初一奥数(三)

合集下载

初一数学奥数题总结知识点

初一数学奥数题总结知识点

初一数学奥数题总结知识点一、数学基础知识1. 整数1)绝对值2)比较大小3)整数的加减乘除2. 分数1)分数的加减乘除2)分数的大小比较3. 百分数1)百分数表示法2)百分数的加减乘除3)百分数与分数的互化4. 比例1)比例的概念2)比例的应用3)比例的计算5. 直角坐标系1)直角坐标系的概念2)坐标的意义3)直角坐标系中的图形6. 数据的收集与整理1)调查数据的收集2)数据的整理3)数据的分析和解释二、几何基础知识1. 图形的认识1)平面图形的分类2)图形的性质和特点2. 角1)角的概念2)角的分类3)角的大小和角度的度量3. 直线和线段1)直线和线段的概念2)直线和线段的性质4. 三角形1)三角形的分类2)三角形的性质3)三角形的计算5. 四边形1)四边形的分类2)四边形的性质3)四边形的计算6. 圆1)圆的概念2)圆的性质3)圆的计算7. 正多边形1)正多边形的概念2)正多边形的性质3)正多边形的计算8. 空间图形1)立体图形的认识2)立体图形的性质3)立体图形的计算三、代数知识1. 代数式1)代数式的概念2)代数式的计算2. 一元一次方程1)一元一次方程的概念2)一元一次方程的解法3)一元一次方程的应用3. 一元一次不等式1)一元一次不等式的概念2)一元一次不等式的解法3)一元一次不等式的应用4. 整式的加减1)整式的概念2)整式的加减法5. 整式的乘法1)整式的乘法原理2)多项式的乘法6. 整式的除法1)整式的除法原理2)多项式的除法以上是初一数学奥数题的知识点总结,通过学习这些知识点,可以更好地应对初一数学奥数题的挑战。

希望同学们能够认真学习,积极思考,不断提高数学解题能力。

七年级数学奥数题八套(附答案)

七年级数学奥数题八套(附答案)

七年级数学奥数试题(一)一、选择题(每小题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内) 1.在-|-3|3,-(-3)3,(-3)3,-33中,最大的是( ). (A)-|-3|3 (B)-(-3)3 (C)(-3)3 (D)-332. “a 的2倍与b 的一半之和的平方,减去a 、b 两数平方和的4倍”用代数式表示应为( )(A)2a+(21b 2)-4(a+b)2 (B)(2a+21b)2-a+4b 2(c)(2a+21b)2-4(a 2+b 2) (D)(2a+21b)2-4(a 2+b 2)23.若a 是负数,则a+|-a|( ),(A)是负数 (B)是正数 (C)是零 (D)可能是正数,也可能是负数 4.如n 是正整数,那么表示“任意负奇数”的代数式是( ). (A)2n+l (B)2n-l (C)-2n+l (D)-2n-l5.已知数轴上的三点A 、B 、C 分别表示有理数a 、1、-l ,那么|a+1|表示( ). (A)A 、B 两点的距离 (B)A 、C 两点的距离 (C)A 、B 两点到原点的距离之和 (D)A 、C 两点到原点的距离之和6.如图所示,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且d-2a =10,那么数轴的原点应是( ). (A)A 点 (B)B 点 (C)C 点 (D)D 点7.已知a+b =0,a≠b,则化简ab(a+1)+ba (b+1)得( ). (A)2a (B)2b (C)+2 (D)-28.已知m<0,-l<n<0,则m ,mn ,mn 2由小到大排列的顺序是 ( ).(A)m ,mn ,mn 2 (B)mn ,mn 2,m (C)mn 2,mn ,m (D)m ,mn 2,mn 二、填空题(每小题?分,共84分)9.计算:31a -(21a -4b -6c)+3(-2c+2b)= 10.分解因式=ll.某班有男生a(a>20)人,女生20人,a-20表示的实际意义是 12.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是 13.下表中每种水果的重量是不变的,表的左边或下面的数是所在行或所在列水果的总重量,则表中问号“?”表示的数是14.某学生将某数乘以-1.25时漏了一个负号,所得结果比正确结果小0.25,则正确结果应是 .15.在数轴上,点A 、B 分别表示-31和51,则线段AB 的中点所表示的数是 .16.已知2a x b n-1与-3a 2b 2m (m 是正整数)是同类项,那么(2m-n)x = 17.王恒同学出生于20世纪,他把他出生的月份乘以2后加上5,把所得的结果乘以50后加上出生年份,再减去250,最后得到2 088,则王恒出生在 年 月.18.银行整存整取一年期的定期存款年利率是2.25%,某人1999年12月3日存入1 000元,2000年12月3日支取时本息和是 元,国家利息税税率是20%,交纳利息税后还有 元.19.有一列数a 1,a 2,a 3,a 4,…,a n ,其中a 1=6×2+l;a 2=6×3+2;a 3=6×4+3;a 4=6×5+4; 则第n 个数a n = ;当a n =2001时,n = .20.已知三角形的三个内角的和是180°,如果一个三角形的三个内角的度数都是小于120的质数,则这个三角形三个内角的度数分别是七年级奥数试题(一)答案 一、1.B 2.C 3.C 4.C 5.B 6.B 7.D 8.D 二、9.一6a+1 06,10.一43.6, 11.男生比女生多的人数,1 2.90, 13.1 6,14.0.1 2 5,15.-151,16.1,17.1988;1. 18.1022.5;101 8,,19.7n+6;2 8 520.2,8 9,8 9或2,7 1,1 07(每填错一组另扣2分).七年级奥数试题(二)一、选择题1.已知x=2是关于x 的方程3x-2m=4的根,则m 的值是( ) (A)5 (B)-5 (C)1 (D)-12.已知a+2=b-2=2c =2001,且a+b+c=2001k ,那么k 的值为( )。

