Effect of Plate Position and Size for Self-Induced Flow Oscillation of Underexpanded Supersonic
广东省韶关市2025届高三综合测试 (一)英语试题(word版无答案)
广东省韶关市2025届高三综合测试 (一)英语试题本试卷共10页,卷面满分120分。
考试用时120分钟。
2024.11注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、准考证号、学校和班级填写在答题卡指定的位置上。
2. 选择题每小题选出答案后,用2B铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦于净后. 再选涂其他答案。
写在本试卷上无效。
3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡指定区域内的相应位置上:如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
写在本试卷上无效。
4. 考生须保持答题卡的整洁。
考试结束后,将本试卷和答题卡一并交回。
第一部分阅读 (共两节,满分50分)第一节 (共15小题; 每小题2.5分, 满分37.5分)阅读下列短文,从每小题所给的A、B、C、D四个选项中选出最佳选项。
ANational Park ServiceFrederick Law Olmsted National Historic Site seoks enthusiastic and passionate volunteers to assist us on Saturday. the, National : Public Lands Day! Volunteers will join our Landscape and Grounds team and our Museum Services team to preserve the historic Green Hill Property. Join us as we identify, cut, and remove in vasive plants. No previous experience is required.Volunteers are required to attend safety meetings before the event. Close toed shoes are required. Long pants and shirts are recommended. Volunteers are encouraged to bring their own equipment and PPE ( person al protective equipment). Proper PPE includes: gloves, hat, ear protection, eye protection, sturdy work shoes/ boots. Some PPE will be available to volunteers to use, and all NPS ( National Park Service) property must remain on site.Work to include:· Removing dead and decaying matter from woody plant species· Basic grounds work: spreading seeds, pruning trees, cutting lawn, watering, weeding, fertilizing lawns · Documenting invasive species and changes to the landscape· Light pesticide use with supervision· Resetting borders for garden trails英语测试题第1页 (共10页)Tools to be used by volunteers: shovels, soil knives, saws, rakes, etc.Supervisor will ensure the proper use of tools. Training for power and hand tools will be provided as needed.Volunteers will be responsible for transportation to and from the site. This is an unpaid position; hous ing is uo t provided.' If you are seeking academic credit from your home university. we will work with you t o fulfill necessary requirementsForadditionalinformation,********************************************.1. Where is this text probably taken from?A. An event notice.B. A safety guide.C. A park brochure.D. A training program.2. What specific task will volunteers perform during the event?A. Attending a meeting.B. Dcsigning the garden.C. Monitoring the landscape.D. Preparing some equipment.3. What does this program offer to the volunteers?A. Housing.B. Transportation.C. Academic credit:D. Tools training.BWhen Gary Yau entered university, he= launched a social media page called Road Research Society to share interesting facts about roads and city planning. His first post explored the use of English font (字体) on Hong Kong's road signs. “That post surprisingly received many likes and shares, so it got me thinking abo ut expanding my audience,” he recalled.In 2016, the enthusiast collected 50 Chinese characters from Hong Kong's road signs and outlined and uploaded the image to his Facebook account. A friend suggested turning this collection into a font. Yau saw it as a means to preserve a cherished aspect of Hong Kong's history. About twenty years ago, many of the city's signs featured handcrafted characters made by prisoners. However, as design technology adsances, these tradi tional signs are gradually being replaced,Following. yisits the remaining traditional road signs in the city, Yau's team had outliried approximatel y 500 characters. Yet, this fell short of the 7,000 Chinese characters required for practical use by those who us e Chinese daily. Faced with this limitation, the team began ercating new characters by mixing and matching existing components, adjusting line thickness, and modifying radicals (部首). For instance, when they couldn' t locate the Chinese character for“prison” on any existing signs, they designed one from scratch. This process英语测试题第2页 (共10页)involved extensive trial and error.After six years of dedicated effort, Yau found motivation in the constant enthusiasm of his follower s. “They’ ve been cagerly anticipating this project for as long as l' ve been working on it,” he remarked. “O ne even expressed that he had been waiting for this font since his first year of secondary school. Now, as a sixth grader, his wait is finally over.Yau is thrilled to witness how his followers will use this digital font.“I cannot own a road sign. but what I can do is digitize it,” Yau said. “I did not want to just document it but develop it into something we can use in daily life. This is a way to preserve Hong Kong's visual cultural memory.”4. What inspired Yau to design a font?A. His interest in road signs.B. His popularity with his fans.C. His desire to restore history.D. His passion for city planning.5. Why did Yau's team create new characters?A. To combine the components.B. To meet the need of daily use.C. To set limitation to the characters.D. To replace the traditional road signs.6. Why did the writer mention Yau's followers?A. To highlight their dedicated cfYort.B. To show their support to the project.C. To explain their role in digitizing the font.D. To indicate their passion to share his posts.7. Which of the following can best describe Yau?A. Practical and efficient.B. Confident and resourceful.C. Determined and innovative.D. Ambitious and competitive.CThe field of anti-ageing medicine has exploded in recent years due to discoveries about the fundamen tal biology of ageing which are translated into experimental therapies (疗法). The latest fountain of youth to pour from the lab comes in the form of vaccines (疫苗) against age-related conditions—— cancer, heart dise ase, dementia and more. The first of these could be available by the end of the decade. All-purpose anti-agei ng injections are also in development.The upsides of such vaccines are clear. Anything that limits the impact of age-related conditions on people who live into old age— not to mention on the loved ones who often end up caring for them— has to be welcomed. They also promise to lessen effect on the increasingly societal and economic costs of these dis eases.英语测试题第3页 (共10页)But as with all anti-ageing interventions, there are potential downsides too. If millions of people livesignificantly longer, we risk a population explosion on a planet whose resources are already overstretched. If t he vaccines merely delay the beginning of age-related conditions, they will only postpone the burden on peopl e and society. And as Nobcl prizewinner Venki Ramakrishnan told us carlier this year. a long-lived society islikely to be an unmoving one. These are familiar fears. The common answer is that the goal is increased healt hspan. That means people living for longer. free from the diseases of old age, then suddenly declining anddying.We wońt know the-outcome until : the therapies have been widely used, at which point it will be too late to put the genie back in the bottle. But there is really no turning back anyway. If vaccines and other anti-ageing therapies work and are affordable, they will be used. Besides, nɔbody would argue that innovation s like antibiotics, vaccines and advanced diagnostics were a bad idea even though they marked the beginning of our era of age-related diseases. Similarly, we shouldn't fear life-saving medical advances on the basis of un intended consequences. If we can make lives longer and less painful, the downsides are a price worth paying.8. Why is the field of anti-ageing medicine growing rapidly?A. The biology of ageing is better applied.B. The trend of healthy lifestyle is rising.C. The demand for longer life is increasing.D. The number of elderly is rising globally.9. How do anti-ageing vaccines benefit society?A. By increasing the workforce.B. By curing people of diseases.C. By boosting economic growth.D. By reducing healthcare expense.10. What does the underlined phrase“put the genie back in the bottle” mean?A. To stop the process of ageing.B. To erase the impact of the therapics.C. To create a new medical breakthrough.D. To delay the development of technology.11. What is the best title for this article?A. Can Anti-Ageing Medicine Really Work?B. What Is the Risk of Anti-Ageing Medicine?C. How to Stay Young with Anti-Ageing Medicine?D. Is It Worthwhile Using Anti-Ageing Medicine?英语测试题第4页 (共10页)DFranz Katka (卡夫卡) died 100 years ago with his literary works unnoticed. He had instructed his friend Max Brod to burn his unpublished works. Brod did not: he believed Kafka to be a literary genius and publishe d his late friend's writing. In other words, Brod decided that Kafka's stories belonged not to the late author, but to the public.Brod's dilemma echoes today. People generate' more data than ever, which, unlike physical bodies, does not disappear. According to Carl Ohman, a Swedish political scientist. this condition makes the modern world“post-mortal”(死后的).“Living in the post-mortał condition is to constantly find oneself in the shoes of Max Brod", he observes.The digital era has reshaped humans’ relationship with the dead—— as seen in social media reminders for birthdays of dead individuals. Such reminders are to grow more common: Mr. Ohman's research has foun d that on Facebook the dead may well outnumber the living within 40 years. Advanced technology enables a continued relationship with the dead, such as Amazon's development of a feature for Alexa, virtual assistant, to speak in the voice of a lost relative. Startups have used data to make chatbots of the dead-to strengthen use rs’ commercial relationship, Mr. Ohman points out.At the root of Ohman's book The Aftorlife of Data is various complex philosophical questions. To whom do the dead's data belong? Are data something people create, or a digital analogue (类比) to a physical body? If data are a digital form of the body, what responsibilities does the living have? These are not merel y questions for individuals but for society. After all, historians often study the diaries of the dead. Their write rs may have preferred to keep them private, but the light that such documents can shine on humanity's past outweighs the late owner's wishes. Mr. Ohman: notes that data constitute“the biggest database of human behavioùr in the history of our species”. And he urges that the social media firms should think twice in terms of how they handle digital remains.12. What is the function of paragraph 1?A. To emphasize Kafka's literary talent.B. To lead to the discussion on data handling.C. To praise the act to publish Kafka's works.D. To write an introduction for Ohman's book.13. Why do people buy Alexa, the virtual assistant?A. To create a digital database.B. To control devices by voice.C. To access information quickly.D. To communicate with the dead.14. What problem will people face in post-mortal world according to the passage?A. How to manage the dead's data.B. How to realize the dead's wishes.C. How to protect the dead's privacy.D. How to restore the dead's. belongings.15. Which of the following will Mr. Ohman probably agree with?A. Data should be in the possession of individuals.B. Historians should control access to digital remains.C. Data's historical value is more important than the dead's will.D. Social media firms should be fined for misuse of digital remains.第二节 (共5小题; 每小题2.5分, 满分12.5分)在后面的选项中选出可以填入空白处的最佳选项。
3D打印外文文献翻译译文
