()2在矩形ABCD 中,ABC 90∠=,BAC 30∠=,AC 4=,BC 2∴=,AB DC 23∴==,连接OE,交CD 于点F,四边形OCED 为菱形,F ∴为CD 中点,O 为BD 中点,1OF BC 12∴==, OE 2OF 2∴==,OCED 11S OE CD 2232322∴=⨯⨯=⨯⨯=菱形 [点睛]本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.24.已知:甲乙两车分别从相距300千米的A 、B 两地同时出发相向而行,其中甲到达B 地后立即返回,如图是它们离各自出发地的距离y (千米)与行驶时间x (小时)之间的函数图象.(1)求甲车离出发地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(2)它们出发92小时时,离各自出发地的距离相等,求乙车离出发地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.[答案](1)y=100(03)2754080(3)4x xx x≤≤⎧⎪⎨-<≤⎪⎩;(2)=40y x乙(0≤x≤152);(3)两车第一次相遇时间为第157小时,第二次相遇时间为第6小时.[解析][分析](1)由图知,该函数关系在不同的时间里表现成不同的关系,需分段表达.当行驶时间小于3时是正比例函数;当行使时间大于3小时小于274小时是一次函数.可根据待定系数法列方程,求函数关系式;(2)4.5小时大于3小时,代入一次函数关系式,计算出乙车在用了92小时行使的距离.从图象可看出求乙车离出发地的距离y(千米)与行驶时间x(小时)之间是正比例函数关系,用待定系数法可求解;(3)两者相向而行,相遇时甲、乙两车行使的距离之和为300千米,列出方程解答,由题意有两次相遇.[详解](1)当0≤x≤3时,是正比例函数,设为y=kx,当x=3时,y=300,代入解得k=100,所以y=100x;当3<x≤274时,是一次函数,设为y=kx+b,代入两点(3,300)、(274,0),得3300274k bk b+=⎧⎪⎨+=⎪⎩,解得80540kb=-⎧⎨=⎩,所以y=540﹣80x.综合以上得甲车离出发地的距离y与行驶时间x之间的函数关系式为:y=100(03)27 54080(3)4x xx x≤≤⎧⎪⎨-<≤⎪⎩;(2)当x=92时,y甲=540﹣80×92=180;乙车过点(92,180),=40y x乙.(0≤x≤152)(3)由题意有两次相遇.①当0≤x≤3,100x+40x=300,解得x=157;②当3<x≤274时,(540﹣80x)+40x=300,解得x=6.综上所述,两车第一次相遇时间为第157小时,第二次相遇时间为第6小时.[点睛]本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.此题中需注意的是相向而行时相遇的问题.25.现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.(1)如图1,若点O与点A重合,则OM与ON的数量关系是;(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)[答案](1)OM=ON;(2)成立.(3)O在移动过程中可形成线段AC;(4)O在移动过程中可形成线段AC. [解析]试题分析:(1)根据△OBM与△ODN全等,可以得出OM与ON相等的数量关系;(2)连接AC、BD,则通过判定△BOM≌△CON,可以得到OM=ON;(3)过点O作OE⊥BC,作OF⊥CD,可以通过判定△MOE≌△NOF,得出OE=OF,进而发现点O在∠C的平分线上;(4)可以运用(3)中作辅助线的方法,判定三角形全等并得出结论.试题解析:(1)若点O与点A重合,则OM与ON的数量关系是:OM=ON;(2)仍成立.证明:如图2,连接AC、BD.由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°.∵∠MON=90°,∴∠BOM=∠CON,在△BOM和△CON中,∵∠OBM=∠OCN,BO=CO,∠BOM=∠CON,∴△BOM≌△CON(ASA),∴OM=ON;(3)如图3,过点O作OE⊥BC,作OF⊥CD,垂足分别为E、F,则∠OEM=∠OFN=90°.又∵∠C=90°,∴∠EOF=90°=∠MON,∴∠MOE=∠NOF.在△MOE和△NOF中,∵∠OEM=∠OFN,∠MOE=∠NOF,OM=ON,∴△MOE≌△NOF(AAS),∴OE=OF.又∵OE⊥BC,OF⊥CD,∴点O在∠C的平分线上,∴O在移动过程中可形成线段AC;(4)O在移动过程中可形成直线AC.考点:四边形综合题;全等三角形的判定与性质;角平分线的性质;探究型;操作型;压轴题.。
江苏苏州2024年八年级下学期期中数学试题+答案
初二年级调研试卷数学2024.04本卷由选择题、填空题和解答题组成,共27题,满分130分,调研时间120分钟. 注意事项:1.答题前,考生务必将学校、班级、姓名、调研号等信息填写在答题卡相应的位置上.2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效;如需作图,先用2B 铅笔画出图形,再用0.5毫米,黑色墨水签字笔描黑,不得用其他笔答题.3.考生答题必须答在答题卡相应的位置上,答在试卷和草稿纸上一律无效;一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将答案填涂在答题卡相应位置上)1.下面四个图形分别是苏州博物馆、苏州轨道交通、苏州银行和苏州电视台的标志,在这四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.从装有红球、白球、黑球的不透明袋子中任意摸出一个球,该球是红球,这个事件是( )A .必然事件B .随机事件C .不可能事件D .都有可能 3.若分式221x x ++有意义,则x 的取值范围是( ) A .2x >− B .12x >− C .2x ≠− D .12x ≠− 4.国际奥委会于2001年7月13日在莫斯科举行会议,通过投票确定2008年奥运会举办城市.在第二轮投票中,北京获得总计105张选票中的56票,得票率超过50%,取得了2008年奥运会举办权.在第二轮投票中,北京得票的频数是( )A .50%B .56105C .56D .105 5.1x =是关于x 的一元二次方程220x ax b ++=的解,则24a b +的值是( )A .1−B .1C .2−D .26.