精选初一奥数题五篇

精选初一奥数题五篇

精选初一奥数题五篇1.精选初一奥数题篇一1.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.2.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?3.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).4.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?5.求不定方程49x-56y+14z=35的整数解.6.男、女各8人跳集体舞.(1)如果男女分站两列;(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.问各有多少种不同情况?2.精选初一奥数题篇二1.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?2.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.3.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?4.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.5.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?3.精选初一奥数题篇三1.一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,则剩余1只船,求有多少只船?2.学校举办的美术展览中,有50幅水彩画、80画幅蜡笔画。

简单初一奥数题(10篇)

简单初一奥数题(10篇)

简单初一奥数题(10篇)1.简单初一奥数题篇一1、兄妹二人同时从家上学,哥哥每分钟走90米,妹妹每分钟走60米。

哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离学校180米处和妹妹相遇。

他们家离学校有多远?2、甲、乙两人骑自行车分别从A,B两地同时相向而行。

第一次两车在距B地7千米处相遇。

相遇后,两车继续向前行驶,当两车分别到达B,A两地后立即返回,返回时在距A地4千米处相遇。

A,B两地相距多少千米?3、龟兔赛跑,同时同地出发,全程20000米,乌龟每分钟爬行80米,兔子每分钟跑800米,兔子跑了一会儿就在途中睡觉,醒来后立刻以原速向前跑。

(1)若兔子不想输给乌龟,则它在途中多只能睡多少分钟?(2)如果兔子在途中要睡1.5小时(乌龟和兔子的速度保持不变),且兔子不输给乌龟,则路程至少为多少米?4、甲、乙、丙三个小分队都从A地到B地进行野外训练,上午6时,甲、乙两个小队一起从A地出发,甲队每小时走5千米,乙队每小时走4千米,丙队上午8时才从A地出发,傍晚6时,甲、丙两队同时到达B地。

那么丙队追上乙队的时间是什么时候?5、王明从A城步行到B城,同时刘洋从B城骑车到A城,1.2小时后两人相遇。

相遇后继续前进,刘洋到A城立即返回,在第一次相遇后45分钟又追上了王明,两人再继续前进,当刘洋到达B城后立即折回。

刘洋追上王明后两人多长时间再次相遇?2.简单初一奥数题篇二1.在上、下行轨道上,两列火车相对开来,一列火车长182米,每秒行18米,另一列火车每秒行17米,两列火车错车而过用了10秒钟,求另一列火车长多少米?2.有两列火车,一列长140米,每秒行24米,另一列长230米,每秒行13米,现在两车相向而行,求这两列火车错车时从相遇到离开需几秒钟?3.快车长80米,慢车长70米,如果同向而行,快车车头接住慢车车尾后,又经过15秒才穿过;如果相向而行,两个车头相接后,又经过6秒可以相离,问两车每秒各行多少米?4.某列车通过360米长的第一个隧道用了24秒,接着通过216米长的隧道用了16秒,(1)求列车的长度和速度。