文献出处:Paul G. 3D printing technology and its application[J]. Anatomical sciences education, 2015, 10(3): 430-450.原文3D printing technology and its applicationPaul GAbstract3D printing technology in the industrial product design, especially the application of digital product model manufacturing is being a trend and hot topic.Desktop level gradually mature and application of 3D printing devices began to promote the rise of the Global 3D printing market, Global industrial Analysis pany (Global Industry Analysis Inc) research report predicts Global 3D printing market in 2018 will be $2.99 billion. Keywords: 3D printing;Application; Trend13D printing and 3D printers3D printing and 3D printing are two entirely different concepts.3D printing is separated into different angles the picture of the red, blue two images, then the two images according to the regulation of parallax distance overprint together, using special glasses to create the 3D visual effect, or after special treatment, the picture printed directly on the special grating plate, thus rendering 3D visual effect of printing technology.And 3D printing refers to the 3D ink-jet printing technology, stacked with hierarchical processing forms, print increase step by step a material to generate a 3D entity, meet with 3D models, such as laser forming technology of manufacturing the same real 3D object digital manufacturing technology.3D printers, depending on thetechnology used by its working principle can be divided into two categories:1.1 3D printer based on 3D printing technologyBased on 3D printing technology of 3D printer, by stored barrels out a certain amount of raw material powder, powder on processing platform is roller pushed into a thin layer, then the print head in need of forming regional jet is a kind of special glue.At this time, met the adhesive will rapidly solidified powder binder, and does not meet the adhesive powder remain loose state.After each spray layer, the processing platform will automatically fall a bit, according to the result of puter chip cycle, until the real finished.After just remove the outer layer of the loose powder can obtain required for manufacturing three-dimensional physical.1.2 3D printers based on fused deposition manufacturing technologyBased on fused deposition manufacturing technology of the working principle of 3D printer is first in the control software of 3D printers into physical data generated by CAD and treated generated to support the movement of materials and thermal spray path.Then hot nozzle will be controlled by puter according to the physical section contour information in printed planar motion on the plane, at the same time by thermoplastic filamentous material for wire agency sent to the hot shower, and after the nozzle to add heat and melt into a liquid extrusion, and spraying in the corresponding work platform.Spray thermoplastic material on the platform after rapid cooling form the outline of a thickness of 0.1 mm wafer, forming a 3D printing section.The process cycle, load, decrease of bench height then layers of cladding forming stacked 3D printing section, ultimately achieve the desired three-dimensional object.2 The application of 3D printing needsThe 3D printing technology support for a variety of materials, can be widely used in jewelry, footwear, industrial design, construction, automotive, aerospace, dental, medical, and even food, etc. Different areas., according to the requirements of application targets used by material with resin, nylon, gypsum, ABS, polycarbonate (PC) or food ingredients, etc.3D printers of rapid prototyping technology has a distinct advantage in the market, the huge potential in the production application, hot applications outlined below.2.1 Industrial applications"Air cycling" is located in Bristol, UK the European aeronautic defense and Space pany using 3D printers, application of 3D printing technology to create the world's first print bike.The bike to use as strong as steel and aluminum alloy material of nylon, the weight is 65% lighter than metal materials.More interestingly, "air bike", chain wheels and bearings are printed at a time, without the original manufacture parts first, and then the parts together of assembly process, after printing, bicycles will be able to move freely.Bicycle manufacturing process like printing discontinuous in graphic print as simple lines, 3D printer can print out the object space is not connected to each other. 2.2 Medical applicationsIn medicine, the use of 3D printing will two-photon polymer and biological functional materials bination modified into the capillaries, not only has good flexibility and patibility of human body, also can be used to replace the necrosis of blood vessels, bined with artificial organs, partly replacing experimental animals in drugdevelopment.Biotechnology in Germany in October 2011 show, Biotechnical Fair), using 3D printers print artificial blood capillary to attract the attention of the participants, these artificial capillary has been applied in clinical medicine.2.3 application of daily life"3D food printer" is developed by Cornell University in New York, the United States food manufacturing equipment.The "3D food printer" used similar routine puter printers, the working principle of ingredients and ingredients in the container (cartridge) in advance only need to enter the required recipe, by supporting the CAD software can keep the food "print out".For many chefs, the new kitchen cooking means that they can create new dishes make food more individuality, higher food ing the "3D food printer" making food, from raw materials to finished products can significantly reduce the link, so as to avoid the pollution in the links of food processing, transportation, packing and so on and preservation, etc.Because of the cooking materials and ingredients must be placed in the printer, so food raw materials must be liquid or other can "print" state.2.4 IT applicationsRecently, a group of researchers in Disney's use of 3D printing in the same effect with the organic glass high pervious to light plastic, at low cost to print out the LCD screen with a variety of sensors, realize the new breakthrough in the IT ing 3D printing light pipe can produce high-tech international chess; the chess pieces can detect and display the current location.Although the monochrome screen pared with in the daily life, rich and colorful display some insignificant, but it hasa 3D printing the advantages of low cost, simple manufacturing process.In addition to the display screen, the use of 3D printing will also be able to print out a variety of sensors.These sensors can be through the stimulation such as infrared light to detect touch, vibration, and the results output.3D printing will create more for life and wisdom city of IT applications.3 The development trend of 3D printing technology3D printing technology continues to develop, greatly reduce the cost of the already from research and development of niche space into the mainstream market, the momentum of development is unstoppable, has bee a widespread concern and civil market rapidly emerging new areas.3D printing production model, the application of gifts, souvenirs and arts and crafts, greatly attracted social attention and investment, development speed, the market began to quantity and qualitative leap.It is predicted that in 2020, 3D printing products will account for 50% of the total production.In the next 10 years on the puter to plete the product design blueprint, gently press the "print" key, 3D printers can bit by bit with the designed model.Now some foundry enterprises began to develop selective laser sintering, 3D printer and its application to plex casting time reduced from 3 months to 10 days.Engine manufacturers through 3D printing, large six-cylinder diesel engine cylinder head of sand core development cycles, reduced to 1 week from the past 5 months.The biggest advantage of 3D printing is to expand the designers’ imagination space.As long as you can on the puter design into 3D graphics, whether is different styles of dress, elegant handicraft, or personalized car, as long as can solve the problem of material, can achieve 3D printing.With 3D printing technology breakthroughs, constantly improved increasingly, the new material of 3D printing in improving speed, size, its technology is constantly optimized, expanding application fields, especially in the field of graphic art potential, producer of the concept of 3D model can better municate ideas or solutions, a picture can be more than a few hundred or even thousands of words of description. Professionals believe that personalized or customized 3D printing can be envisioned a real-time 3D model in the eyes, can quickly improve product, growth will be more than imagine, will shape the future of social applications.3D printing technology to eliminate traditional production line, shorten the production cycle, greatly reduce production waste, raw materials consumption will be reduced to a fraction of the original.3D printing is not only cost savings, improve production precision, also will make up for the inadequacy of traditional manufacturing, and will rise rapidly in the civilian market, thus opening a new era of manufacturing, bring new opportunities and hope for the printing industry.译文3D打印技术及其应用Paul G摘要3D打印技术在工业产品设计,特别是数字产品模型制造领域的应用正在成为一种潮流和热门话题。
制冷专业英语基本术语
制冷专业英语基本术语制冷 refrigeration蒸发制冷 evaporative refrigeration沙漠袋 desert bag制冷机 refrigerating machine制冷机械 refrigerating machinery制冷工程 refrigeration engineering制冷工程承包商 refrigeration contractor制冷工作者 refrigerationist制冷工程师 refrigeration engineer制冷技术员 refrigeration technician制冷技师 refrigeration technician制冷技工 refrigeration mechanic冷藏工人 icer制冷安装技工 refrigeration installation mechanic制冷维修技工 refrigeration serviceman冷藏链 cold chain制冷与空调维修店 refrigeration and air conditioning repair shop 冷藏 refrigerated prvservation一般制冷换热器英语换热器 heat exchanger热交换器 heat exchanger紧凑式换热器 compact heat exchanger管式换热器 tubular heat exchanger套管式换热器 double-pipe heat exchanger间壁式换热器 surface type heat exchanger表面式换热器 surface type heat exchanger板管式换热器 tube-on-sheet heat exchanger板翅式换热器 plate-fin heat exchanger板式换热器 plate heat exchanger螺旋板式换热器 spiral plate heat exchanger平板式换热器 flat plate heat exchanger顺流式换热器 parallel flow heat exchanger逆流式换热器 counter flow heat exchanger*流式换热器 cross-flow heat echanger折流式换热器 turn back flow heat exchanger直接接触式换热器 direct heat exchanger旋转式换热器 rotary heat exchanger刮削式换热器 scraped heat exchanger热管式换热器 heat pipe exchanger蓄热器 recuperator壳管式换热器 shell and tube heat exchanger管板 tube plate可拆端盖 removable head管束 bundle of tube管束尺寸 size of tube bundle顺排管束 in-line hank of tubes错排管束 staggered hank of tubes盘管 coil蛇形管 serpentine coilU形管 U-tube光管 bare tube肋片管 finned tube翅片管 finned tube肋管 finned tube肋管束 finned tube bundle肋片 fin套片 plate fin螺旋肋 spiral fin整体肋 integral fin纵向肋 longitudinal fin钢丝肋 wire fin内肋 inner fin肋片管尺寸 size of fin tube肋片厚度 fin thickness肋距 spacing of fin肋片数 pitch of fin肋片长度 finned length肋片高度 finned height肋效率 fin efficiency换热面积 heat exchange surface传热面积 heat exchange surface冷却面积 cooling surface加热表面 heat exchange surface基表面 primary surface扩展表面 extended surface肋化表面 finned surface迎风表面 face area流通表面 flow area净截面积 net area;effective sectional area迎风面流速 face velocity净截面流速 air velocity at net area迎风面质量流速 face velocity of mass净截面质量流速 mass velocity at net area冷(热)媒有效流通面积 effective area for cooling or heating medium 冷(热)媒流速 velocity of cooling or heating medium干工况 dry condition;sensible cooling condition湿工况 wet condition;dehumidifying condition接触系数 contact factor旁通系数 bypass factor换热效率系数 coefficient of heat transmission effectiveness 盘管风阻力 air pressure drop of coil;air resistance of coil 盘管水阻力 pressure drop of cooling or heating medium表面冷却 surface cooling蒸发冷却 evaporating cooling冷却元件 cooling element涡流管制冷英语涡流制冷效应 vortex refrigerating effect兰克-赫尔胥效应 Ranque-Hilsch effect涡流管制冷 vortex tube refrigeration涡流管 vortex tube兰克管 Ranque tube膨胀喷嘴 expansion injector涡流室 vortex device分离孔板 separation orifice调节阀 control valve膨胀压力比 expansion pressure ratio冷气流分量 cold gas fraction热气流分量 hot gas fraction冷却效应 cooling effect加热效应 heating effect冷却效率 cooling efficiency磁制冷英语磁热效应 magnetocaloric effect磁制冷 magnetic refrigeration磁制冷机 magnetic refrigerating machine磁冰箱 magnetic refrigerator压缩机制冷系统及机组制冷系统 refrigeration system制冷机 refrigerating machine机械压缩制冷系统 mechanical compression refrigeration system 蒸气压缩制冷系统 vapour compression refrigeration system压缩式系统 compression system压缩机 compressor制冷压缩机 refrigerating compressor,refrigerant compressor 吸气端 suction end排气端 discharge end低压侧 low pressure side高压侧 high pressure side蒸发压力 evaporating pressure吸气压力 suction pressure,back pressure排气压力 discharge pressure蒸发温度 evaporating temperature冷凝压力 condensing pressure冷凝温度 condensing temperature吸气温度 suction temperature回气温度 back temperature排气温度 discharge temperature压缩比 compression ratio双效压缩 dual compression单级压缩 single-stage compression双级压缩 compound compression多级压缩 multistage compression压缩级 compression stage低压级 low pressure stage高压级 high pressure stage中间压力 intermediate pressure中间冷却 intercooling多级膨胀 multistage expansion湿压缩 wet compression干压缩 dry compression制冷系统 refrigerating system机械制冷系统 mechanical refrigerating system氟利昂制冷系统 freon refrigerating system氨制冷系统 ammonia refrigerating system压缩式制冷系统 compression refrigerating system单级压缩制冷系统 single-stage compression refrigeration system双级压缩制冷系统 two-stage compression refrigeration system多级制冷系统 multistage refrigerating system复叠式制冷系统 cascade refrigerating system混合制冷剂复叠系统 mixed refrigerant cascade集中制冷系统 central refrigerating plant直接制冷系统 direct refrigeration system直接膨胀供液制冷系统 refrigeration system with supply liqiud direct expansion重力供液制冷系统 refrigeration system with supply liquid refrigerant for the evaporator by gravity液泵供液制冷系统 refrigeration system with supply liquid refrigerant for evaporator by liquid pump间接制冷系统 indirect refrigeration system融霜系统 defrosting system热气融霜系统 defrosting system by superheated vapour电热融霜系统 eletrothermal defrosting system制冷系统故障 breakdown of the refrigerating system冰堵 freeze-up冰塞 ice plug脏堵 filth blockage油堵 greasy blockage液击(冲缸、敲缸) slugging湿行程 wet stroke镀铜现象 appearance of copper-plating烧毁 burn-out倒霜 frost back制冷机组 refrigerating unit压缩机组 compressor unit开启式压缩机组 open type compresssor unit开启式压缩机 open type compressor半封闭式压缩机组 semihermetic compressor unit半封闭式压缩机 semihermetic compressor全封闭式压缩机组 hermetically sealed compressor unit全封闭式压缩机 hermetically sealed compressor压缩冷凝机组 condensing unit全封闭式压缩冷凝机组 hermetically sealed condensing unit半封闭式压缩冷凝机组 semihermetically sealed condensing unit 开启式压缩冷凝机组 open type compressor condensing unit工业用压缩冷凝机组 industrial condensing unit商业用压缩冷凝机组 commercial condensing unit整马力压缩冷凝机组 integral horsepower condensing unit分马力压缩冷凝机组 fractional horsepower condensing unit跨式制冷机组 straddle refrigerating unit容积式压缩机及零部件英语容积式压缩机 positive displacement compressor往复式压缩机(活塞式压缩机) reciprocating compressor回转式压缩机 rotary compressor滑片式压缩机 sliding vane compressor单滑片回转式压缩机 single vane rotary compressor滚动转子式压缩机 rolling rotor compressor三角转子式压缩机 triangle rotor compressor多滑片回转式压缩机 multi-vane rotary compressor滑片 blade旋转活塞式压缩机 rolling piston compressor涡旋式压缩机 scroll compressor涡旋盘 scroll固定涡旋盘 