“孔子周游列国”是流传很广的故事.相传有一次他和学生到离他们住的驿站30里的书院参观,学生步行出发1小时后,孔子坐牛车出发,牛车的速度是步行的1.5倍,孔子和学生们同时到达书院.设学生步行的速度为每小时x 里,则可列方程为( )A .303011.5x x =+ B .30301.51x x =+ C .303011.5x x =− D .30301.51x x =−7.如果关于x 的一元二次方程210kx x −+=有实数根,则k 的取值范围是( ) A .14k >且0k ≠ B .14k <且0k ≠ C .14k ≤且0k ≠ D .14k < 8.如图,在矩形ABCD 中,点E 是CD 的中点,点F 在BD 上,3BF DF =,若4,3AB BC ==,则EF 的长为( )(第8题)A .1B .54C .32D .52二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上........) 9.根据市生态环境局发布的数据,2023年上半年,全市环境空气质量优良天数比率为80.7%.要调查市区环境空气质量状况,适合的调查方式是___________(填“普查”或“抽样调查”)。
八年级数学下册期中试卷(完整版)
八年级数学下册期中试卷(完整版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.若999999a =,990119b =,则下列结论正确是( ) A .a <b B .a b = C .a >b D .1ab =2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.已知13x x +=,则2421x x x ++的值是( ) A .9 B .8 C .19 D .184.把38a 化为最简二次根式,得 ( )A .22a aB .342aC .322aD .24a a5.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或346.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A 36B 33C .6D .37.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC8.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC ⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点9.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B +∠BDC=180°10.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A.3米B.6米C.3D.3米二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是.2x1-有意义,则x的取值范围是▲.3x2-x的取值范围是________.4.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.5.如图,已知函数y =2x +b 与函数y =kx -3的图象交于点P (4,-6),则不等式kx -3>2x +b 的解集是__________.6.如图,∠ACB =90°,AC =BC ,点C(1,2)、A(-2,0),则点B 的坐标是__________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:21211222m m m m ++⎛⎫-÷ ⎪++⎝⎭,其中22m =3.已知11881,2y x x =--22x y x y y x y x+++-.4.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.5.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.6.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.()1求每套队服和每个足球的价格是多少?()2若城区四校联合购买100套队服和a(a10)>个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;()3在()2的条件下,若a60=,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、A5、D6、D7、C8、B9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、x 1≥.3、x 2≥4、85、x <46、(3,-1)三、解答题(本大题共6小题,共72分)1、2x =23、14、(1)DE=3;(2)ADB S 15∆=.5、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.6、(1) 每套队服150元,每个足球100元;(2) 到甲商场购买所花的费用为:100a+14000,到乙商场购买所花的费用为: 80a+15000;(3)购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算.。
【人教版】数学八年级下学期《期中考试试题》(附答案解析)