初一上册奥数试题及答案

初一上册奥数试题及答案

初一上册奥数试题及答案【试题一:数学逻辑推理】题目:在一个班级中,有学生喜欢数学,有学生喜欢英语,有学生两者都喜欢。

如果班级中有20个学生,其中有10个学生喜欢数学,12个学生喜欢英语,那么至少有多少个学生两者都喜欢?【答案】设喜欢数学和英语的学生数量分别为M和E,两者都喜欢的学生数量为B。

根据题目,我们知道M=10,E=12。

班级总人数为N=20。

根据集合的包含关系,我们有以下公式:\[ M + E - B = N \]\[ 10 + 12 - B = 20 \]\[ 22 - B = 20 \]\[ B = 2 \]所以,至少有2个学生两者都喜欢。

【试题二:数列问题】题目:给定数列1, 3, 5, 7, ...,这个数列的第10项是多少?【答案】这是一个等差数列,首项为1,公差为2。

第n项的通项公式为:\[ a_n = a_1 + (n - 1)d \]将n=10代入公式,我们得到:\[ a_{10} = 1 + (10 - 1) * 2 \]\[ a_{10} = 1 + 9 * 2 \]\[ a_{10} = 1 + 18 \]\[ a_{10} = 19 \]所以,这个数列的第10项是19。

【试题三:几何问题】题目:一个正方形的边长为10厘米,求其内接圆的面积。

【答案】正方形的内接圆的直径等于正方形的边长。

因此,内接圆的半径r为5厘米。

圆的面积公式为:\[ A = \pi r^2 \]将r=5代入公式,我们得到:\[ A = \pi * 5^2 \]\[ A = 25\pi \]所以,正方形内接圆的面积是25π平方厘米。

【试题四:代数问题】题目:解方程 \( x^2 - 5x + 6 = 0 \)。

【答案】这是一个二次方程,我们可以通过因式分解来解它。

将方程写成:\[ x^2 - 5x + 6 = (x - 2)(x - 3) = 0 \]所以,x的解为:\[ x = 2 \quad \text{或} \quad x = 3 \]【结束语】以上就是初一上册奥数试题及答案的示例。

初一奥数简单的应用题及答案

初一奥数简单的应用题及答案

【导语】奥数能够有效地培养学⽣⽤数学观点看待和处理实际问题的能⼒,提⾼学⽣⽤数学语⾔和模型解决实际问题的意识和能⼒,提⾼学⽣揭⽰实际问题中隐含的数学概念及其关系的能⼒等等。

使学⽣能够在创造性思维过程中,看到数学的实际作⽤,感受到数学的魅⼒,增强学⽣对数学美的感受⼒。

以下是⽆忧考为您整理的相关资料,希望对您有所帮助。

【篇⼀】初⼀奥数简单的应⽤题及答案 1.在⼀个600⽶的环形跑道上,兄两⼈同时从同⼀个起点按顺时针⽅向跑步,两⼈每隔12分钟相遇⼀次,若两个⼈速度不变,还是在原来出发点同时出发,哥哥改为按逆时针⽅向跑,则两⼈每隔4分钟相遇⼀次,两⼈跑⼀圈各要多少分钟? 答案解析:为两⼈跑⼀圈各要6分钟和12分钟。

600÷12=50,表⽰哥哥、弟弟的速度差600÷4=150,表⽰哥哥、弟弟的速度和(50+150)÷2=100,表⽰较快的速度,⽅法是求和差问题中的较⼤数(150-50)/2=50,表⽰较慢的速度,⽅法是求和差问题中的较⼩数600÷100=6分钟,表⽰跑的快者⽤的时间600/50=12分钟,表⽰跑得慢者⽤的时间。

2.慢车车长125⽶,车速每秒⾏17⽶,快车车长140⽶,车速每秒⾏22⽶,慢车在前⾯⾏驶,快车从后⾯追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间? 答案解析:为53秒算式是(140+125)÷(22-17)=53秒可以这样理“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。