stationary scroll,fixed scroll驱动涡旋盘 driven scroll,orbiting scroll斜盘式压缩机(摇盘式压缩机) swash plate compressor斜盘 swash plate摇盘 wobble plate螺杆式压缩机 screw compressor单螺杆压缩机 single screw compressor阴转子 female rotor阳转子 male rotor主转子 main rotor闸转子 gate rotor无油压缩机 oil free compressor膜式压缩机 diaphragm compressor活塞式压缩机 reciprocating compressor单作用压缩机 single acting compressor双作用压缩机 double acting compressor双效压缩机 dual effect compressor双缸压缩机 twin cylinder compressor闭式曲轴箱压缩机 closed crankcase compressor开式曲轴箱压缩机 open crankcase compressor顺流式压缩机 uniflow compressor逆流式压缩机 return flow compressor干活塞式压缩机 dry piston compressor双级压缩机 compund compressor多级压缩机 multistage compressor差动活塞式压缩机 stepped piston compound compressor,differential piston compressor串轴式压缩机 tandem compressor,dual compressor截止阀 line valve,stop valve排气截止阀 discharge line valve吸气截止阀 suction line valve部分负荷旁通口 partial duty port能量调节器 energy regulator容量控制滑阀 capacity control slide valve容量控制器 capacity control消声器 muffler联轴节 coupling曲轴箱 crankcase曲轴箱加热器 crankcase heater轴封 crankcase seal,shaft seal填料盒 stuffing box轴封填料 shaft packing机械密封 mechanical seal波纹管密封 bellows seal转动密封 rotary seal迷宫密封 labyrinth seal轴承 bearing滑动轴承 sleeve bearing偏心环 eccentric strap滚珠轴承 ball bearing滚柱轴承 roller bearing滚针轴承 needle bearing止推轴承 thrust bearing外轴承 pedestal bearing臼形轴承 footstep bearing轴承箱 bearing housing止推盘 thrust collar偏心销 eccentric pin曲轴平衡块 crankshaft counterweight,crankshaft balance weight 曲柄轴 crankaxle偏心轴 eccentric type crankshaft曲拐轴 crankthrow type crankshaft连杆 connecting rod连杆大头 crank pin end连杆小头 piston pin end曲轴 crankshaft主轴颈 main journal曲柄 crank arm,crank shaft曲柄销 crank pin曲拐 crank throw曲拐机构 crank-toggle阀盘 valve disc阀杆 valve stem阀座 valve seat阀板 valve plate阀盖 valve cage阀罩 valve cover阀升程限制器 valve lift guard阀升程 valve lift阀孔 valve port吸气口 suction inlet压缩机气阀 compressor valve吸气阀 suction valve排气阀 delivery valve圆盘阀 disc valve环片阀 ring plate valve簧片阀 reed valve舌状阀 cantilever valve条状阀 beam valve提升阀 poppet valve菌状阀 mushroom valve杯状阀 tulip valve缸径 cylinder bore余隙容积 clearance volume附加余隙(补充余隙) clearance pocket活塞排量 swept volume,piston displacement理论排量 theoretical displacement实际排量 actual displacement实际输气量 actual displacement,actual output of gas气缸工作容积 working volume of the cylinder活塞行程容积 piston displacement气缸 cylinder气缸体 cylinder block气缸壁 cylinder wall水冷套 water cooled jacket气缸盖(气缸头) cylinder head安全盖(假盖) safety head假盖 false head活塞环 piston ring气环 sealing ring刮油环 scraper ring油环 scrape ring活塞销 piston pin活塞 piston活塞行程 piston stroke吸气行程 suction stroke膨胀行程 expansion stroke压缩行程 compression stroke排气行程 discharge stroke升压压缩机 booster compressor立式压缩机 vertical compressor卧式压缩机 horizontal compressor角度式压缩机 angular type compressor对称平衡型压缩机 symmetrically balanced type compress吸收式制冷机英语吸收式制冷机 absorption refrigerating machine吸收式制冷系统 absorption refrigerating system间歇式吸收系统 intermittent absoprtion system连续循环吸收式系统 continuous cycle absorption system固体吸收式制冷 solid absorption refrigeration氨-水吸收式制冷机 ammonia/water absorption refrigerating machine单级氨-水吸收式制冷机 single stage ammonia/water absorption refrigerating machine多级氨-水吸收式制冷机 multistage ammonia/water absorption refrigerating machine双级氨-水吸收式制冷机 ammonia/water absorption refrigerating machine with two stage absorption process双级发生和双级吸收式氨-水制冷机 ammonia/water absorption refrigeratingmachine with two stage generation and absoprtion process分解 decomposition水解 hydrolysis扩散 diffusion能量增强剂 energy booster缓蚀剂 anticorrsive发生不足 incomplete boiling吸收不足 incomplete absorption喷淋密度 sprinkle density溴化锂 lithium bromide溴化锂水溶液 aqueous solution of lithium bromide氨水溶液 aqueous solution of ammonia吸收剂 absorbent,absorbing agent吸附剂 adsorbent溶液 solution浓度 concentration溶解度 solubility溶剂 solvent溶质 solute浓溶液 rich solution,concentrated solution稀溶液 weak solution,diluted solution溶液分压 partial pressure of liquor吸收 absorption吸附 adsorption吸收式制冷 absorption refrigeration吸附式制冷 adsorption refrigeration工质对 working substance热力系数 heat ratio放气范围 deflation ratio焓-浓度图 enthalpy concentration chart溴化锂吸收式制冷机 lithiumbromide absorption refrigerating machine单效型溴化锂吸收式制冷机 single-effect lithiumbromide absorption refrigerating machine两效型溴化锂吸收式制冷机 double-effect lithiumbromide absorption refrigerating machine单筒型溴化锂吸收式制冷机 one-shell lithiumbromide absorption refrigerating machine双筒型溴化锂吸收式制冷机 two-shell lithiumbromide absorption refrigerating machine三筒型溴化锂吸收式制冷机 three-shell lithiumbromide absorption refrigerating machine两级溴化锂吸收式制冷机 two-stage lithiumbromide absorption refrigerating machine直燃式溴化锂吸收式制冷机 direct-fired lithiumbormide absorptionrefrigerating machine溴化锂吸收式冷温水机组 lithiumbromide absorption water heater chiller无泵型溴化锂吸收式制冷机 lithiumbromide absorption refrigerating machine with bubble pump蒸汽型吸收式制冷机 steam operated absorption refrigerating machine热水型吸收式制冷机 hot water operated absorption refrigerating machine发生器 generator沉浸式发生器 submerged generator喷淋式发生器 spray-type generator立式降膜式发生器 vertical falling film generator直燃式发生器 direct-fired generator高压发生器 high pressure generator低压发生器 low pressure generator吸收器 absorber喷淋式吸收器 spray absorber降膜式吸收器 falling film absorber立式降膜式吸收器 vertical falling film absorber卧式降膜式吸收器 horizontal falling film absorber喷淋装置 spray system溶液换热器 solution heat exchanger溶晶管 anti-crystallinic pipe抽气装置 purging system精馏器 rectifier屏蔽泵 shield pump发生器泵 generator pump吸收器泵 absorber pump蒸发器泵 evaporator pump溶液泵 solution pump氨水泵 aqua-ammonia pump混合阀 mixing valve太阳能制冷与供热英语太阳能 solar energy太阳常数 solar constant太阳能系统 solar energy system被动式太阳能系统 passive solar energy system主动式太阳能系统 active solar energy system混合式太阳能系统 hybrid solar energy system太阳能制冷 solar cooling太阳能热机驱动制冷 solarpowered cooling太阳能吸收式制冷机 solar absorption refrigerating machine光-热转换制冷 photothermal refrigeration光-电转换制冷 photoelectrical refrigeration太阳能蒸汽喷射制冷机 solar steam jet refrigerating machine连续式太阳能吸收式制冷机 continual solar absorption refrigerating machine间歇式太阳能吸收式制冷机 intermittent solar absorption refrigerating machine敞开式太阳能吸收式制冷机 open solar absorption refrigerating machine太阳能空调装置 solar air-conditioning system太阳能制冷系统 solar energy cooling system,solar cooling system太阳能集热器 solar collector选择式吸收表面 selective absorber surface电淀积 electrodeposition平板型太阳能集热器 flat plate solar collector真空管太阳能集热器 tubular solar collector,vacuum tube collector聚光型太阳能机热器 focus solar collector集热量 heat-collecting capacity集热温度 heat-collecting temperature集热效率 heat-collecting efficiency蓄热介质 heat storge medium岩石蓄热容器 rock storge container辅助热源 supplementary heat source太阳能贮存系统 solar energy storge system太阳能供热系统 solar heating system,solar space heating installation自然循环闭式供水系统 natural convection closed water system强制循环闭式供水系统 forced convection in a closed water system热风供热系统 warm air heating system家用太阳能热水系统 solar domestic water heating system热管与余热制冷英语热管 heat pipe深冷热管 cryogenic heat pipe低温热管 low temperature heat pipe中温热管 moderate temperature heat pipe高温热管 liquid metal heat pipe管芯 wick相容性 compatibility传热极限 heat transport limitation重力热管 gravity assisted heat pipe热管换热器 heat pipe exchanger深冷热管手术器 heat pipe surgery cryoprobe余热 exhaust heat低温余热 low temperature exhaust heat余热制冷 utilizing waste heat for refrigeration氟利昂透平 freon turbine氟利昂透平离心式制冷机 centrifugal refrigerating machine driven by freon turbine动力-制冷循环 power/refrigeration cycle透平压缩机及零部件英语涡流 swirl叶片颤振 blade flutter叶片通过频率 blade passing frequency喘振 surging脱流 stall叶轮反应度(反作用度) impeller reaction叶轮 impeller半开式叶轮 unshrouded impeller闭式叶轮 shrouded impeller叶片 blade,vane导流叶片组件 pre-rotary vane assembly扩压器 diffuser蜗壳 scroll滑动 slip透平压缩机 turbocompressor离心式压缩机 centrifugal compressor轴流式压缩机 axial flow compressor刚性轴离心式压缩机 stiff-shaft centrifugal compressor挠性轴离心式压缩机 flexibleshaft centrifugal compressor亚音速压缩机 subsonic compressor超音速压缩机 supersonic compressor冷却塔英语自然通风式冷却塔 atmpspheric cooling tower,natural draught cooling tower 机械通风式冷水塔 mechanical draught cooling tower吸风式冷水塔 induced draught cooling tower送风式冷水塔 forced draught cooling tower水膜式冷水塔 film cooling tower水滴式冷水塔 drop cooling tower喷雾式冷水塔 spray cooling tower拉西环 Rasching rings温度接近值 approach水垢 scale水垢抑制剂 scale inhibitor藻类 algae防藻剂 algaecide淀渣 slime升压阀 back-up valve冷水塔 water cooling tower,cooling tower凉水塔 water cooling tower,cooling tower冷却塔 water cooling tower,cooling tower喷水池 spray pond干式冷水塔 dry cooling tower湿-干式冷水塔 wet-dry cooling tower冷水塔填料 packing of cooling tower,fill of cooling tower膜式填料 film packing帘栅形填料 grid packing,grid fill片式填料 plate packing,plate fill松散填料 random packing,random fill飞溅式填料 splash packing空气压缩制冷系统英语空气循环制冷 air-cycle refrigeration空气循环制冷机 air-cycle refrigerating machine涡轮冷却器 turbine cooler温降 temperature drops开式循环 open cycle闭式循环 closed cycle除水 water elimination补气 air supply回热式空气制冷循环 regenerative air cycle飞机座舱空调系统 aircraft air-conditioning system增压式飞机空调系统 "Bootstrap" system冲压空气 ram air制冷系统自动调节流量调节 flow regulation制冷剂控制器 refrigerant control膨胀阀 expansion valve节流阀 throttle valve热力膨胀阀 thermostatic expansion valve热电膨胀阀 thermal electric expansion valve内平衡热力膨胀阀 internal equalizer thermostaice expansion valve 外平衡热力膨胀阀 external equalizer thermostaice expansion valve 外平衡管 external equalizer pipe内平衡管 internal equalizer pipe蒸发器阻力损失 pressure drop of evaporator同工质充注 same material charge交*充注 cross charge吸附充注 absorptive charge气体充注 gas charge膨胀阀过热度 superheat degree of expansion valve过热温度调节 superheat temperature regulation膨胀阀容量 expansion valve capacity手动膨胀阀 hand expansion valve自动膨胀阀 automatic expansion valve浮球调节阀 float regulation valve浮球阀 float valve低压浮球阀 low pressure float valve高压浮球阀 high pressure float valve流量调节 flow regualation制冷剂控制器 refrigerant control膨胀阀 expansion valve节流阀 throttle valve热力膨胀阀 thermostatic expansion valve热电膨胀阀 thermal electric expansion valve内平衡热力膨胀阀 internal equalizer thermostaice expansion valve外平衡热力膨胀阀 external equalizer thermostaice expansion valve外平衡管 external equalizer pipe内平衡管 internal equalizer pipe蒸发器阻力损失 pressure drop of evaporator同工质充注 same material charge交*充注 cross charge吸附充注 absorptive charge气体充注 gas charge膨胀阀过热度 superheat degree of expansion valve过热温度调节 superheat temperature regulation膨胀阀容量 expansion valve capacity手动膨胀阀 hand expansion valve自动膨胀阀 automatic expansion valve浮球调节阀 float regulation valve浮球阀 float valve低压浮球阀 low pressure float valve高压浮球阀 high pressure float valve恒压膨胀阀 constant pressure expansion valve能量调节 capacity regulator单机能量调节 capacity regulation of single unit卸载能量调节 capacity regulation of load drainage程序指令式能量调节系统 capacity regulation system of program order电磁阀 solenoid valve电磁滑阀 magnetic slide valve三通电磁阀 three way magnetic valve蒸汽喷射式制冷系统英语蒸汽喷射制冷 steam jet refrigeration蒸汽喷射制冷机 steam-jet refrigerating machine蒸发式蒸汽喷射制冷机 evaporation-type steam jet refrigeration machine 混合式蒸汽喷射制冷机 contact-type steam jet refrigerating machine蒸汽喷射制冷系统 steam jet refrigerating system蒸汽喷射器 steam ejector主喷射器 main ejector辅助喷射器 auxiliary ejector喷射系数 jet coefficient主冷凝器 main condenser辅助冷凝器 auxiliary condenser多效蒸发 multieffective evaporation高位安装 high-level installation低位安装 low-level installation高低位安装 high-low-level installation臭氧层保护英语臭氧 ozone臭氧层 ozonesphere,ozone layer臭氧层破坏 ozonesphere depletion,ozonesphere disturbance 消耗臭氧层物质 ozone depleting substances(ODS)禁用制冷剂 forbidden refrigerant过渡制冷剂 transition refrigerant替代制冷剂 substitute refrigerant自然制冷剂 natural refrigerant氟利昂家族 freon group全氟代烃 fluorocarbon (FC)氯氟烃 chloroflurocarbon(CFC)氢氟烃 hydrofluorocarbon(HCF)含氢氯氟烃 hydrochloroflurocarbon(HCFC)含氢氯化烃 hydrochlorocarbon(HCC)全氯化烃 polychlorocarbon(PCC)哈龙 Halon共沸混合物 azeotropic mixture碳氢化合物 hydrocarbon compound,hydrocarbon(HC)臭氧消耗潜能值 ozone depletion potential(ODP)温室效应 greenhouse effect全球变暖 global warming京都议定书 kyoto protocol全球变暖潜能值 global warming potential(GWP)变暖影响总当量 total equivalent warming impact(TEWI)寿命期气候性能 life cycle climate performance(LCCP)蕴含能量 embodied energy不易收集的排放 fugitive emissions热电制冷英语热电制冷 thermoelectric refrigeration温差电制冷 thermoelectric refrigeration半导体制冷 semiconductor refrigeration热电效应 thermoelectric effect塞贝克效应 Seebeck effect珀尔帖效应 Peltier effect热电制冷效应 thermoelectric refrigeration effect汤姆逊效应 Thomson effect焦耳效应 Joule effect傅里叶效应 Fourier effect温差电动势 thermoelectric power塞贝克系数 Seebeck coefficient优值系数 figure of merit热电堆 thermoelectric pile温差电堆 thermoelectric pile最佳电流 optimum current经济电流 economic current热电半导体 thermoelectric semiconductors热电材料 thermoelectric material热电制冷材料 thermoelectric cooling materialn型半导体 n-type semiconductorsp型半导体 p-type semiconductors半导体制冷器 thermoelectric-refrigerating unit热电制冷器 thermoelectric refrigerating unit热电空调器 thermoelectric air conditioner半导体空调器 thermoelectric air conditioner半导体恒温器 thermoelectric thermostat半导体冷饮水器 thermoelectric drinking water cooler半导体热泵 thermoelectric heat pump半导体降温机 thermoelectric dehumidifier低温半导体制冷器 low temperature thermoelectric unit焊接式半导体制冷器 soldered thermoelectric refrigerating unit 粘接式半导体制冷器 sticky thermoelectric refrigerating unit 嵌装式半导体制冷器 inlaid thermoelectric refrigerating unit 复叠式半导体制冷器 cascade thermoelectric refrigerating unit 医用半导体制冷器 medicine thermoelectric refrigerating unit 盐水冷却系统开式盐水冷却系统 open brine system闭式盐水系统 closed brine system盐水箱 brine bank盐水混合箱 brine mixing tank盐水溢流箱 brine return tank盐水回流箱 brine return tank盐水膨胀箱 brine balance tank盐水加热器 brine heater盐水冷却器 brine cooler盐水筒 brine drum盐水集管 brine header盐水泵 brine pump盐水喷雾 brine spray盐水喷淋 brine sparge制冷暖通行业品牌中英文对照AEROFLEX “亚罗弗”保温ALCO “艾科”自控Alerton 雅利顿Alfa laval阿法拉伐ARMSTRONG “阿姆斯壮”保温AUX 奥克斯BELIMO 瑞士“搏力谋” BERONOR西班牙“北诺尔”电加热器BILTUR 意大利“百得”BOSIC “柏诚”自控BROAD 远大Burnham美国“博恩汉”锅炉CALPEDA意大利“科沛达”水泵CARLY 法国“嘉利”制冷配件Carrier 开利Chigo 志高Cipriani 意大利斯普莱力CLIMAVENETA意大利“克莱门特” Copeland“谷轮”压缩机CYRUS意大利”赛诺思”自控DAIKIN 大金Danfoss丹佛斯Dorin “多菱”压缩机DUNHAM-BUSH 顿汉布什DuPont美国“杜邦”制冷剂Dwyer 