人教版八年级下学期期中测试数 学 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共6小题)1. 在式子 3.14π-,22a b +,5a +,23y -,21m +,||ab 中,是二次根式的有( )A. 3个B. 4个C. 5个D. 6个 2. 下列三角形中,不是直角三角形的是( )A. △ABC 中,∠A=∠B-∠CB. △ABC 中,a:b:c=1:2:3C. △ABC 中,a 2=c 2-b 2D. △ABC 中,三边的长分别为m 2+n 2,m 2-n 2,2mn(m>n>0) 3. 如图,在矩形ABCD 中无重叠放入面积为16和12的两张正方形纸片,则图中空白部分的面积为( ) A . 1683-B. 1283-+C. 843-D. 423- 4. 实数a b 、在数轴上对应点的位置如图所示,化简()2a a b --的结果是( )A. 2a b -+B. 2a b -C. b -D. b5. 如图,已知正方形ABCD 的对角线长为22,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( )A. 2B. 2C. 8D. 66. 甲、乙在一段长2000米的直线公路上进行跑步练习,起跑时甲在起点,乙在甲的前面,若甲、乙同时起跑至甲到达终点的过程中,甲乙之间的距离y (米)与 时间x (秒)之间的函数关系如图所示.有下列说法:①甲的速度为5米/秒;②100秒时甲追上乙;③经过50秒时甲乙相距50米;④甲到终点时,乙距离终点300米.其中正确的说法有( )A. 4个B. 3个C. 2个D. 1个二.填空题(共6小题)7. 如果正比例函数(21)y k x =-的图像经过原点和第一、第三象限,那么k 的取值范围是___________. 8. 若二次根式25x +与3能合并,则x 可取的最小正整数是_________.9. 如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.10. 如图,一只蚂蚁从长为2cm ,宽为2cm ,高为3cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线长是_____cm.11. 如图,在菱形ABCD 中,点E 为AB 上一点,DE =AD ,连接EC .若∠ADE =36°,则∠BCE 的度数为_____.12. 如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=6,BD=8,E为AD中点,点P在x轴上移动.若△POE为等腰三角形,请写出所有符合要求的点P的坐标________________.三.解答题(共11小题)13. 计算:(1)1 21231263+-⨯(2)8123|265|2-÷+--14. 已知y﹣3与2x﹣1成正比例,且当x=1时,y=6.(1)求y与x之间的函数解析式.(2)当x=2时,求y的值.(3)若点A(x1,y1),B(x2,y2)都在该函数的图象上,且y1>y2,试判断x1,x2的大小关系.15. 如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF菱形;(3)若AC=6,AB=8,求菱形ADCF的面积.16. 甲、乙两车同时同时出发从A地前往B地,乙行驶途中有一次停车修理,修好后乙车的行驶速度是原来的2倍.两车距离A地的路程(千米)与行驶时间(时)的函数图象如图所示.(1)求甲车距离A地的路程(千米)与行驶时间(时)之间的函数关系式;(2)当x=2.8时,甲、乙两车之间的距离是千米;乙车到达B地所用的时间a的值为;(3)行驶过程中,两车出发多长时间首次后相遇?17. 请用无刻度的直尺作图.(1)在图1中,已知点E是正方形ABCD边AB的中点,画出CD的中点F;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.18. 如图,四边形ABCD中,AB∥CD,AB≠CD,AC=DB.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点,求证:线段EF与线段GH互相平分.19. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:322)2,善于思考的小明进行了以下探索:设2)2(其中a、b、m、n均为整数),则有2=m2+2n22.∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分a+b2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b3=(m+n3)2,用含m、n的式子分别表示a、b,得a= ,b=;(2)试着把7+43化成一个完全平方式.(3)若a是216的立方根,b是16的平方根,试计算:2.a b20. 如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=2,当四边形BEDF为矩形时,求线段AE的长.21. 已知动点P以每秒1cm的速度沿图甲的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图乙中的图象表示.若AB=3cm,试回答下列问题(1)图甲中的BC长是多少?(2)图乙中的a是多少?(3)图甲中的图形面积是多少?(4)图乙中的b是多少?22. 如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.23. 在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.答案与解析一.选择题(共6小题)1. 在式子 3.14π-,22a b +,5a +,23y -,21m +,||ab 中,是二次根式的有( )A. 3个B. 4个C. 5个D. 6个【答案】B【解析】【分析】根据二次根式的定义形如a (a ≥0)的式子叫做二次根式,对被开方数的符号进行判断即可得.【详解】解:在所列式子中是二次根式的有 3.14π-,22a b +,21m +,||ab 这4个, 故选:B .【点睛】本题主要考查二次根式的定义.准确记忆二次根式的定义是解题的关键2. 下列三角形中,不是直角三角形的是( )A. △ABC 中,∠A=∠B-∠CB. △ABC 中,a:b:c=1:2:3C. △ABC 中,a 2=c 2-b 2D. △ABC 中,三边的长分别为m 2+n 2,m 2-n 2,2mn(m>n>0) 【答案】B【解析】【分析】 对于直角三角形的判定我们可以从角的方面去判断,也可以利用勾股定理的逆定理来进行判断.【详解】解: A 、∠A+∠C=∠B ,则∠B=90°,则为直角三角形;B 、当三边比值为1:2:3时,则无法构成三角形;C 、根据题意可知:222+=a b c ,满足勾股定理的逆定理,则这个三角形就是直角三角形;D 、根据题意可知()()()22222222mn m n m n -+=+,满足勾股定理的逆定理,则这个三角形就是直角三角形.3. 如图,在矩形ABCD 中无重叠放入面积为16和12的两张正方形纸片,则图中空白部分的面积为( )A. 1683-B. 1283-+C. 843-D. 423-【答案】B【解析】【分析】 分别表示出空白矩形的长和宽,列式计算即可.