3.在300⽶长的环形跑道上,甲⼄两个⼈同时同向并排起跑,甲平均速度是每秒5⽶,⼄平均速度是每秒4.4⽶,两⼈起跑后的第⼀次相遇在起跑线前⼏⽶? 答案解析:为100⽶300÷(5-4.4)=500秒,表⽰追及时间5×500=2500⽶,表⽰甲追到⼄时所⾏的路程2500÷300=8圈……100⽶,表⽰甲追及总路程为8圈还多100⽶,就是在原来起跑线的前⽅100⽶处相遇。

(完整版)初一数学奥林匹克竞赛题(含标准答案)

(完整版)初一数学奥林匹克竞赛题(含标准答案)

初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。

初一奥数题及答案

初一奥数题及答案

初一奥数题及答案初一奥数题通常包含一些基础的数学概念和技巧,适合培养学生的逻辑思维和解决问题的能力。

以下是一些适合初一学生的奥数题目及答案:题目1:数字问题小明有5张卡片,每张卡片上分别写有数字1到5。

他随机抽取一张,问抽到数字3的概率是多少?答案:小明有5张卡片,每张卡片被抽到的机会是相等的。

只有一张卡片上写有数字3,所以抽到数字3的概率是1/5。

题目2:几何问题一个正方形的边长为4厘米,求正方形内切圆的面积。

答案:正方形内切圆的直径等于正方形的边长,所以内切圆的半径是4厘米的一半,即2厘米。

圆的面积公式是πr²,所以内切圆的面积是π*(2厘米)² = 4π平方厘米。

题目3:逻辑推理问题有5个盒子,分别标有数字1到5。

每个盒子里都装有一个球,球的颜色分别为红、黄、蓝、绿、紫。

已知:1. 红球不在1号盒。

2. 黄球不在2号盒也不在5号盒。

3. 蓝球在3号盒。

根据以上信息,哪个颜色的球在哪个盒子里?答案:根据条件3,蓝球在3号盒。

由于黄球不在2号盒也不在5号盒,所以黄球只能在1号或4号盒。

由于红球不在1号盒,所以黄球在1号盒,红球在4号盒。

剩下的绿球和紫球分别在2号盒和5号盒,但根据题目条件无法确定具体哪个颜色在哪个盒子。

题目4:数列问题一个数列的前几项是2, 4, 7, 11, ...。

这个数列的第6项是多少?答案:这个数列的每一项都比前一项多2, 3, 4, 5, ... 等依次增加的自然数。

第5项是11,所以第6项是11 + 6 = 17。

题目5:组合问题有8个不同的球,需要放入3个不同的盒子中,每个盒子至少有一个球。

问有多少种不同的放法?答案:这是一个组合问题,可以通过组合数学中的插板法来解决。

首先给每个盒子分配一个球,剩下5个球需要分配。

我们可以在5个球之间插入2个板子来分割成3组,每组至少有一个球。

这样,问题就变成了在4个位置(5个球和2个板子之间的空隙)中选择2个位置放置板子的组合数,即C(4,2) = 4! / (2! * (4-2)!) = 6种不同的放法。

初一的奥数题目30道

初一的奥数题目30道

1、兄妹二人同时从家上学,哥哥每分钟走90米,妹妹每分钟走60米。

哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离学校180米处和妹妹相遇。

他们家离学校有多远?2、甲、乙两人骑自行车分别从A,B两地同时相向而行。

第一次两车在距B地7千米处相遇。

相遇后,两车继续向前行驶,当两车分别到达B,A两地后立即返回,返回时在距A地4千米处相遇。

A,B两地相距多少千米?3、龟兔赛跑,同时同地出发,全程20000米,乌龟每分钟爬行80米,兔子每分钟跑800米,兔子跑了一会儿就在途中睡觉,醒来后立刻以原速向前跑。

(1)若兔子不想输给乌龟,则它在途中多只能睡多少分钟?(2)如果兔子在途中要睡1.5小时(乌龟和兔子的速度保持不变),且兔子不输给乌龟,则路程至少为多少米?4、甲、乙、丙三个小分队都从A地到B地进行野外训练,上午6时,甲、乙两个小队一起从A地出发,甲队每小时走5千米,乙队每小时走4千米,丙队上午8时才从A地出发,傍晚6时,甲、丙两队同时到达B地。