美国德威尔EBM “依必安”风机ELIWELL意大利“伊力威”自控EVAPCO美国“益美高”冷却设备EVERY CONTROL意大利“美控” Erie 怡日FRASCOLD 意大利“富士豪”压缩机FRICO瑞典“弗瑞克”空气幕FUJI “富士”变频器FULTON 美国“富尔顿”锅炉GENUIN “正野”风机GREE 格力GREENCOOL格林柯尔GRUNDFOS “格兰富”水泵Haier 海尔Hisense 海信HITACHI 日立Honeywell 霍尼韦尔Johnson 江森Kelon 科龙KRUGER瑞士“科禄格”风机KU BA德国“库宝”冷风机Liang Chi 良机LIEBERT 力博特MARLEY “马利”冷却塔Maneurop法国“美优乐”压缩机McQuary 麦克维尔Midea 美的MITSUBISHI三菱Munters 瑞典“蒙特”除湿机Oventrop德国“欧文托普”阀门Panasonic 松下RANCO “宏高”自控REFCOMP意大利“莱富康”压缩机RIDGID 美国“里奇”工具RUUD美国“路德”空调RYODEN “菱电”冷却塔SanKen “三垦”变频器Samsung 三星SANYO 三洋SASWELL英国森威尔Schneider 施耐德SenseAir 瑞典“森尔”传感器SIEMENS 西门子SINKO "新晃“空调SINRO “新菱”冷却塔STAND “思探得”加湿器SWEP 舒瑞普TECKA “台佳”空调Tecumseh“泰康”压缩机TRANE 特灵TROX德国“妥思”VASALA芬兰“维萨拉”传感器WILO德国“威乐”水泵WITTLER 德国”威特”阀门YORK 约克ZENNER德国“真兰”计量制冷能力及计算术语英语运行工况 operating conditions标准性能 standard rating标准工况 standard condition空调工况 air conditioning condition内部条件 internal conditions外部条件 external conditions蓄热 accumulation of heat蓄冷 accumulation of cold制冰能力 ice-making capacity热泵用压缩机的供热系数 heat-pump compressor coefficient of performance容积效率 volumetric efficiency容积输气量 vulumetric displacement实际输气量 actual displacement理论输气量 theoretical displacement冷凝热量 condenser heat过冷热量 heat of subcooling过热热量 superheat运转工况下的制冷量 rating under working conditions标准制冷量 standard rating名义工况 normal conditions试验工况 test conditions轴功率 brake power效率 efficiency指示效率 indicated efficiency机械效率 mechanical efficiency总效率 overall efficiency制冷系数 coefficient of performance (COP)制冷压缩机的制冷系数 refrigerating compressor coefficient of performance 热力完善度 thermodynamical perfectness能效比 energy efficiency ratio (EER)热泵供热系数 heat-pump coefficient of performance空调有效显热制冷量 useful sensible heat capacity of air conditioner空调有效潜热(减湿)制冷量 useful latent heat (dehumidifyying) capacity of air conditioner空调器有效总制冷量 useful total capacity of air conditioner制冷剂循环量 circulating mass of refrigerant制冷剂循环容积 circulating volume of refrigerant单位压缩功 compress work per mass示功图 indicator diagram指示功 indicated work摩擦功 frictional work功率 power摩擦功率 frictional power指示功率 indicated power理论功率 idea power制冷量 refrigerating capacity总制冷量 gross refrigerating capacity净制冷量 net refrigerating capacity单位制冷量 refrigerating capacity per weighing单位容积制冷量 refrigerating capacity per unit of swept volume制冷系统制冷量 system refrigerating capacity单位轴功率制冷量 refrigerating effect per shaft power压缩冷凝机组制冷量 compressor condensing unit refrigerating capacity制冷压缩机制冷量 refrigerant compressor capacity蒸发器净制冷量 net cooler refrigerating capacity制冷装置制冷装置 refrigerating installation,refrigerating plant 工业制冷装置 industrial refrigerating plant商业制冷装置 commercial refrigerating plant中心站房 central station成套机组 self-contained system规范安装 code installation制冷回路 refrigerating circuit热平衡 heat balance货物负荷 product load操作负荷 service load设计负荷 design load负荷系数 load factor制冷装置试验与操作试运转 commissioning吹污 flush气密性试验 gas-tight test,air-right test密闭容器 closed container漏气 air infiltration放气 air vent检漏 leak hunting,leak detection检漏仪 leak detector卤素灯 halide torch电子检漏仪 electronic leak detector真空试验 vacuum test试验压力 test pressure工作压力 operating pressure,working pressure最高工作压力 highest operating pressure气密试验压力 gas-tight test pressure设计压力 design pressure平衡压力 balance pressure充气 aerate,gas charging制冷剂充注 refrigerant charging首次充注 initial charge保护充注 holding charge,service charge制冷剂不足 lack of refrigerant,under-charge,gas shortage 缺液 starveling充灌台 charging board充灌量 charge充注过多 overcharge供液过多 overfeeding制冷剂抽空 pump down of refrigerant降温试验 pull down test制冷[功能]试验 refrigeration test卸载起动 no-load starting,unloaded start卸载机构 unloader闪发 flash vaporization,instantaneous vaporization 闪发气体 flash gas不凝性气体 non condensable gas气体排除 gas purging,degassing,gasoff阀针跳动 hammering,needle hammer阀振荡 hunting of a valve阀片跳动 valve flutter,valve bounce短期循环 short-cycling异常温升 overheating泄漏 leak气蚀 cavitation制冷剂瓶 refrigerant cylinder,gas bottle检修用瓶 service cylinder,gas bottle紧急泄放阀 emergency-relief valve检修阀 service valve安全阀 pressure relief valve抽空阀 pump out valve加油阀 oil charge valve放油阀 oil drain valve放空阀 purge valve充灌阀 charging valve喷液阀 liquid injection valve润滑油润滑油 lubricant oil冷冻机油 refrigeration oil冷冻油 refrigerant oil凝点 condensation point闪点 flash point浊点 cloud point絮凝点 flock point流动点 pour point起泡 foaming皂化 saponify油泥 sludge结碳 carbonization制冷剂制冷剂(制冷工质) refrigerant高温制冷剂 high temperature refrigerant低压制冷剂 low pressure refrigerant中温制冷剂 medium temperature refrigerant中压制冷剂 medium pressure refrigerant低温制冷剂 low temperature refrigerant高压制冷剂 high pressure refrigerant氟利昂 freon卤化碳制冷剂 halocarbo refrigerant氟利昂11 freon 11氟利昂12 freon 12氟利昂13 freon 13氟利昂14 freon 14氟利昂22 freon 22氟利昂113 freon 113氟利昂125 freon 125氟利昂134a freon 134a氟利昂152a freon 152a碳氢化合物制冷剂 hydrocarbon refrigerant甲烷 methane乙烷 ethane丙烷 propane丁烷 butane异丁烷 isobutane乙烯 ethylene无机化合物制冷剂 inorganic compund refrigerant氨 ammonia二氧化碳 carbon dioxide二氧化硫 sulphur dioxide干冰 dry ice共沸制冷剂 azeotropic mixture refrigerant氟里昂500 freon 500氟里昂501 freon 501氟里昂502 freon 502氟里昂503 freon 503氟里昂504 freon 504近共沸溶液制冷剂 near azeotropic mixture refrigerant 非共沸溶液制冷剂 nonazeotropic mixture refrigerant 蒸发器壳盘管式蒸发器 shell-and-coil evaporator壳管式蒸发器 shell-and-tube evaporator喷淋式蒸发器 spray-type evaporator立管式蒸发器 vertical-type evaporator平行管蒸发器 receway coil螺旋管式蒸发器 spiral tube evaporator“V”型管蒸发器 herringbone type evaporator沉浸式盘管蒸发器 submerged evaporator板式蒸发器 plate-type evaporator螺旋板式蒸发器 spiral sheet evaporator平板式蒸发器 plate-type evaporator,tube-in-sheet evaporator 管板式蒸发器 tube-on-sheet evaporator凹凸板式蒸发器 embossed-plate evaporator吹胀式蒸发器 roll-bond evaporator压焊板式蒸发器 roll-bond evaporator制冰块器的蒸发器 ice cube maker evaporator结冰式蒸发器 ice-bank evaporator蓄冰式蒸发器 ice-bank evaporator结霜蒸发器 frosting evaporator除霜蒸发器 defrosting evaporator无霜蒸发器 nonfrosting evaporator强制通风蒸发器 forced circulation evaporator冷液式蒸发器 liquid cooling evaporator封套式蒸发器 wrap-round evaporator蒸发器 evaporator直接冷却式蒸发器 direct evaporator直接式蒸发器 direct evaporator间接冷却式蒸发器 indirect cooled evaporator间接式蒸发器 indirect evaporator干式蒸发器 dry expansion evaporator满液式蒸发器 flooded evaporator再循环式蒸发器 recirculation-type evaporator强制循环式蒸发器 pump-feed evaporator冷凝器英语冷凝器 condenser冷凝液 condensate空冷式冷凝器 air-cooled condenser风冷式冷凝器 air-cooled condenser自然对流空冷式冷凝器 natural convecton air-cooled condenser 强制通风式冷凝器 forced draught condenser冷凝风机 condensate fan线绕式冷凝器 wire and tube condenser水冷式冷凝器 water-cooled condenser沉浸式盘管冷凝器 submerged coil condenser套管式冷凝器 double pipe condenser壳管式冷凝器 shell and tube condenser组合式冷凝器 multishell condenser卧式壳管式冷凝器 closed shell and tube condenser卧式冷凝器 closed condenser立式壳管式冷凝器 open shell and tube condenser立式冷凝器 open condenser,vertical condenser壳盘管式冷凝器 shell and coil condenser分隔式冷凝器 split condenser淋激式冷凝器 atmospheric condenser。
不同频率全身振动训练对老年女性平衡能力、下肢肌力和位置觉的影响
不同频率全身振动训练对老年女性平衡能力、下肢肌力和位置觉的影响李静雅;程亮【摘要】探讨相同振幅(3 mm)、不同频率的全身振动训练(WBVT)对老年女性身体姿势控制能力的影响.63例60~70岁健康老年女性,随机分成年龄、身高和体重相匹配的低频组(n=15, 10~15 Hz)、中频组(n=16,25~30 Hz)、高频组(n=15,40~45 Hz)和对照组(n=17).采用美国产Power-Plate振动平台对振动组进行为期24周的WBVT,并测试0周和24周所有受试者的平衡能力、下肢肌力和下肢的本体感觉.结果显示:(1)平衡能力:低频 WBVT 显著提高了老年受试者的本体代偿能力,中频和高频显著提高了受试者本体代偿能力、前庭整合能力和左、右方向的动态平衡能力,且高频改善效果优于低频和中频;(2)下肢肌力:低频 WBVT 显著提高了老年受试者膝关节伸肌绝对力,中频和高频显著提高了膝和踝关节伸肌绝对力和爆发力.高频提升膝关节伸肌绝对力优于低频和中频,对膝关节伸肌爆发力、踝关节伸肌绝对力和爆发力提升效果优于低频.中频提升膝和踝关节伸肌爆发力效果优于低频;(3)下肢运动觉:低频 WBVT 显著提升了老年受试者膝关节30°和60°位置觉,中频和高频显著提升了膝关节30°、60°和踝关节45°位置觉.且高频提升膝关节30°和60°位置觉效果优于低频和中频.%In order to probe into the effects of whole-body vibration training (WBVT) at the same amplitude (3mm) but at different frequencies on the body posture control ability of elderly women, the authors divided 63 healthy elderly women aged 60-70 randomly into a low frequency group (n=15, 10-15 Hz), a mid frequency group (n=16, 25-30 Hz) , a high fre-quency group (n=15, 40-45 Hz), and a control group (n=17), in which the age, height and weight match The authors let thevibration groups carry out 24-week WBVT on the Power-Plate vibration platform made in USA, and tested the balance, lower limb muscle strength and lower limb proprioception of all the testees on week 0 and week 24, and revealed the fol-lowing findings: 1) balance: low frequency WBVT significantly improved the ontic compensation ability of the elderly testees, mid frequency and high frequency WBVT significantly improved the ontic compensation ability, vestibular inte-gration ability as well as left and right dynamic balance of the testees, and high frequency WBVT's improvement effect was better than low frequency and mid frequency WBVT's; 2) lower limb muscle strength: low frequency WBVT signifi-cantly improved the absolute power of knee joint extensor of the elderly testees, mid frequency and high frequency WBVT significantly improved the absolute power and explosive power of knee and ankle joint extensors; high frequency WBVT's effect of improving the absolute power of knee joint extensor was better than low frequency and mid frequency WBVT's, its effect of improving the explosive power of knee joint extensor, and the absolute power and explosive power of ankle joint extensor, was better than low frequency WBVT's; mid frequency WBVT 's effect of improving the explosive power of knee and ankle joint extensors was better than low frequency WBVT 's; 3) lower limb movement sense: low frequency WBVT significantly improved the 30° and 60° position sense of knee joint of the elder testees, mid frequency and high frequency WBVT significantly improved the 30° and 60° position sense of knee joint and the 45° position sense of ankle joint, andhigh frequency WBVT's effect of improving the 30° and 60° position sense of knee joint was better than low frequency and mid frequency WBVT's.【期刊名称】《体育学刊》【年(卷),期】2018(025)002【总页数】7页(P128-134)【关键词】运动医学;全身振动训练;身体姿势控制;平衡能力;肌力;位置觉;老年女性【作者】李静雅;程亮【作者单位】四川师范大学体育学院,四川成都 610066;四川省运动技术学院康复中心,四川成都 610041【正文语种】中文【中图分类】G804.6因衰老导致人体姿势控制能力的下降,增加了老年人跌倒的风险[1]。
空气过滤器 FFU中英文资料
95/30 1990/80
825/30 1650/80
660/20 1700/20 850/20 1420/20 1180/20 950/20 1800/18 850/18 1420/18 1180/18 950/18
1325/63 3400/70 1700/70 2840/70 2360/70 1870/70 3400/68 1700/68 2840/68 2360/68 1870/68
htpp://
Dirkbiel
3
Integrity、 Quality 、Innovation 、Service、Value (IQIS&V)
MF-Air FilterG3,G4 金属框空气过滤器
The initial effect panel type filter is suitable for the initial filtration of air conditioner and ventilation systems, filtration of the returned air in the clean chambers and pre-filtration for the partial high-effect filtration systems. It has been broadly used in various industries, to include electronics, electric appliances, aviation and aerospace, automobiles, pharmaceuticals, biological engineering, environmental protection, telecommunication, banks, intelligent buildings, hotels, restaurants, etc.
刨花形态和跌落高度对刨花定向效果的影响
林业工程学报,2023,8(4):66-71JournalofForestryEngineeringDOI:10.13360/j.issn.2096-1359.202211002收稿日期:2022-11-03㊀㊀㊀㊀修回日期:2023-02-05基金项目:国家重点研发计划(2021YFD2200602);江西省林业局科技创新专项(202135)㊂作者简介:胡尧琼,女,研究方向为木质复合材料㊂通信作者:梅长彤,男,教授㊂E⁃mail:mei@njfu.edu.cn刨花形态和跌落高度对刨花定向效果的影响胡尧琼,李万兆,张晔,梅长彤∗(南京林业大学材料科学与工程学院,南京210037)摘㊀要:定向刨花板(OSB)是一种应用广泛的木质结构材,其基本组成单元是窄长薄片刨花,刨花定向铺装角度是影响OSB力学性能的重要因素㊂以刨花长度㊁宽度和跌落高度为影响因子,统计分析以上因子对刨花定向角度的影响,拟合出优化试验参数对应刨花定向效果的正态分布曲线㊂刨花跌落高度对定向角度影响显著,其次为刨花长度和宽度㊂分析刨花长宽比与定向角度绝对值的关系,重点关注定向角度绝对值小于10ʎ,15ʎ和30ʎ的刨花占比㊂当刨花长宽比小于8时,长宽比与刨花定向效果呈线性正相关,长宽比接近8时,刨花定向效果最佳㊂刨花长度ˑ刨花宽度ˑ跌落高度的优化参数分别为150mmˑ20mmˑ80mm㊁150mmˑ15mmˑ80mm㊁150mmˑ10mmˑ80mm和120mmˑ20mmˑ80mm,结合正态分布拟合曲线得出90%概率条件下,4组试验所得刨花定向角度的置信区间均小于30ʎ,而150mmˑ20mmˑ80mm试验参数条件下刨花定向效果最佳㊂本研究系统分析了使用定向导板控制窄长薄片刨花的定向效果,优化了刨花形态和跌落高度的参数,刨花定向角度的量化分析预测可以为OSB力学性能的预测提供基础科学依据㊂关键词:定向刨花板;刨花形态;跌落高度;定向角度;统计分析中图分类号:S784㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀文章编号:2096-1359(2023)04-0066-06EffectofstrandshapeanddropheightonstrandsorientationHUYaoqiong,LIWanzhao,ZHANGYe,MEIChangtong∗(CollegeofMaterialsScienceandEngineering,NanjingForestryUniversity,Nanjing210037,China)Abstract:Basiccompositioncomponentoforientedstrandboard(OSB)islongandthinslicestrand.OSBisarenew⁃able,reusable,andrecyclableresourceandanalternativetostructuralplywoodforawiderangeoflightweighttimberframeconstructionwithhighvariabilityinflexuralproperties.ThedirectionalpavingangleofstrandisoneofthemostimportantfactorsaffectingthemechanicalpropertiesofOSB.Consideringthelengthandwidthofthestrandandthedropheightaftercrossingthedirectionalguideplateastheinterferingfactors,theinfluenceoftheabovefactorsontheorientationangleofthestrandwasanalyzedstatistically,andthecurvenormaldistributionoftheorientationeffectoftheoptimizedtestparameterswasfitted.Duringtheexperiments,thestrandsfellfreelyontotheguideplate,andthenscatteredonthebaseplateafterbeingorientedbytheguideplate.Theheightofstranddrophadasignificanteffectontheorientationangle,followedbythelengthandwidthofthestrand.Whentheaspectratioofstrandwassmallerthaneight,thelength⁃widthratiowaslinearlyandpositivelycorrelatedwiththeorientationeffectofthestrand,andwhenthelength⁃widthratiowasclosetoeight,theorientationeffectofstrandwasthebest.Theoptimizedparametersofthestrandlengthˑstrandwidthˑdropheightwere150mmˑ20mmˑ80mm,150mmˑ15mmˑ80mmand150mmˑ10mmˑ80mm,respectively.Whenthelength⁃widthratiowasgreaterthaneight,thereductionofthestrandwidthwouldleadtotheincreaseoftheaspectratio,whilethechangeofthewidthhadslightinfluenceontheorientationeffect.Combinedwiththefittingcurveofnormaldistribution,theconfidenceintervalsofthestrandorientationanglesobtainedbythethreegroupsoftestswereallsmallthan30ʎundertheconditionof95%probability.Itwasfurtherex⁃plainedthatthechangeofparticlewidthhadnoobviousinfluenceontheorientationeffectcomparedwiththechangeofparticlelength.Inthisstudy,theinfluenceofstrandshapeanddropheightonorientationeffectwasanalyzedbythestatisticalanalysis.Theconfidenceintervalofparticleorientationangleundertheconditionofthetargetprobabilitycouldbeobtainedbycombiningthefittingcurveofnormaldistribution.Thisstudysystematicallyanalyzedtheeffectofusingdirectionalguideplatetocontrolthestrandorientationofthenarrowandlongthinslices,optimizedthepa⁃rametersofthestrandmorphologyanddropheight.Thequantitativeanalysisandpredictionofstrandorientationangle㊀第4期胡尧琼,等:刨花形态和跌落高度对刨花定向效果的影响couldprovideabasisforthescientificpredictionofmechanicalpropertiesofOSB.Keywords:orientedstrandboard;strandshape;dropheight;orientationangle;statisticalanalysis㊀㊀木材是一种绿色天然可再生材料,长期以来被广泛应用于家具㊁建筑㊁能源等领域㊂近年来,木材供需矛盾逐渐突出,优质木材严重短缺,而次生木质部的高效利用是缓解优质木材短缺的重要手段[1-3]㊂定向刨花板(orientedstrandboard,OSB)是由规定形状和一定厚度的木质大片刨花施胶后经定向铺装㊁热压制成的多层结构板材,具有优异的力学性能和尺寸稳定性[4-5]㊂生产OSB可实现木材利用率达到85%以上,同时其力学性能能够媲美胶合板[6-8]㊂影响OSB力学性能的主要因素有刨花铺装角度㊁刨花形态㊁板材剖面密度㊁板坯结构㊁胶黏剂和热压工艺参数等[9-13]㊂表层刨花规则排列能提高OSB的弹性模量(MOE)和静曲强度(MOR),且基于表层刨花铺装角度可以有效预测OSB的MOE和MOR[14]㊂Nishimura等[15]研究了表层刨花铺装角度和刨花形态对OSB力学性能的影响,结果表明,刨花铺装角度对OSB的MOR影响比刨花形态更明显㊂刨花的铺装角度主要受刨花形态和刨花铺装高度影响[16]㊂刨花形态的重要评价指标是刨花的长宽比,刨花长宽比对OSB的内结合强度有一定的影响[17]㊂刨花长宽比与OSB的MOE和MOR呈正相关,但刨花长宽比增加会降低OSB的内结合强度[18]㊂刨花铺装角度对OSB的力学性能影响显著,通过研究刨花长宽比和跌落高度与刨花铺装角度的关系,可以为优化OSB的组坯工艺和产品结构提供理论指导㊂笔者针对15种刨花形态和2种跌落高度与刨花铺装角度的关系展开系统研究,统计分析了刨花形态和铺装高度对刨花定向角度的影响,梳理了刨花长宽比和定向铺装效果的关系,提出了刨花精准铺装的优化工艺参数㊂1㊀材料与方法1.1㊀试验材料与设备杨树(Populustremula)木材旋切单板购自安徽省,密度0.35g/cm3,名义厚度1.0mm,含水率9.15%㊂选用没有节子㊁裂隙等明显缺陷的单板手工制备定向刨花,将单板裁成5种长度(150,120,100,80,50mm),3种宽度(2,15,10mm)的长方形刨花,其中刨花长度和宽度分别对应木材的径向和弦向㊂将每种长度和宽度进行组合,共制备15种不同尺寸的刨花,每种刨花各400片㊂刨花铺装高度对应刨花的跌落高度(刨花离开定向装置后自由落体至板坯的距离),本试验采用了2个刨花跌落高度,分别为80,230mm㊂刨花跌落高度可以通过增加底座控制:无底座时,导板和垫板间的距离为80mm;加底座时,导板和垫板间的距离为230mm㊂首先使刨花自1500mm高度自由落体至定向导板,刨花通过定向导板后落至垫板,定向导板和垫板间的距离控制为80和230mm(图1),定向导板齿间距是30mm㊂针对部分无法一次穿过定向导板的刨花,轻轻晃动定向导板使所有刨花跌落至垫板㊂该定向方法与生产线所用定向铺装头工作原理相似[19]㊂每种刨花尺寸进行2个跌落高度试验,共计30组试验,每组400片刨花分2次开展试验,每次200片刨花㊂每次试验时当所有刨花跌落至垫板后手动记录刨花的铺装角度,刨花向逆时针和顺时针方向偏移分别记为负角度和正角度,其中基准方向是定向导板的长度方向(图1)㊂图1㊀长片刨花定向铺装工序示意图Fig.1㊀Schematicdiagramofdirectionalprocessofstrands1.2㊀数据分析采用方差(F检验)进行刨花长度㊁刨花宽度和跌落高度对刨花定向效果影响的组间显著性分析㊂将刨花长度与宽度整理成长宽比,分析刨花长宽比与定向角度的相关性㊂为分析每组试验的刨花定向效果,按式(1)计算400片刨花绝对角度的平均值㊂当刨花的定向角度绝对值大于30ʎ时,定向效果不理想,且会导致OSB产品的MOR和MOE显著下降[18],因此本研究重点分析定向角度绝对值小于30ʎ的数据,并整理出平均定向角度小于10ʎ,15ʎ和30ʎ的刨花数量占比(式(2))㊂针对平均角度小于30ʎ的各组数据,计算每组定向角度数据的偏度值㊁峰度值和ZS㊁ZK(式(4) (8)),进行76林业工程学报第8卷正态分布分析,计算每组定向角度数据的平均值(式(3))和标准差㊂X=x1+x2+ +xn-1+|xn|n(1)P=mnˑ100%(2)μ=x1+x2+ +xn-1+xnn(3)S=1nðni=1(xi- x)31nðni=1(xi- x)2éëêêùûúú32(4)K=1nðni=1(xi- x)41nðni=1(xi- x)2éëêêùûúú2-3(5)Se=σn(6)ZS=SSe(7)ZK=SSK(8)式中: X为刨花定向角度绝对平均值;xi为每一片刨花的定向角度;P为处于一个角度区间内的刨花数量占比;μ为一组刨花定向角度的平均值;n为一组刨花的总数量;m为一组刨花中处于一个角度区间内的刨花数量;S为偏度值;K为峰度值;Se为标准误差;ZS为峰度的Z评分;ZK为偏度的Z评分㊂图2㊀不同定向角度下刨花长宽比对刨花定向角度的影响Fig.2㊀Theeffectoflength⁃widthratioonorientationangleofstrandunderdifferentorientationangles2㊀结果与分析2.1㊀刨花形态与跌落高度对刨花定向效果的影响本研究聚焦于刨花长度㊁刨花宽度和跌落高度(对应铺装高度)对刨花定向效果的影响,采用组间方差(F检验)分析以上因素对刨花定向角度影响的显著性㊂该方法也会被用于医学研究领域中,探究不同药液的作用强度是否在统计学上有显著的差异[20-21]㊂通过对30组试验数据的对比分析发现,刨花长度㊁刨花宽度和跌落高度均对刨花定向方向有显著性影响(P<0.001)(表1)㊂F检验值越大代表组间差异越显著㊂跌落高度对应的F值最大,说明这一因素对刨花的定向效果影响最大㊂当跌落高度是230mm时,刨花定向角度的绝对平均值是24.47ʎ;当跌落高度是80mm时,刨花定向角度的绝对平均值是10.36ʎ㊂跌落高度低意味着刨花自由落体段的距离短,刨花角度随机偏移的概率降低,这有助于改善刨花的定向效果㊂相较于刨花长度,刨花宽度对刨花的定向效果影响更小㊂研究表明,在OSB组坯结构不变的情况下,刨花定向效果与其MOR和MOE呈线性正相关[15]㊂OSB的MOR和MOE主要决定于刨花长度,而刨花宽度对其影响较小[18]㊂刨花长度对刨花定向角度的影响是刨花长度影响OSB的MOR和MOE的重要原因㊂表1㊀刨花定向效果方差分析Table1㊀Analysisofvarianceofstranddefinitivedirectionresult指标平方和自由度F显著性刨花长度92019.77454.11∗∗刨花宽度2547.3727.19∗∗跌落高度35929.20199.74∗∗㊀注: ∗∗ 表示差异极其显著(P<0.001)㊂㊀㊀为研究刨花尺寸对定向效果的影响,将刨花尺寸进一步整理为长宽比,并分析刨花长宽比与定向角度绝对值的关系,重点关注定向角度绝对值小于10ʎ,15ʎ和30ʎ的刨花数量占比(式(2))㊂刨花长宽比对刨花定向角度的影响见图2,其中,刨花占比是指刨花定向角度绝对值小于10ʎ,15ʎ和30ʎ的刨花数量占总刨花数量的比例㊂刨花长宽比与定86㊀第4期胡尧琼,等:刨花形态和跌落高度对刨花定向效果的影响向角度呈一定的线性正相关㊂当刨花长宽比小于8时,刨花长宽比对刨花定向效果的影响明显,并且刨花长宽比与定向角度的决定系数显著提高㊂当刨花长宽比为8时,44.0%的刨花绝对定向角度小于10ʎ,63.0%的刨花定向角度绝对值小于15ʎ,83.5%的刨花定向角度绝对值小于30ʎ㊂当刨花长宽比大于8时,长宽比的变大不再明显改善刨花的定向效果㊂这与彭明凯等[18]得到的刨花长宽比优化结果基本一致㊂刨花的长度增加,刨花长宽比变大,导板对刨花方向的约束能力越好㊂当刨花长宽比大于8时,长宽比的增加主要源于刨花宽度的减小,而非刨花长度的继续增加,因此,刨花的定向效果变化不大㊂这与表1中的结果一致,刨花长度对刨花定向效果的影响明显大于刨花宽度㊂2.2㊀刨花定向角度的正态分布分析刨花定向角度大于30ʎ时,OSB的MOR和MOE会明显下降[18]㊂本研究设计的30组试验参数中有10组刨花的定向角度绝对平均值小于30ʎ,10组数据的具体参数和定向效果如表2所示㊂为分析10组数据的分布状态,采用式(4) (8)计算了ZS和ZK值㊂研究发现,当样本容量在20 1000时,可采用ZS和ZK联合检验判断一组数据是否符合正态分布[22]㊂ZS和ZK的绝对值都小于1.96时,可认为这一组数据完全符合正态分布;当ZS和ZK的绝对值大于1.96时,需结合频数分布直方图判定数据是否符合近似正态分布㊂标准差σ可以判断一组数据的离散程度,当σ2越大时其离散程度越大,刨花定向效果越差㊂刨花定向角度平均值μ接近0,同时刨花绝对定向角度平均值 X越小,则说明刨花定向效果越好㊂由表2分析可知,使用150mmˑ20mmˑ80mm㊁150mmˑ15mmˑ80mm㊁150mmˑ10mmˑ80mm㊁120mmˑ20mmˑ80mm这4组试验参数铺装所得刨花定向角度平均值㊁刨花绝对定向角度平均值和标准差均较小,说明刨花定向效果较好㊂以上4组试验参数的特点是刨花长度大且刨花跌落高度低,这与表1得到的跌落高度和刨花长度对刨花定向角度影响显著的结果吻合㊂结合ZS㊁ZK值和频数分布直方图可知,这4组数据完全符合或接近正态分布㊂表2㊀刨花定向角度的绝对平均值与正态分析Table2㊀Absolutemeanvalueandnormalanalysisofstrandorientationangle编号刨花长ˑ宽ˑ跌落高度/mm XZSZKμσ21150ˑ20ˑ8010.360.328.410.65107.332150ˑ15ˑ8013.13-0.604.330.21172.403150ˑ10ˑ8014.86-0.082.570.39220.674150ˑ20ˑ23024.47-0.040.24-1.78598.785120ˑ20ˑ8017.290.011.08-0.38298.946120ˑ15ˑ8020.340.001.151.05413.727120ˑ10ˑ8020.40-0.030.760.04415.968100ˑ20ˑ8021.040.010.02-0.08580.099100ˑ15ˑ8024.090.020.19-0.26691.1610100ˑ10ˑ8027.400.000.070.06750.76㊀㊀4组试验参数所得刨花定向角度的正态分布拟合曲线见图3㊂其中,占比是指刨花落在不同角度区间内的概率㊂当试验参数为150mmˑ20mmˑ80mm时,ZK值最大,拟合曲线最陡峭,刨花定向效果最佳,具体表现为大多数刨花定向角度接近μ值㊂当刨花长度为150mm时,减小刨花宽度,ZK值减小,正态分布拟合曲线趋于平缓,μ值附近刨花占比下降㊂这说明刨花定向角度分布域变宽,定向效果下降㊂当刨花长度为120mm时,ZK值进一步减小,刨花定向效果继续下降㊂结合拟合后的正态分布曲线,可以梳理出一定概率条件下刨花定向角度的置信区间㊂在90%和95%概率条件下,4组试验参数所得刨花定向角度的置信区间见表3㊂在90%概率条件下,4组试验参数所得刨花定向角度的置信区间均为-30ʎ 30ʎ㊂在95%概率条件下,150mmˑ20mmˑ80mm㊁150mmˑ15mmˑ80mm㊁150mmˑ10mmˑ80mm试验条件下,刨花定向角度的置信区间仍为-30ʎ 30ʎ,因此采用这3种试验参数可以确保刨花的绝对定向角度小于30ʎ㊂基于本研究结果得出150mmˑ20mmˑ80mm试验参数条件下,刨花定向效果最佳㊂结合正态分布曲线可实现刨花定向角度的量化分析和预测,这为进一步构建OSB力学性能的预测模型提供基础数据依据㊂96林业工程学报第8卷图3㊀4组试验条件下刨花定向角度的正态分布Fig.3㊀Normaldistributionofstrandorientationangleunderfourgroupsoftestconditions表3㊀在P=0.90和P=0.95时刨花定向角度的置信区间Table3㊀ConfidenceintervalsofstrandorientationangleatP=0.90andP=0.95刨花长ˑ宽ˑ跌落高度/mm置信区间(P=0.90)置信区间(P=0.95)150ˑ20ˑ80-18.37ʎ 19.67ʎ-22.08ʎ 23.38ʎ150ˑ15ˑ80-21.79ʎ 21.03ʎ-25.97ʎ 25.21ʎ150ˑ10ˑ80-21.19ʎ 23.28ʎ-25.53ʎ 27.62ʎ120ˑ20ˑ80-26.92ʎ 27.33ʎ-32.21ʎ 32.62ʎ3㊀结㊀论1)通过对比研究刨花长度㊁宽度㊁跌落高度(对应铺装高度)和刨花定向角度,发现对刨花定向角度影响因素的显著性顺序为跌落高度㊁刨花长度和刨花宽度㊂2)刨花长宽比与定向效果基本呈正相关,当刨花长宽比接近8时,刨花定向效果最佳㊂3)刨花长度ˑ刨花宽度ˑ跌落高度的4组优化参数分别为150mmˑ20mmˑ80mm㊁150mmˑ15mmˑ80mm㊁150mmˑ10mmˑ80mm㊁120mmˑ20mmˑ80mm㊂结合正态分布拟合曲线可以得出:在90%概率条件下,4组试验参数所得刨花绝对定向角度均小于30ʎ;在95%概率条件下,150mmˑ20mmˑ80mm㊁150mmˑ15mmˑ80mm㊁150mmˑ10mmˑ80mm这3组试验参数所得刨花绝对定向角度小于30ʎ㊂参考文献(References):[1]梅长彤,雍宬.我国定向刨花板工业发展历史㊁现状和机遇[J].中国人造板,2016,23(3):6-9.DOI:10.3969/j.issn.1673-5064.2016.03.002.MEICT,YONGC.History,currentsituationandopportunitiesoforientedstrandboardindustrydevelopmentinChina[J].ChinaWood⁃BasedPanels,2016,23(3):6-9.[2]肖再然,申伟,刘振东.中国定向刨花板市场[J].国际木业,2020,50(3):41-43.DOI:10.3969/j.issn.1671-4911.2020.03.010.XIAOZR,SHENW,LIUZD.Chinaorientedparticleboardmarket[J].InternationalWoodIndustry,2020,50(3):41-43.[3]夏芹,周润之,洪锐彬,等.国内外刨花板原材料的研究进展[J].广州化工,2022,50(2):21-23.DOI:10.3969/j.issn.1001-9677.2022.02.011.XIAQ,ZHOURZ,HONGRB,etal.Reviewonresearchde⁃velopmentsofparticleboardrawmaterials[J].GuangzhouChemicalIndustry,2022,50(2):21-23.[4]卢项乾.定向刨花板生产设备和工艺控制探析[J].现代制造技术与装备,2020,56(7):163.DOI:10.16107/j.cnki.mmte.2020.0687.LUXQ.Discussiononproductionequipmentandprocesscontroloforientedparticleboard[J].ModernManufacturingTechnologyandEquipment,2020,56(7):163.[5]LIWZ,CHENCY,SHIJT,etal.Understandingthemechani⁃calperformanceofOSBincompressiontests[J].ConstructionandBuildingMaterials,2020,260:119837.DOI:10.1016/j.con⁃buildmat.2020.119837.[6]彭钊云.定向刨花板家具部件结合性能的研究[D].长沙:中07㊀第4期胡尧琼,等:刨花形态和跌落高度对刨花定向效果的影响南林业科技大学,2016.DOI:10.7666/d.Y3134607.PENGZY.Studyontheconnectionstrengthoforientedstrandboard⁃furniturepartjoining[D].Changsha:CentralSouthUni⁃versityofForestry&Technology,2016.[7]胡育辉.定向结构刨花板与其他人造板的比较[J].木材工业,2000,14(5):27-28.DOI:10.19455/j.mcgy.2000.05.009.HUYH.Comparisonoforientedstrandboardwithotherwoodbasedpanels[J].ChinaWoodIndustry,2000,14(5):27-28.[8]曾繁华.LPF树脂在桉木定向刨花板的应用研究[D].南宁:广西大学,2016.DOI:10.7666/d.Y3087925.ZENGFH.StudyontheapplicationofLPFresinintheprepara⁃tionofecucalyptusOSB[D].Nanning:GuangxiUniversity,2016.[9]梅长彤,周定国,戴春平.平面密度分布对刨花板内结合强度的影响[J].林业科学,2004,40(3):123-127.DOI:10.3321/j.issn:1001-7488.2004.03.021.MEICT,ZHOUDG,DAICP.Effectsofhorizontaldensitydis⁃tributiononinternalbondstrengthofparticleboard[J].ScientiaSilvaeSinicae,2004,40(3):123-127.[10]MEICT,DAICP,ZHOUDG.Effectsofhorizontaldensityvar⁃iationonpropertiedofwoodstrandcomposites[J].JournalofNanjingForestryUniversity,2002,26(6):1-4.[11]LIRJ,GUTIERREZJ,CHUNGYL,etal.Alignin⁃epoxyresinderivedfrombiomassasanalternativetoformaldehyde⁃basedwoodadhesives[J].GreenChemistry,2018,20(7):1459-1466.DOI:10.1039/C7GC03026F.[12]李万兆,李东虎,陈超意,等.定向刨花板和细表面定向刨花板抗弯性能及应变分布比较[J].林业工程学报,2022,7(6):61-66.DOI:10.13360/j.issn.2096-1359.202202022.LIWZ,LIDH,CHENCY,etal.Comparisonofbendingstrengthandstraindistributioninorientedstrandboardandfinesurfaceorientedstrandboard[J].JournalofForestryEngineering,2022,7(6):61-66.[13]BARBIRATOGHA,JUNIORWEL,MARTINSRH,etal.SandwichOSBtrapezoidalcorepanelwithBalsawoodwaste[J].WasteandBiomassValorization,2022,13(4):2183-2194.DOI:10.1007/s12649-021-01660-2.[14]CHENSG,FANGLM,LIUXH,etal.Effectofmatstructureonmodulusofelasticityoforientedstrandboard[J].WoodScienceandTechnology,2008,42(3):197-210.DOI:10.1007/s00226-007-0167-0.[15]NISHIMURAT,ANSELLMP,ANDON.Therelationshipbe⁃tweenthearrangementofwoodstrandsatthesurfaceofOSBandthemodulusofrupturedeterminedbyimageanalysis[J].WoodScienceandTechnology,2001,35(6):555-562.DOI:10.1007/s002260100118.[16]SUZUKIS,TAKEDAK.ProductionandpropertiesofJapaneseo⁃rientedstrandboardI:effectofstrandlengthandorientationonstrengthpropertiesofsugiorientedstrandboard[J].JournalofWoodScience,2000,46(4):289-295.DOI:10.1007/BF00766219.[17]ARABIM,FAEZIPOURM,LAYEGHIM,etal.Interactionanalysisbetweenslendernessratioandresincontentonmechanicalpropertiesofparticleboard[J].JournalofForestryRe⁃search,2011,22(3):461-464.DOI:10.1007/s11676-011-0188-2.[18]彭明凯,梅长彤.刨花形态及定向角度对刨片层积材性能的影响[J].南京林业大学学报(自然科学版),2009,33(4):129-131.DOI:10.3969/j.issn.1000-2006.2009.04.028.PENGMK,MEICT.Effectsofstrandgeometryandorientationonthepropertiesoflaminatedstrandlumber[J].JournalofNan⁃jingForestryUniversity(NaturalSciencesEdition),2009,33(4):129-131.[19]郑凤山,国智武,葛立军,等.定向刨花板刨花铺装系统探讨[J].中国人造板,2018,25(12):14-17.DOI:10.3969/j.issn.1673-5064.2018.12.003.ZHENGFS,GUOZW,GELJ,etal.Discussonformingsta⁃tionsystemandequipmentforOSB[J].ChinaWood⁃BasedPan⁃els,2018,25(12):14-17.[20]SCHOBERP,VETTERTR.Analysisofvarianceinmedicalre⁃search[J].Anesthesia&Analgesia,2020,131(2):508-509.DOI:10.1213/ane.0000000000004839.[21]胡纯严,胡良平.如何正确运用方差分析 拉丁方设计定量资料一元方差分析[J].四川精神卫生,2022,35(2):114-119.DOI:10.11886/scjsws20220310004.HUCY,HULP.Howtouseanalysisofvariancecorrectly AnanalysisofvariancefortheunivariatequantitativedatacollectedfromtheLatinSquaredesign[J].SichuanMentalHealth,2022,35(2):114-119.[22]马兴华,张晋昕.数值变量正态性检验常用方法的对比[J].循证医学,2014,14(2):123-128.DOI:10.3969/j.issn.1671-5144.2014.02.020.MAXH,ZHANGJX.Thecomparisonamongthecommonnor⁃malitytestsfornumericalvariables[J].TheJournalofEvidence⁃BasedMedicine,2014,14(2):123-128.(责任编辑㊀莫弦丰)17。
7050-T7451_铝合金板材疲劳性能的厚度效应
第20卷第5期装备环境工程2023年5月EQUIPMENT ENVIRONMENTAL ENGINEERING·33·7050-T7451铝合金板材疲劳性能的厚度效应聂凯1,王凡1,王强1,舒阳2,骆金威2(1.中航工业成都飞机设计研究所,成都 610091;2. 中航工业成都飞机工业(集团)有限责任公司,成都 610091)摘要:目的研究不同厚度的7050-T7451铝合金板材疲劳性能表现出的厚度效应。
方法试验件从3种厚度规格(75、150、203 mm)板材的不同厚度位置取样,采用成组试验法进行3级应力–疲劳试验。
分析试验数据,发现并总结材料疲劳性能随板材厚度及取样厚度位置变化的演化规律。
结果所有厚度规格板材的表面层材料的疲劳性能均为最优,且不同厚度规格板材表面层材料的疲劳性能差异较小。
当板材的厚度较薄(75 mm)时,随着取样厚度位置变化,材料的疲劳性能差异较小;当板材的厚度较厚(150、203 mm)时,从表面层到中心层的材料疲劳性能呈非线性变化趋势,先变弱、后增强,疲劳寿命105循环对应的最大应力降低幅度最大为21%左右。
随着板材厚度的增加,疲劳性能最差的厚度层材料,疲劳寿命105循环对应的最大应力降低了20%左右。
结论随着板材的厚度增加,7050-T7451铝合金板材疲劳性能的厚度效应变得越来越强,即疲劳性能在厚度方向的不均匀性越来越明显。
工程师应在工程设计中考虑7050-T7451铝合金疲劳性能厚度效应对结构疲劳强度的影响。
关键词:7050-T7451;铝合金;板材;疲劳性能;厚度效应;不均匀性中图分类号:V252.2 文献标识码:A 文章编号:1672-9242(2023)05-0033-09DOI:10.7643/ issn.1672-9242.2023.05.006Thickness Effect on Fatigue Property of 7050-T7451 Aluminum Alloy PlateNIE Kai1, WANG Fan1, WANG Qiang1, SHU Yang2, LUO Jin-wei2(1. A VIC Chengdu Aircraft Design and Research Institute, Chengdu 610091, China;2. A VIC Chengdu Aircraft Industrial (Group) Co., Ltd., Chengdu 610091, China)ABSTRACT: The work aims to study the thickness effect on fatigue property of 7050-T7451 aluminum alloy plates with dif-ferent thickness. The samples were taken from different locations along the thickness direction of three plates with different thickness (75 mm, 150 mm, and 203 mm). The grouping tests were performed for the three levels of stress-fatigue tests. By analyzing the fatigue test data, the variation law of fatigue property along the plate thickness and sampling thickness location was discovered and summarized. Among the three plates with different thickness, the fatigue strength of the surface layer was the best and varied slightly. For the plate with thickness of 75 mm, the fatigue property changed a little with the varying sam-pling thickness location. For the plates with thickness of 150 mm and 203 mm, the fatigue property showed nonlinear variation收稿日期:2022–12–19;修订日期:2023–02–23Received:2022-12-19;Revised:2023-02-23基金项目:航空工业成都飞机设计研究所预研项目Fund:Pre-Research Project of AVIC Chengdu Aircraft Design and Research Institute作者简介:聂凯(1992—),男,博士。
高效过滤器模拟测试(HEPAfiltersimulationtest)