【详解】解:空白矩形的长为12=23,宽为1612423-=-,∴面积=()23423=83-12-故选:B .【点睛】本题考查了二次根式的计算,根据题意表示出空白矩形的边长是解题关键.4. 实数a b 、在数轴上对应点的位置如图所示,化简()2a a b --的结果是( )A. 2a b -+B. 2a b -C. b -D. b 【答案】C【解析】【分析】根据实数在数轴上对应点的位置,判断a ,a-b 的正负,再根据绝对值的意义、二次根式的性质进行化简即可得.【详解】由数轴上点的位置知,a<0<b ,则a-b <0,∴原式=-a+a-b=-b .故选C .【点睛】本题考查了实数与数轴,二次根式的化简等,准确识图,熟练掌握和灵活运用相关性质是解题的关键.5. 如图,已知正方形ABCD 的对角线长为22,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( )A. 82B. 42C. 8D. 6【答案】C【解析】【分析】首先由正方形ABCD的对角线长为22,即可求得其边长为2,然后由折叠的性质,可得A′M=AM,D′N=DN,A′D′=AD,则可得图中阴影部分的周长为:A′M+BM+BC+CN+D′N+A′D′=AM+BM+BC+CN+DN+AD=AB+BC+CD+AD,继而求得答案.【详解】解:∵正方形ABCD的对角线长为22,即2,∠A=90°,AB=AD,∠ABD=45°,∴AB=BD•cos∠2×22=2,∴AB=BC=CD=AD=2,由折叠的性质:A′M=AM,D′N=DN,A′D′=AD,∴图中阴影部分的周长为:A′M+BM+BC+CN+D′N+A′D′=AM+BM+BC+CN+DN+AD=AB+BC+CD+AD=2+2+2+2=8.故选C.【点睛】此题考查了折叠的性质与正方形的性质.此题难度适中,注意数形结合思想与整体思想的应用.6. 甲、乙在一段长2000米的直线公路上进行跑步练习,起跑时甲在起点,乙在甲的前面,若甲、乙同时起跑至甲到达终点的过程中,甲乙之间的距离y(米)与时间x(秒)之间的函数关系如图所示.有下列说法:①甲的速度为5米/秒;②100秒时甲追上乙;③经过50秒时甲乙相距50米;④甲到终点时,乙距离终点300米.其中正确的说法有( )A. 4个B. 3个C. 2个D. 1个【答案】A【解析】 【详解】在100秒时甲,乙的距离是0,则起跑后100秒甲追上乙,故②说法正确;甲每100秒比乙多跑100m ,所以经过50秒时甲乙相距50米,故③说法正确;甲每100秒比乙多跑100m ,则在400秒时,相距300米,④说法正确;甲的速度为2000÷400=5m/s ,故可以得出甲的速度为5m/s ,故①正确. 故选A .【点睛】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二.填空题(共6小题)7. 如果正比例函数(21)y k x =-的图像经过原点和第一、第三象限,那么k 的取值范围是___________.【答案】k>12. 【解析】【分析】根据正比例函数的图像和性质进行解答即可.【详解】解:∵正比例函数(21)y k x =-的图像经过原点和第一、第三象限,∴2k-1>0,∴k>12. 故答案为: k>12. 【点睛】本题考查正比例函数的性质,解题关键是掌握正比例函数的图像经过第一、第三象限时,比例系数k>0的性质.8. 25x +3x 可取的最小正整数是_________.【分析】根据题意,它们化简后的被开方数相同,列出方程求解即可【详解】∵二次根式25x +与3能合并,∴253x +=,解得–1x = (舍去),2512x +=,解得 3.5x = (舍去),2527x +=,解得11x =.即当x 取最小正整数11时,二次根式25x +与3能合并.【点睛】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.9. 如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.【答案】2π【解析】试题解析:2222121111ππππ228228AC BC S AC S BC ⎛⎫⎛⎫=⋅==⋅= ⎪ ⎪⎝⎭⎝⎭,, 所以()22212111πππ162π888S S AC BC AB +=+==⨯=. 故答案为2π.10. 如图,一只蚂蚁从长为2cm ,宽为2cm ,高为3cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线长是_____cm.【分析】先将图形展开,再根据两点之间线段最短,再由勾股定理求解,【详解】如图所示:AB=22+=.345故答案是:5.【点睛】考查了立体图形的侧面展开图,利用勾股定理求出斜边的长是解题的关键,而两点之间线段最短是解题的依据.11. 如图,在菱形ABCD中,点E为AB上一点,DE=AD,连接EC.若∠ADE=36°,则∠BCE的度数为_____.【答案】18°.【解析】【分析】由菱形的性质可得AD=CD,∠A=∠BCD,CD∥AB,由等腰三角形的性质可得∠DAE=∠DEA=72°,∠DCE=54°,即可求解.【详解】解:∵四边形ABCD是菱形∴AD=CD,∠A=∠BCD,CD∥AB∵DE=AD,∠ADE=36°,∴∠DAE=∠DEA=72°∵CD∥AB∴∠CDE =∠DEA =72°,且DE =DC =DA∴∠DCE =54°∵∠DCB =∠DAE =72°∴∠BCE =∠DCB ﹣∠DCE =18°故答案为:18°【点睛】本题考查了菱形的性质,等腰三角形的性质.熟练掌握菱形边及对角线的性质,等腰三角形的性质是解题的关键.12. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,AC=6,BD=8,E 为AD 中点,点P 在x 轴上移动.若△POE 为等腰三角形,请写出所有符合要求的点P 的坐标________________.【答案】(2.5,0)或(-2.5,0)或(4,0)或(2516,0). 【解析】【分析】 根据菱形的对角线互相垂直平分求出OA 、OD ,再利用勾股定理列式求出AD ,然后根据直角三角形斜边上的中线等于斜边的一半求出OE ,然后分①OE=OP 时,求出点P 的坐标,②OE=PE 时点P 和点D 重合,③OP=OE 时,点P 在OE 的垂直平分线上,求出OP 的长度,然后写出点P 的坐标即可.