那么丙队追上乙队的时间是什么时候?5、王明从A城步行到B城,同时刘洋从B城骑车到A城,1.2小时后两人相遇。

相遇后继续前进,刘洋到A城立即返回,在第一次相遇后45分钟又追上了王明,两人再继续前进,当刘洋到达B城后立即折回。

刘洋追上王明后两人多长时间再次相遇?6.在上、下行轨道上,两列火车相对开来,一列火车长182米,每秒行18米,另一列火车每秒行17米,两列火车错车而过用了10秒钟,求另一列火车长多少米?7.有两列火车,一列长140米,每秒行24米,另一列长230米,每秒行13米,现在两车相向而行,求这两列火车错车时从相遇到离开需几秒钟?8.快车长80米,慢车长70米,如果同向而行,快车车头接住慢车车尾后,又经过15秒才穿过;如果相向而行,两个车头相接后,又经过6秒可以相离,问两车每秒各行多少米?9.某列车通过360米长的第一个隧道用了24秒,接着通过216米长的隧道用了16秒,(1)求列车的长度和速度。

初中奥数举一反三(七年级)

初中奥数举一反三(七年级)

初中奥数举一反三(七年级)初中奥数举一反三(七年级完整版)目标本文档旨在介绍初中七年级奥数举一反三方面的知识和技巧。

通过研究奥数举一反三,学生可以培养自己的数学思维能力,提高解决问题的能力。

什么是举一反三举一反三是指从一个已知问题中推导或引申出与之类似但更复杂更抽象的问题,从而扩展知识面。

通过举一反三的方法,学生可以将已研究的知识应用到新的情境中,提高问题解决能力。

举一反三的重要性举一反三有助于培养学生的创新思维和发散思维,提高解决问题的能力。

通过培养举一反三的能力,学生能够更好地理解抽象的数学概念,拓展自己的数学思维,同时也有助于提高解决实际问题的能力。

举一反三的方法与技巧1. 分析问题的本质:在遇到问题时,要能够分析问题的本质,找出其中的规律和特点。

通过深刻理解问题,才能更好地举一反三。

2. 寻找相似性质:在解决一个问题时,要注意寻找其中的相似性质,将问题与已知的类似问题联系起来。

通过找到相似之处,可以运用已有的知识和技巧解决新问题。

3. 运用归纳与推理:通过对已知问题和解决方法进行归纳总结,学生可以提炼出一些普遍的规律和方法。

在解决新问题时,可以运用这些归纳出的规律和方法进行推理,找到解决新问题的思路。

4. 实践总结:通过积累实践经验,总结举一反三的方法和技巧。

在解决问题的过程中,要不断反思和总结,以不断提高自己的举一反三能力。

举一反三的实例以下是一些举一反三的实例,供学生参考:1. 已知一个矩形的面积是10平方厘米,宽度是2厘米,求矩形的长度。

- 类似问题:已知一个矩形的面积是20平方厘米,宽度是4厘米,求矩形的长度。

- 解决方法:使用面积公式,矩形的面积等于长度乘以宽度,可以根据已知条件解得长度。

2. 已知一个等差数列的前三项分别是1、4、7,求该等差数列的第n项。

- 类似问题:已知一个等差数列的前五项分别是2、6、10、14、18,求该等差数列的第n项。

- 解决方法:通过观察已知条件,可以发现每一项之间的差值都是4,根据等差数列的定义,可以计算出第n项的表达式。

3初一奥数第03讲 有理数的乘除

3初一奥数第03讲  有理数的乘除

3初一奥数第03讲 有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算. 4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算.经典·考题·赏析【例1】计算⑴11()24⨯- ⑵1124⨯ ⑶11()()24-⨯- ⑷25000⨯⑸3713()()(1)()5697-⨯-⨯⨯-【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积.解:⑴11111()()24248⨯-=-⨯=- ⑵11111()24248⨯=⨯= ⑶11111()()()24248-⨯-=+⨯=⑷250000⨯=⑸3713371031()()(1)()()569756973-⨯-⨯⨯-=-⨯⨯⨯=-【变式题组】01.⑴(5)(6)-⨯- ⑵11()124-⨯ ⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯- ⑸111112(2111)42612-⨯-+- 02.24(9)5025-⨯ 3.1111(2345)()2345⨯⨯⨯⨯---04.111(5)323(6)3333-⨯+⨯+-⨯【例2】已知两个有理数a 、b ,如果ab <0,且a +b <0,那么( ) A .a >0,b <0 B .a <0,b >0C .a 、b 异号D .a 、b 异号且负数的绝对值较大 【解法指导】依有理数乘法法则,异号为负,故a 、b 异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab <0知a 、b 异号,又由a +b <0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D .【变式题组】01.若a +b +c =0,且b <c <0,则下列各式中,错误的是( )A .a +b >0B .b +c <0C .ab +ac >0D .a +bc >0 02.