高效过滤器模拟测试(HEPA filter simulation test)Wujiang Weifeng purification equipment Co., Ltd. main products: air shower, clean bench, clean bench, air filter, sampling / sample car, transfer window, floor drain, clean laminar flow hood, purification, purification lamps, diffuser cover, dust collector, air valve, color steel plate etc.Home product display, product catalog, company introduction, electronic sample technology articles, company dynamic integrity archives, recruitment center contact our customers, leave your current position: home page, company dynamicsEfficient filter simulation test station product searchThe product classification of air shower / air shower equipment single hair shower shower room shower room shower room air shower shower channel QS certified air shower photoelectric automatic air shower room shower room high quality stainless steel color steel plateAir shower room spray nozzle control system of ball double air shower single double air shower Wujiang unilateral bilateral air shower room shower room Suzhou Jinjiaba shower room and shower shower room manufacturers Wujiang three hair shower room shower roomWujiang special high quality air shower fan high-quality air shower room accessories single blow clean air shower room cleaning, clean bench, clean bench / clean bench level unidirectional manifold cleanbench high-end air shower filterVertical unidirectional manifold cleanbench Wujiang super clean bench vertical unidirectional superpurgative working table Wujiang vertical unidirectional anti-static tablehigh-end stainless steel double typhoon shower purification work station of Suzhou Wujiang high quality clean benchVertical unidirectional manifold laboratory bench, VS-1300 clean bench, SW-CJ series cleaning table, HS-1300 clean worktable, HD desk type worktable, VD desk type worktable, vertical DC worktableThe level of flow table assembly biological clean bench assembly line clean work typhoon shower, air shower / air filter air filter in Wujiang in the performance of high efficiency particulate air filter air filter air filterHigh efficiency air filter air filter air filter of high quality, high temperature resistant high baffle filter separator air filter in Wujiang preferred filter sub high efficiency filter of high quality disposable filter paper frame filterNew high quality activated carbon filter adopts air filter air filter of high quality qualified biological safety cabinet, biological safety cabinet, air filter air filter unit / unit FFU fan filter unit FFUFFU fan filter unit purification device of high quality FFU fan filter unit FFU Wujiang manual valve valve stainless steel transfer window transfer window / HEPA air window square diffuser electric multi leaf valveWujiang Weifeng smoke damper valve mechanical electronic chain transfer window of Wujiang high quality stainless steel transfer window bio clean transfer window mechanical chain transfer window electronic chain transfer window filter high insulation outlet self-cleaning layer back into the airSquare diffuser air outlet diffuser plate pressure valve integrated HEPA exhaust port plate air purifier, air cleaner / clean car air purifier purification converter sampling Wujiang Wujiang Weifeng Yu Weifeng muffler equipmentClean sampling and sampling equipment, fixed air purifier, mobile air purifier, cleaning equipment, window air purifier, clean sampling car, high efficient air supply, loose flow plate, color steel sandwich board / rock wool board, constant temperature and humidity roomHigh quality air conditioning purification system certification of animal breeding cabinet high safety composite color steel plate QS certification special purifier efficient light color steel sandwich panel high-end foam sandwich composite color steel plate, color steel rock wool qualityThe high-end color steel plate polyurethane polyurethane board of Wujiang high-tech professional cleaning equipment company Suzhou Wujiang high-tech professional cleaning equipment of high efficient air purification equipment, purification engineering engineering engineering equipment clean clean clean clean room aseptic workshopWujiang clean air conditioning company provides services inWujiang high-tech professional purification filtration equipment high-tech clean technology Weifeng air conditioning equipment engineering workshop clean workshop air purification lamp window / Wujiang stainless steel purification lamp ultraviolet germicidal lampHigh multifunctional purifying lamp ceiling lamp lamp clean purification purification lights beautiful high-quality professional UV germicidal lamp valve filter / clean laminar flow hood high efficient clean laminar flow hood type dust filter is a stand-alone mobile lifting car clean laminar flowClean clean laminar flow hood cleaning stainless steel purification laminar flow hood stand-alone dust collector PL series filter SH-C mobile duster stainless steel filter barrel type dust collector bag filter air filter stainless steel dust hood exhaust hood fire valvePurification accessories / ozone / air conditioning unit dust particle counter lock infrared air shower rubber diaphragm gas manometer purification accessories and special aluminum in high efficiency exhaust cleaning materials imported stainless steel stainless steel case pool clean floor drainHigh ozone purifier studio combined horizontal air conditioning units GMT door closers Wujiang high quality built-in ozone generator ozone generator Wujiang Weifeng automatic regulating valve type ozone generator mobile type ozone generatorExhaust pressure fan self purification combined type airconditioning unit stainless steel sink sink cleaning pool high clean clean stainless steel drain dust particle counter air filter clean car, car sampling sampling 100 laminar flow hood fan filter unit FFUDust collector, dust collector, purifying lamp, wind box, air blower, biological safety cabinet, purified special aluminium profile, purifying fittings, purifying fittings, color steel plate, rock wool board, ozone generator, contact us: Sun WeifengTel: *************Mobile: 139****4776Fax: *************zip code: 215215Address: 649, Jinhua Road, Wujiang Road, Jiangsu,: friendship linkWujiang Weifeng purification equipment Co., Ltd.Wujiang Weifeng purification equipment Co., Ltd.Wujiang Weifeng Equipment Co. Ltd. (TrustPass member) dynamic ring Baotong file number 46420070709011: 2 2009-07-24 13:25:58 high efficiency filter simulation testThe opening of the diffuser orifice of the HEPA filter influences the flow field, indoor air cleanliness, cleanroom self purification time and diffusion plate resistance. GF01Effect of hole type 1 HEPA supply outlet diffusion orifice on the indoor flow field was simulated, and the anemometer, laserparticle counter and pressure gauge were used to measure diffusion plate changes on the air distribution, clean room purification time and diffusion plate static effect. The results show that with the decrease of the opening rate of the diffusion plate on the diffusion plate diffusion resistance increases. The more uniform, vortex zone and recirculation zone is small, clean room purification time shorter. And the volume of the air flow under different diffusion plate formation of indoor uniform flow orifice is different, so the HEPA supply outlet diffusion Banyi running at the rated air flow.Clean room occupies an important place in the clean room. HEPA outlet is at the end of the clean air conditioning system air supply device, it will be sent to the clean room clean air, by dilution effect, reduce the concentration of [1] pollutants in indoor air; at the same time will pollute the air discharged from the air outlet vent or HEPA. Air diffusion holes for supplying air - plates evenly spread in the interior. Therefore, it is necessary to study the diffusion through the orifice opening hole of the indoor air distribution, optimization of diffuser performance.Changes in two aspects from the numerical simulation and experimental test of HEPA supply outlet diffusion orifice opening holes were studied on influence of velocity field, and test the effect of hole diffusion orifice of clean room purification time and diffusion plate static pressure values.numerical simulationIn the air model foundation, numerical calculation method,equation model setting, computational domain of algebraic equations, discretization method and discrete scheme, solving method of grid structure, and accelerate the convergence of function and other aspects of comprehensive comparison based on [2 7], using FLUENT commercial software, using standard KThe two - equation model is used and the semi - implicit method for solving the pressure coupled equation is used to solve the velocity fieldAccording to the flow of clean indoor airflow, the physical model to do the following simplifications and assumptions: (1) the indoor air is assumed to be incompressible Newtonian fluid with constant properties, steady flow;(2) it is assumed that the indoor initial speed is 0, because the air temperature in the clean room is larger, and the air supply temperature difference is small, so the internal environment is treated by isothermal treatment;(3) there is no internal heat source in the room, and the structure is insulated;(4) due to the fact that the air outflow of the diffusion orifice is independent of the pollution source, it is assumed that there is no pollution source in the room and the condition of the empty state of the clean room is simulated;(5) due to the high efficiency air filter and the diffusion of pore plates is only 5cm, gas flows through the HEPA flow direction along the normal direction of processing air flow;turbulent kinetic energy and turbulent kinetic energy dissipation rate epsilon K values were calculatedKin=0.5nU2 (1)Epsilon in=c mu kin2Re/UL (2)Type N: the inflow turbulent kinetic energy as a percentage of average kinetic energy, in 0.50/0 to 1.50/0, here is 10/0; flow rate of U into m/s; Re turbulent Reynolds number flows, according to the value of 400; L turbulence characteristic length, m, for the square for air the air side length; C is a constant, 0.09.(6) the return air inlet is a single layer louver air return port, and the effective flow area is 500/0, which satisfies the turbulent outlet model of the fully developed section。
高二英语词汇量全面提高单选题40题
高二英语词汇量全面提高单选题40题1. My sister is very ______ in music and she can play several musical instruments.A. interestedB. interestingC. boredD. boring答案解析:A。
be interested in是固定搭配,表示对某事感兴趣。
interested通常用来形容人,表示人的主观感受。
interesting用来形容事物,令人感兴趣的。
bored表示感到厌烦的,通常形容人,boring形容事物,令人厌烦的。
这里说妹妹对音乐感兴趣,所以选A。
2. We should ______ our time to study hard in high school.A. make good use ofB. make up ofC. make fromD. make into答案解析:A。
make good use of表示好好利用,符合语境,我们应该好好利用时间在高中努力学习。
make up of表示由组成,make from表示由制成(看不出原材料),make into表示把制成,这几个选项都不符合句子意思,所以选A。
3. The teacher asked us to ______ the new words in the dictionary.A. look afterB. look upC. look forD. look at答案解析:B。
look up表示查阅 字典等),老师让我们在字典里查阅新单词,符合语境。
look after表示照顾,look for表示寻找,look at表示看,都不符合句子意思,所以选B。
4. There is a big ______ between American English and British English.A. differentB. differenceC. differentlyD. differential答案解析:B。
自适应光学视觉科学手册说明书
Adaptive Optics for Vision Science: Principles, Practices, Designand ApplicationsJason Porter, Abdul Awwal, Julianna LinHope Queener, Karen Thorn(Editorial Committee)Updated on June 30, 2003−Introduction1.Introduction (David Williams)University of Rochester1.1 Goals of the AO Manual (This could also be a separate preface written by the editors)* practical guide for investigators who wish to build an AO system* summary of vision science results obtained to date with AO1.2 Brief History of Imaging1.2.1 The evolution of astronomical AOThe first microscopes and telescopes, Horace Babcock , military applications during StarWars, ending with examples of the best AO images obtained to date. Requirements forastronomical AO1.2.2 The evolution of vision science AOVision correction before adaptive optics:first spectacles, first correction of astigmatism, first contact lenses, Scheiner and thefirst wavefront sensor.Retinal imaging before adaptive optics:the invention of the ophthalmoscope, SLO, OCTFirst AO systems: Dreher et al.; Liang, Williams, and Miller.Comparison of Vision AO and Astronomical AO: light budget, temporal resolutionVision correction with AO:customized contact lenses, IOLs, and refractive surgery, LLNL AO Phoropter Retinal Imaging with Adaptive OpticsHighlighted results from Rochester, Houston, Indiana, UCD etc.1.3 Future Potential of AO in Vision Science1.3.1 Post-processing and AO1.3.2 AO and other imaging technologies (e.g. OCT)1.3.3 Vision Correction1.3.4 Retinal Imaging1.3.5 Retinal SurgeryII. Wavefront Sensing2. Aberration Structure of the Human Eye (Pablo Artal)(Murcia Optics Lab; LOUM)2.1 Aberration structure of the human eye2.1.1 Monochromatic aberrations in normal eyes2.1.2 Chromatic aberrations2.1.3 Location of aberrations2.1.4 Dynamics (temporal properties) of aberrations2.1.5 Statistics of aberrations in normal populations (A Fried parameter?)2.1.6 Off-axis aberrations2.1.7 Effects of polarization and scattering3. Wavefront Sensing and Diagnostic Uses (Geunyoung Yoon) University of Rochester3.1 Introduction3.1.1 Why is wavefront sensing technique important for vision science?3.1.2 Importance of measuring higher order aberrations of the eyeCharacterization of optical quality of the eyePrediction of retinal image quality formed by the eye’s opticsBrief summary of potential applications of