【详解】解:∵在菱形ABCD 中对角线AC=6,BD=8,∴OA=3,OD=4,∴22OA OD +22345+=,∵E 为AD 中点,∴OE=12AD=12×5=2.5, ①OE=OP 时,OP=2.5,∴点P的坐标为(2.5,0)或(-2.5,0),②OE=PE时点P和点D重合,P(4,0),③③如图,当OP=EP时,过点E作EK⊥BD于K,作OE的垂直平分线PF,交OE于点F,交x轴于点P,∴EK∥OA,∴EK:OA=ED:AD=1:2,∴EK=12OA=32,∴OK=2,∵∠PFO=∠EKO=90°,∠POF=∠EOK,∴△POF∽△EOK,∴OP:OE=OF:OK,即OP:52=54:2,解得:OP=25 16,∴点P(2516,0),综上所述,点P的坐标为(2.5,0)或(-2.5,0)或(4,0)或(2516,0).故答案为:(2.5,0)或(-2.5,0)或(4,0)或(2516,0).【点睛】本题考查了菱形的性质,主要利用了菱形的对角线互相垂直平分的性质,等腰三角形的性质,难点在于要分情况讨论.三.解答题(共11小题)13. 计算:(1)1 21231263(28123|2652-【答案】(1)(22+【解析】【分析】(1)先化简二次根式,进行乘法计算,再进行减法计算;(2)先根据二次根式和绝对值进行化简得到22(2+-,再去括号进行有理数的加减计算即可得到答案.【详解】(1)=3==(2|2-=22(2-=222+-+=2【点睛】本题考查二次根式的化简、有理数的四则运算和绝对值,解题的关键是掌握二次根式的化简、有理数的四则运算和求绝对值.14. 已知y ﹣3与2x ﹣1成正比例,且当x =1时,y =6.(1)求y 与x 之间的函数解析式.(2)当x =2时,求y 的值.(3)若点A (x 1,y 1),B (x 2,y 2)都在该函数的图象上,且y 1>y 2,试判断x 1,x 2的大小关系.【答案】(1)y =6x ;(2)12;(3)12x x >.【解析】【分析】(1)利用正比例函数的定义得到y ﹣3=k (2x ﹣1),然后把已知的对应值代入求出k ,从而得到y 与x 之间的函数解析式;(2)把x =2代入(1)中的解析式中计算出对应的函数值;(3)利用61x >62x ,可得到1x ,2x 的大小关系.【详解】解:(1)设y ﹣3=k (2x ﹣1),把x =1,y =6代入得6﹣3=k (2×1﹣1),解得k =3,则y ﹣3=3(2x ﹣1), 所以y 与x 之间的函数解析式为y =6x ;(2)由(1)知,y =6x∴当x =2x 时,y =62⨯=12;(3)∵11226,6y x y x ==,而12y y >,∴1266x x >∴12x x >【点睛】本题综合考查了一次函数的性质、待定系数法求一次函数的解析式、一次函数图象上点的坐标特征等知识,一次函数图象上的点的坐标都满足该函数的解析式15. 如图,在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F .(1)求证:四边形ADCF 是菱形;(3)若AC =6,AB =8,求菱形ADCF 的面积.【答案】(1)详见解析;(2)24【解析】【分析】(1)可先证得△AEF ≌△DEB ,可求得AF=DB ,可证得四边形ADCF 为平行四边形,再利用直角三角形的性质可求得AD=CD ,可证得结论;(2)将菱形ADCF 的面积转换成△ABC 的面积,再用S △ABC 的面积=12AB•AC ,结合条件可求得答案. 【详解】(1)证明:∵E 是AD 的中点∴AE=DE∵AF∥BC∴∠AFE=∠DBE在△AEF和△DEB中AFE DBEDEB AEF AE DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEF≌△DEB(AAS)∴AF=DB∵D是BC的中点∴BD=CD=AF∴四边形ADCF是平行四边形∵∠BAC=90°,∴AD=CD=12BC∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,AC=6,AB=8∴S菱形ADCF=CD•h=12BC•h=S△ABC=12AB•A C=168242⨯⨯=.【点睛】本题主要考查菱形的判定和性质,全等三角形的判定与性质及直角三角形的性质,掌握菱形的判定方法是解题的关键.16. 甲、乙两车同时同时出发从A地前往B地,乙行驶途中有一次停车修理,修好后乙车的行驶速度是原来的2倍.两车距离A地的路程(千米)与行驶时间(时)的函数图象如图所示.(1)求甲车距离A 地的路程(千米)与行驶时间(时)之间的函数关系式;(2)当x=2.8时,甲、乙两车之间的距离是 千米;乙车到达B 地所用的时间a 的值为 ; (3)行驶过程中,两车出发多长时间首次后相遇?【答案】(1)60y x =;(2)68,5.4;(3)4.5小时【解析】 试题分析:(1)由题意设函数关系式为,根据待定系数法即可求得结果;(2)把x=2.8代入(1)中的函数关系式即可得到甲车的路程,从而得到甲、乙两车之间的距离;先求出乙车开始的行驶速度,即可得到修好后乙车的行驶速度,从而得到a 的值;(3)设修好后乙车距离A 地的路程(千米)与行驶时间(时)的函数关系式为,根据待定系数法求得函数关系式后,再与(1)中的函数关系式组成方程组求解即可.(1)设函数关系式为 ∵图象过点(6,360) ∴,∴甲车距离A 地的路程(千米)与行驶时间(时)之间的函数关系式为60y x =;(2)在60y x =中,当x=2.8时,千米;则甲、乙两车之间的距离由图可得乙车开始的行驶速度为千米/时则修好后乙车的行驶速度为千米/时所以;(3)设修好后乙车距离A地的路程(千米)与行驶时间(时)的函数关系式为∵图象过点(2.8,100),(5.4,360)∴,解得∴函数关系式为由题意得,解得答:行驶过程中,两车出发4.5小时时间首次后相遇.考点:一次函数的应用点评:一次函数是常用的解答实际问题的数学模型,本题即是利用一次函数的有关知识解答实际应用题,是中考的常见题型.17. 请用无刻度的直尺作图.(1)在图1中,已知点E是正方形ABCD边AB的中点,画出CD的中点F;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)连接AC,BD交于点O,连接EO并延长交CD于点F,则点F即为所求;(2)连接AC,交BD于点O,延长AE交CD于点G,连接GO并延长交AB于点H,连接HC交BD于点F,则四边形AFCE即为所画的菱形.【详解】解:(1)如图,点F即为所求;(2)如图,四边形AFCE即为所画的菱形.【点睛】本题主要考查无刻度直尺作图,掌握正方形的性质和菱形的判定方法是解题的关键.18. 