已知a +b >0,a -b <0,ab <0,则a___________0,b___________0,|a|___________|b|. 03.(山东烟台)如果a +b <0,0ba>,则下列结论成立的是( ) A .a >0,b >0 B .a <0,b <0 C .a >0,b <0 D .a <0,b >004.(广州)下列命题正确的是( )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若ab =0,则a =0或b =0D .若ab =0,则a =0且b =0 【例3】计算⑴(72)(18)-÷- ⑵11(2)3÷- ⑶13()()1025-÷ ⑷0(7)÷- 【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184-÷-=÷=⑵17331(2)1()1()3377÷-=÷-=⨯-=-⑶131255()()()()10251036-÷=-⨯=-⑷0(7)0÷-= 【变式题组】01.⑴(32)(8)-÷- ⑵112(1)36÷- ⑶10(2)3÷- ⑷13()(1)78÷-02.⑴12933÷⨯⑵311()(3)(1)3524-⨯-÷-÷ ⑶530()35÷-⨯03.113()(10.2)(3)245÷-+-÷⨯-【例4】(茂名)若实数a 、b 满足0a ba b+=,则ab ab =___________. 【解法指导】依绝对值意义进行分类讨论,得出a 、b 的取值范围,进一步代入结论得出结果.解:当ab >0,2(0,0)2(0,0)a b a b a b a b >>⎧+=⎨-<<⎩; 当ab <0,0a ba b+=,∴ab <0,从而ab ab =-1. 【变式题组】01.若k 是有理数,则(|k|+k )÷k 的结果是( )A .正数B .0C .负数D .非负数 02.若A .b 都是非零有理数,那么ab a b a b ab++的值是多少? 03.如果0x y xy+=,试比较xy-与xy 的大小.【例5】已知223(2),1x y =-=-⑴求2008xy的值; ⑵求32008x y的值.【解法指导】n a 表示n 个a 相乘,根据乘方的符号法则,如果a 为正数,正数的任何次幂都是正数,如果a 是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1x y =-=-⑴当2,1x y ==-时,200820082(1)2xy =-=当2,1x y =-=-时,20082008(2)(1)2xy=-⨯-=-⑵当2,1x y ==-时,332008200828(1)x y ==-当2,1x y =-=-时,3320082008(2)8(1)x y -==--【变式题组】01.(北京)若2(2)0m n m -+-=,则nm 的值是___________.02.已知x 、y 互为倒数,且绝对值相等,求()n nx y --的值,这里n 是正整数.【例6】(安徽)2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为( )A .0.135×106B .1.35×106C .0.135×107D .1.35×107【解法指导】将一个数表示为科学记数法的a×10n 的形式,其中a 的整数位数是1位.故答案选B .【变式题组】 01.(武汉)武汉市今年约有103000名学生参加中考,103000用科学记数法表示为( )A .1.03×105B .0.103×105C .10.3×104D .103×10302.(沈阳)沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( )A .25.3×105亩B .2.53×106亩C .253×104亩D .2.53×107亩 【例7】(上海竞赛)222222221299110050002200500010050009999005000k k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+【解法指导】找出21005000k k -+的通项公式=22(50)50k -+原式=2222222222221299(150)50(250)50(50)50(9950)50k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ =222222222222199298[][](150)50(9950)50(250)50(9850)50++++⋅⋅⋅+-+-+-+-+ 222222222495150[](4950)50(5150)50(5050)50++-+-+-+=49222+1++⋅⋅⋅+1442443个=99【变式题组】3333+++=( )2+4+6++10042+4+6++10062+4+6++10082+4+6++2006⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅A .31003 B .31004 C .1334 D .1100002.