wavefront sensing technique3.1.3 Chapter overview3.2 Wavefront sensors for the eye3.2.1 History of ophthalmic wavefront sensing techniques3.2.2 Different types of wavefront sensors and principle of each wavefrontsensorSubjective vs objective method (SRR vs S-H, LRT and Tcherning)Measuring light going into vs coming out of the eye (SRR, LRT and Tcherning vs S-H) 3.3 Optimizing Shack-Hartmann wavefront sensor3.3.1 Design parametersWavelength, light source, laser beacon generation, pupil camera, laser safety…3.3.2 OSA standard (coordinates system, sign convention, order of Zernikepolynomials)3.3.3 Number of sampling points (lenslets) vs wavefront reconstructionperformance3.3.4 Tradeoff between dynamic range and measurement sensitivityFocal length of a lenslet array and lenslet spacing3.3.5 PrecompensationTrial lenses, trombone system, bite bar (Badal optometer)3.3.6 Increasing dynamic range without losing measurement sensitivityTranslational plate with subaperturesComputer algorithms (variable centroiding box position)3.3.7 Requirement of dynamic range of S-H wavefront sensor based on a largepopulation of the eye’s aberrations3.4 Calibration of the wavefront sensor3.4.1 reconstruction algorithm - use of simulated spot array pattern3.4.2 measurement performance - use of phase plate or deformable mirror 3.5 Applications of wavefront sensing technique to vision science3.5.1 Laser refractive surgery (conventional and customized ablation)3.5.2 Vision correction using customized optics (contact lenses andintraocular lenses)3.5.3 Autorefraction (image metric to predict subjective vision perception)3.5.4 Objective vision monitoring3.5.5 Adaptive optics (vision testing, high resolution retinal imaging)3.6 SummaryIII. Wavefront Correction with Adaptive Optics 4. Mirror Selection (Nathan Doble and Don Miller)University of Rochester / Indiana University4.1 Introduction4.1.1 Describe the DMs used in current systems.4.1.1.2 Xinetics type – Williams, Miller, Roorda – (PZT and PMN)4.1.1.3 Membrane – Artal, Zhu(Bartsch)4.1.1.4 MEMS – LLNL Phoropter, Doble4.1.1.5 LC-SLM – Davis System.4.2 Statistics of the two populations4.2.1 State of refraction:4.2.1.1 All aberrations present4.2.1.2 Zeroed Defocus4.2.1.3 Same as for 4.2.1.2 but with astigmatism zeroed in addition4.2.2 For various pupil sizes (7.5 - 2 mm) calculate:4.2.2.1 PV Error4.2.2.2 MTF4.2.2.3 Power Spectra4.2.3 Required DM stroke given by 95% of the PV error for the variousrefraction cases and pupil sizes.4.2.4 Plot of the variance with mode order and / or Zernike mode.4.3 Simulation of various Mirror TypesDetermine parameters for all mirrors to achieve 80% Strehl.4.3.1 Continuous Faceplate DMs4.3.1.1 Describe mode of operation.4.3.1.2 Modeled as a simple Gaussian4.3.1.3 Simulations for 7.5mm pupil4.3.1.4 Parameters to vary:Number of actuators.Coupling coefficient.Wavelength.4.3.1.5 All the above with unlimited stroke.4.3.2 Piston Only DMs4.3.2.1 Describe mode of operation.4.3.2.2 Simulations for 7.5mm pupil with either cases4.3.2.3 No phase wrapping i.e. unlimited stroke.Number of actuators.Packing geometryWavelength.Need to repeat the above but with gaps.4.3.2.4 Effect of phase wrappingTwo cases:Phase wrapping occurs at the segment locations.Arbitrary phase wrap.4.3.3 Segmented Piston / tip / tilt DMs4.3.3.1 Describe mode of operation.4.3.3.2 Three influence functions per segment, do the SVD fit on a segment by segmentbasis.4.3.3.3 Simulations for 7.5mm pupil.4.3.3.4 No phase wrapping unlimited stroke and tip/tilt.Number of actuators - squareSame as above except with hexagonal packing.Wavelength.Gaps for both square and hexagonal packing.4.3.3.5 Effect of phase wrappingPhase wrapping occurs at the segment locations.Arbitary phase wrap. Wrap the wavefront and then determine the required number ofsegments. Everything else as listed in part 1).4.3.4 Membrane DMs4.3.4.1 Describe mode of operation. Bimorphs as well.4.3.4.2 Simulations for 7.5mm pupil with either cases.4.3.4.3 Parameters to vary:Number of actuators.Actuator size.Membrane stressWavelength.5. Control Algorithms (Li Chen)University of Rochester5.1 Configuration of lenslets and actuators5.2 Influence function measurement5.3 Control command of wavefront corrector5.3.1 Wavefront control5.3.2 Direct slope control5.3.3 Special control for different wavefront correctors5.4 Transfer function modelization of adaptive optics system5.4.1 Transfer function of adaptive optics components5.4.2 Overall system transfer function5.4.3 Adaptive optics system bandwidth analysis5.5 Temporal modelization with Transfer function5.5.1 Feedback control5.5.2 Proportional integral control5.5.3 Smith compensate control5.6 Temporal controller optimization5.6.1 Open-loop control5.6.2 Closed-loop control5.6.2 Time delay effect on the adaptive optics system5.6.3 Real time considerations5.7 Summary6. Software/User Interface/Operational Requirements (Ben Singer) University of Rochester6.1 Introduction6.2 Hardware setup6.2.1 Imaging6.2.1.1 Hartmann-Shack Spots6.2.1.2 Pupil Monitoring6.2.1.3 Retinal Imaging6.2.2 Triggered devices: Shutters, lasers, LEDs6.2.3 Serial devices: Defocusing slide, custom devices6.2.4 AO Mirror control6.3 Image processing setup6.3.1 Setting regions of interest: search boxes6.3.2 Preparing the image6.3.2.1 Thresholding6.3.2.2 Averaging6.3.2.3 Background subtraction6.3.2.4 Flat-fielding6.3.3 Centroiding6.3.4 Bad data6.4 Wavefront reconstruction and visualization6.4.1 Zernike mode recovery and RMS6.4.1.1 Display of modes and RMS: traces, histograms6.4.1.2 Setting modes of interest6.4.2 Wavefront visualization6.4.2.1 Continuous grayscale image6.4.2.2 Wrapped grayscale image6.4.2.3 Three-D plots6.5 Adaptive optics6.5.1 Visualizing and protecting write-only mirrors6.5.2 Testing, diagnosing, calibrating6.5.3 Individual actuator control6.5.4 Update timing6.5.5 Bad actuators6.6 Lessons learned, future goals6.6.1 Case studies from existing systems at CVS and B&L6.6.1.1 One-shot wavefront sensing vs realtime AO6.6.1.2 Using AO systems in experiments: Step Defocus6.6.2 Engineering trade-offs6.6.2.1 Transparency vs Simplicity6.6.2.2 Extensibility vs Stability6.6.3 How to please everyone6.6.3.1 Subject6.6.3.2 Operator6.6.3.3 Experimenter6.6.3.4 Programmer6.6.4 Software tools6.7 Summary7. AO Assembly, Integration and Troubleshooting (Brian Bauman) Lawrence Livermore7.1 Introduction and Philosophy7.2 Optical alignment7.2.1 General remarks7.2.2 Understanding the penalties for misalignments7.2.3 Having the right knobs: optomechanics7.2.4 Common alignment practices7.2.4.1 Tools7.2.4.2 Off-line alignment of sub-systems7.2.4.3 Aligning optical components7.2.4.4 Sample procedures (taken from the AO phoropter project)7.3 Wavefront sensor checkout7.3.1 Wavefront sensor camera checkout7.3.2 Wavefront sensor checkout7.3.2.1 Proving that centroid measurements are repeatable.7.3.2.2 Proving that the centroid measurements do not depend on where centroids are withrespect to pixels7.3.2.3 Measuring plate scale.7.3.2.4 Proving that a known change in the wavefront produces the correct change incentroids.7.4 Wavefront Reconstruction7.4.1 Testing the reconstruction code: Prove that a known change in thewavefront produces the correct change in reconstructed wavefront.7.5 Aligning the “probe” beam into the eye7.6 Visual stimulus alignment7.7 Flood-illumination alignment7.8 DM-to-WFS Registration7.8.1 Tolerances & penalties for misregistration7.8.2 Proving that the wavefront sensor-to-SLM registration is acceptable.7.9 Generating control matrices7.9.1 System (“push”) matrix7.9.2 Obtaining the control matrix7.9.3 Checking the control matrix7.9.4 Null spaces7.10 Closing the loop7.10.1 Checking the gain parameter7.10.2 Checking the integration parameter7.11 Calibration7.11.1 Obtaining calibrated reference centroids.7.11.2 Proving that reference centroids are good7.11.3 Image-sharpening to improve Strehl performance.7.12 Science procedures7.13 Trouble-shooting algorithms8. System Performance: Testing, Procedures, Calibration and Diagnostics (Bruce Macintosh, Marcos Van Dam)Lawrence Livermore / Keck Telescope8.1 Spatial and Temporal characteristics of correction8.2 Power Spectra calculations8.3 Disturbance rejection curves8.4 Strehl ratio/PSF measurements/calculations8.5 Performance vs. different parameters (beacon brightness, field angle, …)?8.6 Summary Table and Figures of above criteria8.6.1 Results from Xinetics, BMC, IrisAOIV. Retinal Imaging Applications 9. Fundamental Properties of the Retina (Ann Elsner) Schepens Eye Research Institute9.1 Shape of the retina, geometric optics9.1.1 Normal fovea, young vs. old9.1.1.1. foveal pit9.1.1.2. foveal crest9.1.2 Normal optic nerve head9.1.3 Periphery and ora serrata9.2 Two blood supplies, young vs. old9.2.1 Retinal vessels and arcades9.2.2 0 – 4 layers retinal capillaries, foveal avascular zone9.2.3 Choriocapillaris, choroidal vessels, watershed zone 9.3 Layers vs. features, young vs. old, ethnic differences9.3.1 Schlera9.3.2 Choroidal vessels, choroidal melanin9.3.3 Bruch’s membrane9.3.4 RPE, tight junctions, RPE melanin9.3.5 Photoreceptors, outer limiting membrane9.3.5.1 Outer segment9.3.5.2 Inner segment9.3.5.3 Stiles-Crawford effect9.3.5.4 Macular pigment9.3.6 Neural retina9.3.7 Glia, inner limiting membrane, matrix9.3.8 Inner limiting membrane9.3.9 Vitreo-retinal interface, vitreous floaters9.4 Spectra, layers and features9.4.1 Main absorbers in the retina9.4.2 Absorbers vs. layers9.4.3 Features in different wavelengths9.4.4 Changes with aging9.5 Light scattering, layers and features9.5.1 Directly backscattered light9.5.2 Multiply scattered light9.5.3 Geometric changes in specular light return9.5.4 Layers for specular and multiply scattered light9.5.5 Imaging techniques to benefit from light scattering properties 9.6 Polarization9.6.1 Polarization properties of the photoreceptors9.6.2 Polarization properties of the nerve fiber bundles, microtubules9.6.3 Anterior segment and other polarization artifacts9.6.4 Techniques to measure polarization properties9.7 Imaging techniques to produce contrast from specular or multiply scattered light9.7.1 Confocal imaging9.7.2 Polarization to narrow the point spread function9.7.3 Polarization as a means to separate directly backscattered light frommultiply scattered light, demonstration using the scattered light9.7.4 Coherence techniques as a means to separate directly backscattered light from multiply scattered light, with a goal of using the scattered light10. Strategies for High Resolution Retinal Imaging (Austin Roorda, Remy Tumbar, Julian Christou)University of Houston / University of Rochester / University of California, Santa Cruz10.1 Conventional Imaging (Roorda)10.1.1 Basic principlesThis will be a simple optical imaging system10.1.2 Basic system designShow a typical AO flood-illuminated imaging system for the eye10.1.3 Choice of optical componentsDiscuss the type of optical you would use (eg off axis parabolas)10.1.4 Choice of light sourceHow much energy, what bandwidth, flash duration, show typical examples10.1.5 Controlling the field sizeWhere to place a field stop and why10.1.6 Choice of cameraWhat grade of camera is required? Show properties of typical cameras that are currently used10.1.7 Implementation of wavefront sensingWhere do you place the wavefront sensor. Using different wavelengths for wfs.10.2 Scanning Laser Imaging (Roorda)10.2.1 Basic principlesThis will show how a simple scanning imaging system operates10.2.2 Basic system designThis shows the layout of a simple AOSLO10.2.3 Choice of optical componentsWhat type of optical components shoud you use and why (eg mirrors vs lenses). Where doyou want to place the components (eg raster scanning, DM etc) and why.10.2.4 Choice of light sourceHow to implement different wavelengths. How to control retinal light exposure10.2.5 Controlling the field sizeOptical methods to increase field sizeMechanical (scanning mirror) methods to increase field size10.2.6 Controlling light deliveryAcousto-optical control of the light source for various applications10.2.7 Choice of detectorPMT vs APD what are the design considerations10.2.8 Choice of frame grabbing and image acquisition hardwareWhat are the requirements for a frame grabber. What problems can you expect.10.2.9 Implementation of wavefront sensingStrategies for wavefront sensing in an AOSLO10.2.10 Other: pupil tracking, retinal tracking, image warping10.3 OCT systems (Tumbar)10.3.1 Flood illuminated vs. Scanning10.4 Future ideas (Tumbar)10.4.1 DIC (Differential Interference Contrast)10.4.2 Phase Contrast10.4.3 Polarization Techniques10.4.4 Two-photon10.4.5 Fluorescence/Auto-fluorescence10.5 Survey of post-processing/image enhancement strategies (Christou)11. Design Examples11.1 Design of Houston Adaptive Optics Scanning Laser Ophthalmoscope (AOSLO) (Krishna Venkateswaran)11.1.1 Basic optical designEffect of double pass system on psf, imaging in conjugate planes11.1.2 Light delivery opticsFiber optic source and other optics11.1.3 Raster scanningScanning speeds etc.,11.1.4 Physics of confocal imaging11.1.5 Adaptive optics in SLOWavefront sensing, Zernike polynomials, Deformable mirror, correction time scales11.1.6 Detailed optical layout of the AOSLOLens, mirrors, beam splitters with specs11.1.7 Image acquisitionBack end electronics, frame grabber