如图,四边形ABCD中,AB∥CD,AB≠CD,AC=DB.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点,求证:线段EF与线段GH互相平分.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)由平行四边形的性质易得AC=BM=BD,∠BDC=∠M=∠ACD,由全等三角形判定定理及性质得出结论;(2)连接EH,HF,FG,GE,E,F,G,H分别是AB,CD,AC,BD的中点,易得四边形HFGE为平行四边形,由平行四边形的性质及(1)结论得▱HFGE 为菱形,易得EF 与GH 互相垂直平分.【详解】证明:(1)过点B 作BM ∥AC 交DC 的延长线于点M ,如图1,∵AB ∥CD∴四边形ABMC 为平行四边形.∴AC =BM =BD ,∠BDC =∠M =∠ACD .在△ACD 和△BDC 中,===AC BD ACD BDC CD DC ⎧⎪∠∠⎨⎪⎩,∴△ACD ≌△BDC (SAS ),∴AD =BC ;(2)连接EH ,HF ,FG ,GE ,如图2,∵E ,F ,G ,H 分别是AB ,CD ,AC ,BD 的中点,∴HE ∥AD ,且HE =12AD ,FG ∥AD ,且FG =12, ∴四边形HFGE 为平行四边形,由(1)知,AD =BC ,∴HE =EG ,∴▱HFGE 为菱形,∴EF 与GH 互相垂直平分.【点睛】此题考查中点四边形和三角形中位线定理,平行四边形的性质及判定,全等三角形的性质与判定,菱形的判定及性质,综合运用平行四边形的性质及判定,全等三角形的性质与判定是解题的关键.19. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3)2,善于思考的小明进行了以下探索:设)2(其中a、b、m、n均为整数),则有=m2+2n2.∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若)2,用含m、n的式子分别表示a、b,得a= ,b=;(2)试着把7(3)若a是216的立方根,b是16【答案】(1)m2+3n2;2mn;(2)7+)2;(3)2.【解析】【分析】(1)根据完全平方公式展开,根据题意寻找恒等对应关系;(2)根据完全平方公式,从积的2倍入手,将看成2⨯,从而确定“首平方”底数和“尾平方”底数;(3)先求出a、b的值,再代入求值.【详解】解:(1)2am+=+(,22332a b m n+=++2232.a m nb mn∴=+=,(2)22272222+=++⨯=+(;(3)21616a b是的立方根,是的平方根,64a b∴==±,,2===±【点睛】本题考查了平方根、立方根、完全平方公式、算术平方根等知识点,能灵活运用完全平方公式进行变形是解此题的关键.20. 如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=2,当四边形BEDF为矩形时,求线段AE的长.【答案】(1)证明见解析;(2)2【解析】试题分析:(1)由△BEC≌△DFA得到BE=DF,则结合已知条件证得结论;(2)根据矩形的性质计算即可.试题解析:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAF=∠BCE.又∵BE∥DF,∴∠BEC=∠DFA.在△BE C与△DFA中,∵∠BEC=∠DFA,∠BCE=∠DAF,BC=AD,∴△BEC≌△DFA(AAS),∴BE=DF.又∵BE∥DF,∴四边形BEDF为平行四边形;(2)连接BD,BD与AC相交于点O,如图,∵AB⊥AC,AB=4,BC=213,∴AC=6,∴AO=3,∴Rt△BAO 中,BO=5,∵四边形BEDF是矩形,∴OE=OB=5,∴点E在OA的延长线上,且AE=2.考点:1.平行四边形的判定与性质;2.全等三角形的判定与性质;3.矩形的性质.21. 已知动点P以每秒1cm的速度沿图甲的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图乙中的图象表示.若AB=3cm,试回答下列问题(1)图甲中的BC长是多少?(2)图乙中的a是多少?(3)图甲中的图形面积是多少?(4)图乙中的b是多少?【答案】(1)4cm;(2)6cm2;(3)15cm2;(4)17秒【解析】【分析】(1)根据题意得:动点P在BC上运动的时间是4秒,又由动点的速度,可得BC的长;(2)由(1)可得BC的长,又由AB=3cm,可以计算出△ABP的面积,即可得到a的值;(3)分析图形可得,甲中的图形面积等于AB×AF﹣CD×DE,根据图象求出CD,DE,AF的长,代入数据计算可得答案;(4)计算BC+CD+DE+EF+F A的长度,又由P的速度,计算可得b的值.【详解】解:(1)动点P在BC上运动时,对应的时间为0到4秒,易得:BC=1cm/秒×4秒=4cm;故图甲中的BC长是4cm.(2)由(1)可得,BC=4cm,则:a=12×BC×AB=6cm2;图乙中的a是6cm2.(3)由图可得:CD=2×1=2cm,DE=1×3=3cm,则AF=BC+DE=7cm,又由AB=3cm,则甲图的面积为AB×AF﹣CD×DE=3×7﹣2×3=15cm2,图甲中的图形面积为15cm2.(4)根据题意,动点P共运动了BC+CD+DE+EF+F A=4+2+3+1+7=17cm,其速度是1cm/秒,则b=171=17秒,图乙中的b是17秒.【点睛】本题主要考查动点问题的函数图象,能够从图象中获取信息是解题的关键.22. 如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.【答案】(1)32)菱形,理由见解析(3)t=5.2或t=7时,△BEM为等腰三角形【解析】【分析】(1)利用直角三角形中30°角所对的直角边等于斜边的一半求得平行四边形的定和高,再利用底乘以高计算面积;(2)结合∠EMC=90°以及平行四边形的性质,可证明四边形DCEF是平行四边形,再通过计算得到平行四边形CDFE的一组邻边相等即可证得结论;(3)探究△BEM为等腰三角形,要分三种情况进行讨论:EB=EM,EB=BM,EM=BM.通过相应的计算表示出BE,EM,BM,然后利用边相等建立方程进行求解.【详解】(1)∵∠DAC=30°,∠ACD=90°,AD=8,∴CD=4,AC223AD CD又∵四边形ABCD为平行四边形,∴四边形ABCD的面积为4×33(2)如图1,当∠EMC=90°时,四边形DCEF是菱形.