(第10届希望杯试题)已知111111111.2581120411101640+++++++=求111111112581120411101640---+--++的值. 演练巩固·反馈提高01.三个有理数相乘,积为负数,则负因数的个数为( )A .1个B .2个C .3个D .1个或3个 02.两个有理数的和是负数,积也是负数,那么这两个数( )A .互为相反数B .其中绝对值大的数是正数,另一个是负数C .都是负数D .其中绝对值大的数是负数,另一个是正数 03.已知abc >0,a >0,ac <0,则下列结论正确的是( )A .b <0,c >0B .b >0,c <0C .b <0,c <0D .b >0,c >0 04.若|ab |=ab ,则( )A .ab >0B .ab ≥0C .a <0,b <0D .ab <0 05.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式a bm cd m+-+的值为( )A .-3B .1C .±3D .-3或1 06.若a >1a,则a 的取值范围( ) A .a >1 B .0<a <1 C .a >-1 D .-1<a <0或a >1 07.已知a 、b 为有理数,给出下列条件:①a +b =0;②a -b =0;③ab <0;④1ab=-,其中能判断a 、b 互为相反数的个数是( )A .1个B .2个C .3个D .4个08.若ab≠0,则a ba b+的取值不可能为( ) A .0 B .1 C .2 D .-209.1110(2)(2)-+-的值为( )A .-2B .(-2)21C .0D .-21010.(安徽)2010年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的是( )A .2.89×107B .2.89×106C .2.89×105D .2.89×10411.已知4个不相等的整数a 、b 、c 、d ,它们的积abcd =9,则a +b +c +d =___________. 12.21221(1)(1)(1)n n n +--+-+-(n 为自然数)=___________.13.如果2x y xy+=,比较x y -与xy 的大小. 14.若1a b c a b c ++=-,求abc abc的值.15.若a 、b 、c 均为整数,且321a b c a -+-=.求a c c b b a -+-+-的值.培优升级·奥赛检测01.已知有理数x 、y 、z 两两不相等,则,,x y y z z xy z z x x y------中负数的个数是( ) A .1个 B .2个 C .3个 D .0个或2个02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是( )A .1B .3C .7D .5 03.已知23450ab c d e <,下列判断正确的是( )A .abcde <0B .ab 2cd 4e <0 C .ab 2cde <0 D .abcd 4e <0 04.若有理数x 、y 使得,,,xx y x y xy y+-这四个数中的三个数相等,则|y |-|x |的值是( ) A .12-B .0C .12D .3205.若A =248163264(21)(21)(21)(21)(21)(21)(21)+++++++,则A -1996的末位数字是( )A .0B .1C .7D .9 06.如果20012002()1,()1a b a b +=--=,则20032003a b +的值是( )A .2B .1C .0D .-107.已知5544332222,33,55,66a b c d ====,则a 、b 、c 、d 大小关系是( )A .a >b >c >dB .a >b >d >cC .b >a >c >dD .a >d >b >c08.已知a、b、c都不等于0,且a b c abca b c abc+++的最大值为m,最小值为n,则2005()m n+=___________.09.(第13届“华杯赛”试题)从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753-第二组:11 2,315 -第三组:5 2.25,,412-10.一本书的页码从1记到n,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少?11.(湖北省竞赛试题)观察按下列规律排成一列数:11,12,21,13,22,31,14,23,3 2,41,15,24,23,42,51,16,…(*),在(*)中左起第m个数记为F(m),当F(m)=12001时,求m的值和这m个数的积.12.图中显示的填数“魔方”只填了一部分,将下列9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x的值.13.(第12届“华杯赛”试题)已知m 、n 都是正整数,并且111111(1)(1)(1)(1)(1)(1);2233A m m =-+-+⋅⋅⋅-+ 111111(1)(1)(1)(1)(1)(1).2233B n n=-+-+⋅⋅⋅-+证明:⑴11,;22m n A B m n ++==⑵126A B -=,求m 、n 的值.。