∵∠EMC=∠ACD=90°,∴DC∥EF.∵BC∥AD,∴四边形DCEF是平行四边形,∠BCA=∠DAC.由(1)可知:CD=4,AC=43.∵点M为AC的中点,∴CM=23.在Rt△EMC中,∠CME=90°,∠BCA=30°.∴CE=2ME,可得ME2+(23)2=(2ME)2,解得:ME=2.∴CE=2ME=4.∴CE=DC.又∵四边形DCEF是平行四边形,∴四边形DCEF是菱形.(3)点E在运动过程中能使△BEM为等腰三角形.理由:如图2,过点B作BG⊥AD与点G,过点E作EH⊥AD于点H,连接DM.∵DC∥AB,∠ACD=90°,∴∠CAB=90°.∴∠BAG=180°−30°−90°=60°.∴∠ABG =30°.∴AG =12AB =2,BG. ∵点E 的运动速度为每秒1个单位,运动时间为t 秒,∴CE =t ,BE =8−t .在△CEM 和△AFM 中BCM MAF MC AMCME AMF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CEM ≌△AFM .∴ME =MF ,CE =AF =t .∴HF =HG−AF−AG =BE−AF−AG =8−t−2−t =6−2t .∵EH =BG =∴在Rt △EHF 中,ME =12EF =1212∵M 为平行四边形ABCD 对角线AC 的中点,∴D ,M ,B 共线,且DM =BM .∵在Rt △DBG 中,DG =AD +AG =10,BG =∴=故BM =12×= 要使△BEM 为等腰三角形,应分以下三种情况:当EB =EM 时,有(8−t)2=14[12+(6−2t)2], 解得:t =5.2.当EB =BM 时,有8−t=,解得:t =.当EM =BM 时,由题意可知点E 与点B 重合,此时点B 、E 、M 不构成三角形.综上所述,当t =5.2或t =时,△BEM 为等腰三角形.【点睛】本题主要考查的是平行四边形的性质、菱形的性质和判定、全等三角形的性质和判定、含30度直角三角形的性质、等腰三角形的性质、勾股定理的应用,分三种情况EB =EM ,EB =BM ,EM =BM 讨论是解题的关键.23. 在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,且∠EAF=∠CEF=45°. (1)将△ADF 绕着点A 顺时针旋转90°,得到△ABG(如图①),求证:△AEG ≌△AEF ;(2)若直线EF 与AB ,AD 的延长线分别交于点M ,N(如图②),求证:EF 2=ME 2+NF 2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF ,BE ,DF 之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF 2=2BE 2+2DF 2.【解析】试题分析:(1)根据旋转的性质可知AF=AG ,∠EAF=∠GAE=45°,故可证△AEG≌△AEF ;(2)将△ADF 绕着点A 顺时针旋转90°,得到△ABG ,连结GM .由(1)知△AEG≌△AEF ,则EG=EF .再由△BME 、△DNF 、△CEF 均为等腰直角三角形,得出CE=CF ,BE=BM ,2DF ,然后证明∠GME=90°,MG=NF ,利用勾股定理得出EG 2=ME 2+MG 2,等量代换即可证明EF 2=ME 2+NF 2;(3)将△ADF 绕着点A 顺时针旋转90°,得到△ABG ,根据旋转的性质可以得到△ADF≌△ABG ,则DF=BG ,再证明△AEG≌△AEF ,得出EG=EF ,由EG=BG+BE ,等量代换得到EF=BE+DF .试题解析:(1)∵△ADF 绕着点A 顺时针旋转90°,得到△ABG ,∴AF=AG ,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE 与△AFE 中,{45AG AFGAE FAE AE AE=∠===,∴△AGE≌△AFE (SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,2,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,22,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题。
2024年最新人教版初二数学(下册)期中考卷及答案(各版本)
2024年最新人教版初二数学(下册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4 = 7x 2B. 2x 5 = 3x + 5C. 4x + 6 = 2x 8D. 5x 3 = 3x + 64. 下列各数中,绝对值最小的是()A. 3B. 0C. 2D. 55. 下列各数中,是正数的是()A. 4B. 0C. 3D. 76. 下列各数中,是整数的是()A. 2.5B. 0C. 3/4D. 4.67. 下列各数中,是分数的是()A. 2B. 0C. 3/4D. 58. 下列各数中,是负数的是()A. 2B. 0C. 3/4D. 49. 下列各数中,是偶数的是()A. 3B. 0C. 5D. 810. 下列各数中,是奇数的是()A. 2B. 0C. 3D. 4二、填空题(每题3分,共30分)1. 一个数的立方根是±2,这个数是________。
2. 下列各数中,不是有理数的是________。
3. 下列等式中,正确的是________。
4. 下列各数中,绝对值最小的是________。
5. 下列各数中,是正数的是________。
6. 下列各数中,是整数的是________。
7. 下列各数中,是分数的是________。
8. 下列各数中,是负数的是________。
9. 下列各数中,是偶数的是________。
10. 下列各数中,是奇数的是________。
三、解答题(每题10分,共30分)1. 解方程:3x + 4 = 7x 2。
2. 解方程:2x 5 = 3x + 5。
3. 解方程:4x + 6 = 2x 8。
四、证明题(每题10分,共20分)1. 证明:3x + 4 = 7x 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下学期期中质量检测数学试卷
一、选择题(每题3分,共30分) 1.下列各式中,二次根式有( )
①(-3)2
;②12-13;③(a -b )2;④-a 2
-1;⑤3
8.