简单的初一奥数训练题3篇

简单的初一奥数训练题3篇

简单的初一奥数训练题3篇简单的初一奥数训练题(1)1、一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔多少分钟发一辆公共汽车?2、在地铁车站中,从站台到地面有一架向上的自动扶梯。

小强想逆行从上到下,如果每秒向下迈两级台阶,那么他走过100级台阶后到达站台;如果每秒向下迈三级台阶,那么走过75级台阶到达站台。

自动扶梯有多少级台阶?3、甲步行上楼梯的速度是乙的2倍,一层到二层有一上行滚梯(自动扶梯)正在运行。

二人从滚梯步行上楼,结果甲步行了10级到达楼上,乙步行了6级到达楼上。

这个滚梯共有多少级?4、从电车总站每隔一定时间开出一辆电车。

甲与乙两人在一条街上沿着同一方向步行。

甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车。

那么电车总站每隔多少分钟开出一辆电车?5、有两个班的小学生要到少年宫参加活动,但只有一辆车接送,第一班的学生坐车从学校出发的同时,第二班学生开始步行;车到途中某处,让第一班学生下车步行,车立刻返回接第二班学生上车并直接开往少年宫,学生步行速度为每小时4公里,载学生时车速每小时40公里,空车时车速为每小时50公里.问:要使两班学生同时到达少年宫,第一班学生要步行全程的几分之几?(学生上下车时间不计)简单的初一奥数训练题(2)1、甲、乙两人同时分别从两地骑车相向而行。

甲每小时行20千米,乙每小时行18千米。

两人相遇时距全程中点3千米。

问全程长多少米?2、两地相距900千米,甲走需15天,乙走需12天。

现在甲先出发2天,乙去追甲。

问要走多少千米才可追上?3、甲、乙两人分别在相距240千米的A、B两地乘车出发,相向而行,5小时相遇。

如果甲、乙两人乘原来的车分别在两城同时同向出发,慢车在前,快车在后,15小时后,甲、乙两人相遇。

奥数题初一

奥数题初一

奥数题初一奥数题是指奥林匹克数学竞赛中出现的题目。

这些题目通常涉及到初中阶段的数学知识,但是难度较高,需要学生具备一定的数学思维和解题能力。

下面我们来看一些典型的奥数题初一的题目。

1. 题目:甲、乙、丙三个数,甲乙之差是5,甲丙之差是10,乙丙之差是15,求甲、乙、丙三个数各是多少?解析:我们可以设甲的数值为x,那么乙的数值就是x+5,丙的数值就是x+10。

根据题目中的条件,我们可以列出如下的等式:x+5-x = 5x+10-x = 10x+5-(x+10) = 15简化后得到:5 = 510 = 10-5 = 15根据第三个等式可以看出,方程无解。

所以这个题目没有实际解。

2. 题目:在一个长方形的地板上铺砖,砖的尺寸是2cm × 3cm,地板的长是5m,宽是4m,需要多少块砖?解析:首先我们计算出地板的面积,即5m × 4m = 20平方米。

然后计算出一块砖的面积,即2cm × 3cm = 6平方厘米。

将地板的面积换算成平方厘米,即20平方米× 10000 = 200000平方厘米。

最后用地板的面积除以一块砖的面积,即200000平方厘米÷ 6平方厘米 = 33333.33块。

所以需要33334块砖。

3. 题目:一个数除以2余1,除以3余2,除以5余4,这个数是多少?解析:我们可以设这个数为x。

根据题目中的条件,我们可以列出如下的等式:x ÷ 2 = k × 2 + 1x ÷ 3 = m × 3 + 2x ÷ 5 = n × 5 + 4其中k、m、n为整数。

我们可以通过试错法来求解这个问题。

首先从1开始尝试,找到满足以上三个条件的数。

经过尝试,我们发现11满足这个条件。

因为11除以2余1,除以3余2,除以5余4。

所以这个数是11。

4. 题目:一辆汽车以50km/h的速度行驶了2小时,然后以60km/h 的速度行驶了3小时,求这段路程的总长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(三)方程组的解法
一、解答题
1.解方程组2.解方程组
3.解方程组4.解方程组
5.已知,试求的值.
6.已知关于x,y 的方程组
分别求出当a为何值时,方程组(1)有唯一一组解;(2)无解;(3)有无穷多组解.
7.已知关于x,y的二元一次方程(a﹣1)x+(a+2)y+5﹣2a=0,当a每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解.
8.甲、乙两人解方程组,由于甲看错了方程①中的a而得到方程组的解为,乙看错了方程②中的b 而得到的解为,假如按正确的a,b计算,试求出原方程的解.
9.解方程组
(1)(2)
10.若x1~x5满足下列方程组:;求3x4+2x5的值.
11.将式子3x2+2x﹣5写成a(x+1)2+b(x+1)+c 的形式,试求代数式+(a+b)2+c 的值
12.k 为何值时,方程组有唯一一组解;无解;无穷多解?
13.若方程组的解满足x+y=0,试求m的值.。

相关文档
最新文档