A . 2个
B. 3个
C. 4个
D. 5个
2.以下各式中计算正确的是( )
A. -2)6(-=-6
B .()
2
3-=-3 C. (-16)2=±16 D. -(
1625)2=1625
3.下列说法中错误的是( )
A .在△ABC 中,若∠A =∠C -∠
B ,则△AB
C 是直角三角形;
B ..在△AB
C 中,若三边长a :b :c =1:3:2,则△ABC 是直角三角形 C .在△ABC 中,若∠A 、∠B 、∠C 的度数比是7:3:4,则△ABC 是直角三角形;
D .在△ABC 中,若三边长a :b :c =2:3:5,则△ABC 是直角三角形 4.下列各命题的逆命题成立的是( )
A .全等三角形的对应角相等
B .若a=b ,则a 2=b 2
C .如果两个实数都是正数,那么它们的积是正数。
D .线段垂直平分线上的点到这条线段两个端点的距离相等。
5.若a a 0+=
)
A. 2a -1
B. 1-2a
C. -1
D. 1 6.矩形具有而菱形不具有的性质是( ) A .两组对边分别平行 B .对角线相等 C .对角线互相平分
D .两组对角分别相等
7.
计算 )
C.
3
8.已知
a <0(
)
A.-
B.
C.-
D.9.如图,已知菱形ABCD 的对角线AC .BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是( ) A . 53cm B .25
cm C .
518cm
D. 5
24cm
第9题图
10.如图,在矩形ABCD 中,AB =2,BC =4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为( ) A. 3 B. 3.5 C. 2.5 D. 2.8
二、填空题(每题3分,共24分 )
11.代数式 1
3-x +1有意义的条件是_________
12.已知:,x y 为实数,且y<1-x +x -1+
3,化简:3y -=
13.在△ABC 中,已知AB =20,AC =13,BC 边上的高AD =12,则BC 的长为
14.已知直角三角形的两条直角边的长分别是23+1和23-1,则斜边的长是 15.我们把顺次连接四边形四条边的中点所得的四边形叫中点四边形.....。
现有一个对角线分别为6cm 和8cm 的菱形,它的中点四边形的对角线长是 .
16.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为________.
17.如图,四边形ABCD 是矩形,点E 在线段CB 的延长线上,连接DE 交AB 于点F ,∠AED =2∠CED ,点G 是DF 的中点,若BE =1,AG =4,则AB 的长为
18.如图,边长为1的菱形ABCD 中,∠DAB =60°.连结对角线AC ,以AC 为边作第二个菱形ACEF , 使∠FAC =60°.连结AE ,再以AE 为边作第三个菱形AEGH 使∠HAE =60°………按此规律所作的第n 个菱形的边长是 .
三、解答题(共66分) 19.计算(每题5分,共20分) (1) (24-2
1)-(81+6) (2) (248-327)÷6
(3)212×4
3
÷52 (4)21(2+3)—43(2+27)
A
D
第10题图
C
第16题图
第17题图
第18题图
20.(8分)如图,四边形ABCD 中,AB =3,BC =4,CD =12,AD =13,且∠B =90°.求四边形ABCD 的面积.
21.
(8分) 如图,△ACE 是以□ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,-,求D 点的坐标。
22.(8
分)已知:△ABC 中,CD 平分∠ACB 交AB 于D ,DE ∥AC 交BC 于E ,DF ∥BC 交AC 于F .求证:四边形DECF 是菱形.
23.(9分)如图在Rt △ABC 中,3,4,90==︒=∠BC AC C ,在Rt △ABC 的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形。
要求:在四个备用图中分别画出三种与示例图不同的拼接方法,在图中标明拼接的直角三角形的三边长。
示
24.(13分)如图,在△ABC 中,∠ABC =90°,BD 为AC 的中线,过点C 作CE ⊥BD 于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG =BD ,连接BG 、DF .
请解答以下两个问题。
(1)()7分)试判断四边形BDFG 是什么特殊的平形四边形?请
说明理由。
(2)(6分)如果∠G =30°,AF =8,CF =6,求四边形BDFG 的面积。