details11.1.8 Software interface for the AOSLOWavefront sensing, Image acquisition11.1.9 Theoretical model of AOSLO:Limits on axial and lateral resolution11.1.10 Image registration11.1.11 Results11.1.12 Discussions on improving performance of AOSLOLight loss in optics, Deformable mirror, Wavefront sensing,11.1.13 Next generation AOSLO type systems11.2 Indiana University AO Coherence Gated System (Don Miller)11.2.1 Resolution advantages of an AO-OCT retina camera11.2.2 AO-OCT basic system design concepts11.2.2.1 Application-specific constraints−Sensitivity to weak tissue reflections−Tolerance to eye motion artifacts−Yoking focal plane to the coherence gate11.2.2.2 Integration of AO and OCT sub-systems−Generic OCT system−Specific OCT architectures−Preferred AO-OCT embodiments11.2.3 Description of the Indiana AO-OCT retina cameraOptical layout of the Indiana AO-OCT retina camera11.2.3.1 Adaptive Optics for correction of ocular aberrationsA. System descriptionB. Results11.2.3.2 1D OCT axial scanning for retina trackingA. System descriptionB. Results11.2.3.3 High speed 2D incoherent flood illumination for focusing and aligningA. System descriptionB. Results11.2.3.4 CCD-based 2D OCT for en face optical sectioning the retinaA. System descriptionB. Results11.2.4 Future developments11.2.4.1 Smart photodiode array11.2.4.2 En face and tomographic scanning11.2.4.3 Reduction of image speckle11.2.4.4 Detector sensitivity11.2.4.5 Faster image acquisition11.3 Rochester Second Generation AO System (Heidi Hofer)V. Vision Correction Applications12. Customized Vision Correction Devices (Ian Cox)Bausch & Lomb12.1 Contact Lenses12.1.1 Rigid or Soft Lenses?12.1.2 Design Considerations – More Than Just Optics12.1.3 Measurement – The Eye, the Lens or the System?12.1.4 Manufacturing Issues – Can The Correct Surfaces Be Made?12.1.5 Who Will Benefit?12.1.6 Summary12.2 Intraocular Lenses12.2.1 Which Aberrations - The Cornea, The Lens or The Eye?12.2.2 Surgical Procedures – Induced Aberrations12.2.3 Design & Manufacturing Considerations12.2.4 Future Developments & Summary13. Customized Refractive Surgery (Scott MacRae)University of Rochester / StrongVision14. Visual Psychophysics (UC Davis Team, headed by Jack Werner) UC Davis14.1 Characterizing visual performance14.1.1 Acuity14.1.2 Contrast sensitivity functions (CSFs)14.1.3 Photopic/scotopic performance (include various ways to defineluminance)14.2 What is psychophysics?14.2.1 Studying the limits of vision14.2.2 Differences between detection, discrimination and identification14.3 Psychophysical methods14.3.1 Psychometric function14.3.2 signal detection theory14.3.3 measuring threshold14.3.4 Criterion-free methods14.3.5 Method of constant stimuli, method of adjustment, adaptive methods(e.g. Quest).14.4 The visual stimulus14.4.1 Issues in selecting a display systemTemporal resolutionSpatial resolutionIntensity (maximum, bit depth)HomogeneitySpectral characteristics14.4.2 Hardware optionsCustom optical systems (LEDs, Maxwellian view)DisplaysCRTsDLPsLCDsPlasmaProjectorsDisplay generationcustom cardsVSGBits++10-bit cardsPelli attenuatorDithering/bit stealing14.4.3 SoftwareOff the shelf software is not usually flexible enough. We recommend doing it yourself. This canbe done using entirely custom software (e.g. C++) or by using software libraries such as VSG(PC) or PsychToolbox (Mac/PC).14.4.4 CalibrationGamma correctionSpatial homogeneityTemporal and spatial resolution14.5 Summary15. Wavefront to Phoropter Refraction (Larry Thibos)Indiana University15.1 Basic terminology15.1.1 Refractive error15.1.2 Refractive correction15.1.3 Lens prescriptions15.2 The goal of subjective refraction15.2.1 Definition of far point15.2.2 Elimination of astigmatism15.2.3 Using depth-of-focus to expand the range of clear vision15.2.4 Placement of far-point at hyperfocal distance15.3 Methods for estimating the monochromatic far-point from an aberration map15.3.1 Estimating center of curvature of an aberrated wavefront15.3.1.1 Least-squares fitting15.3.1.2 Paraxial curvature matching15.3.2 Estimating object distance that optimizes focus15.3.2.1 Metrics based on point objects15.3.2.2 Metrics based on grating objects15.4 Ocular chromatic aberration and the polychromatic far-point15.4.1 Polychromatic center of curvature metrics15.4.2 Polychromatic point image metrics15.4.3 Polychromatic grating image metrics15.5 Experimental evaluation of proposed methods15.5.1 Conditions for subjective refraction15.5.2. Monochromatic predictions15.5.3 Polychromatic predictions16. Design ExamplesDetailed Layouts, Numbers, Noise Analysis, Limitations for Visual Psychophysics: 16.1 LLNL/UR/B&L AO Phoroptor (Scot Olivier)16.2 UC Davis AO Phoropter (Scot Olivier)16.3 Rochester 2nd Generation AO System (Heidi Hofer)V. Appendix/Glossary of Terms (Hope Queener, JosephCarroll)• Laser safety calculations• Other ideas?• Glossary to define frequently used terms。
comsol电场示例
Computing the Effect of Fringing Fields on CapacitanceIntroductionA typical capacitor is composed of two conductive objects with a dielectric in betweenthem. Applying a voltage difference between these objects results in an electric field.This electric field exists not just directly between the conductive objects, but extends some distance away, a phenomenon known as a fringing field. To accurately predict the capacitance of a capacitor, the domain used to model the fringing field must besufficiently large, and the appropriate boundary conditions must be used. This example models a parallel plate capacitor in air and studies the size of the air domain. The choice of boundary condition is also addressed.Air domainMetal discs Figure 1: A simple capacitor consisting of two metal discs in an air domain.Model DefinitionFigure 1 shows the capacitor consisting of two metal discs in a spherical volume of air. The size of the sphere truncates the modeling space. This model studies the size of this air domain and its effect upon the capacitance.One of the plates is specified as ground, with a voltage of 0 V. The other plate has a specified voltage of 1 V. It is only the difference in the voltage between these plates that affects the capacitance and electric field strength; the voltage itself is arbitrary.The air sphere boundary can be thought of as one of two different physical situations: It can be treated as a perfectly insulating surface, across which charge cannot redistribute itself, or as a perfectly conducting surface, over which the potential will not vary.The modeling realization of the perfectly insulating surface is the Zero Charge boundary condition. This boundary condition also implies that the electric field lines are tangential to the boundary.The modeling realization of the perfectly conducting surface is the Floating Potential boundary condition. This boundary condition fixes the voltage of all of the boundaries of the sphere to a constant, but unknown, value that is computed during the solution. The boundary condition also implies that the electric field lines are perpendicular to the boundary.When studying convergence of results with respect to the surrounding domain size, it is important to fix the element size. In this model, the element size is fixed as the domain size is varied.Results and DiscussionFigure 2 and Figure 3 plot the electric field for the cases where the air sphere boundary is treated as perfectly insulating and perfectly conducting, respectively. The fields terminate differently on the boundaries of the air sphere.Figure 4 compares the capacitance values of the device with respect to air sphere radius for the two boundary conditions. The figure also plots the average of the two values. Notice that all three capacitance calculations converge to the same value as the radius grows. In practice, it is often sufficient to model a small air sphere with the electric insulation and floating potential boundary conditions and to take the average of the two.Zero Charge boundary condition.Floating Potential boundary condition.Figure 4: Convergence of the device capacitance as the size of the surrounding air sphere is increased. Electric insulation and fixed voltage boundary conditions converge to the same result. The average of the two is also plotted.Model Library path: ACDC_Module/Capacitive_Devices/capacitor_fringing_fieldsModeling InstructionsFrom the File menu, choose New.N E W1In the New window, click Model Wizard.M O D E L W I Z A R D1In the Model Wizard window, click 3D.2In the Select physics tree, select AC/DC>Electrostatics (es).3Click Add.4Click Study.5In the Select study tree, select Preset Studies>Stationary.6Click Done.D E F I N I T I O N SParameters1On the Model toolbar, click Parameters.2In the Settings window for Parameters, locate the Parameters section.3In the table, enter the following settings:Name Expression Value Descriptionr_air15[cm]0.15000 m Radius, air domainG E O M E T R Y11In the Model Builder window, under Component 1 (comp1) click Geometry 1. 2In the Settings window for Geometry, locate the Units section.3From the Length unit list, choose cm.Cylinder 1 (cyl1)1On the Geometry toolbar, click Cylinder.2In the Settings window for Cylinder, locate the Size and Shape section.3In the Radius text field, type 10.4In the Height text field, type 0.5.5Locate the Position section. In the z text field, type -2.6Click the Build Selected button.Mirror 1 (mir1)1On the Geometry toolbar, click Transforms and choose Mirror.2Select the object cyl1 only.3In the Settings window for Mirror, locate the Input section.4Select the Keep input objects check box.5Click the Build Selected button.Sphere 1 (sph1)1On the Geometry toolbar, click Sphere.2In the Settings window for Sphere, locate the Size section.3In the Radius text field, type r_air.4Click the Build Selected button.5Click the Wireframe Rendering button on the Graphics toolbar.6Click the Zoom Extents button on the Graphics toolbar.The geometry describes two metal discs in an air domain.D E F I N I T I O N SCreate a set of selections to use when setting up the physics. Begin with a selection for the outermost air domain boundaries.Explicit 11On the Definitions toolbar, click Explicit.2In the Settings window for Explicit, locate the Input Entities section.3From the Geometric entity level list, choose Boundary.4Select Boundaries 1–4, 13, 14, 17, and 18 only.5Right-click Component 1 (comp1)>Definitions>Explicit 1 and choose Rename.6In the Rename Explicit dialog box, type Outermost surface in the New label text field.7Click OK.Next, add a selection for the modeling domain, in which the domains inside the two discs are not included.Explicit 21On the Definitions toolbar, click Explicit.2Select Domain 1 only.3Right-click Component 1 (comp1)>Definitions>Explicit 2 and choose Rename.4In the Rename Explicit dialog box, type Model domain in the New label text field. 5Click OK.View 1Hide one boundary to get a better view of the interior parts when setting up the physics and reviewing the mesh.1On the 3D view toolbar, click Hide Geometric Entities.2In the Settings window for Hide Geometric Entities, locate the Geometric Entity Selection section.3From the Geometric entity level list, choose Boundary.4Select Boundary 2 only.E L E C T R O S T A T I C S(E S)1In the Model Builder window, under Component 1 (comp1) click Electrostatics (es). 2In the Settings window for Electrostatics, locate the Domain Selection section.3From the Selection list, choose Model domain.The default boundary condition is Zero Charge, which is applied to all exterior boundaries.Ground 11On the Physics toolbar, click Boundaries and choose Ground.2Select Boundaries 5–8, 15, and 19 only.Terminal 11On the Physics toolbar, click Boundaries and choose Terminal.2Select Boundaries 9–12, 16, and 20 only.3In the Settings window for Terminal, locate the Terminal section.4From the Terminal type list, choose Voltage.M A T E R I A L SNext, assign material properties on the model. Specify air for all domains.A D D M A T E R I A L1On the Model toolbar, click Add Material to open the Add Material window.2Go to the Add Material window.3In the tree, select Built-In>Air.4Click Add to Component in the window toolbar.5On the Model toolbar, click Add Material to close the Add Material window.M E S H1Size1In the Model Builder window, under Component 1 (comp1) right-click Mesh 1 and choose Free Tetrahedral.2In the Settings window for Size, locate the Element Size section.3From the Predefined list, choose Coarse.4Click the Build All button.S T U D Y1Parametric Sweep1On the Study toolbar, click Parametric Sweep.2In the Settings window for Parametric Sweep, locate the Study Settings section.3Click Add.4In the table, enter the following settings:Parameter name Parameter value list Parameter unitr_air range(15,6,39)5On the Study toolbar, click Compute.R E S U L T SElectric Potential (es)Modify the default plot to show the electric field norm. Add an arrow plot for the electric field to observe the field direction.1In the Settings window for 3D Plot Group, locate the Data section.2From the Parameter value (r_air) list, choose 15.000.3In the Model Builder window, expand the Electric Potential (es) node, then click Multislice 1.4In the Settings window for Multislice, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Model>Component1>Electrostatics>Electric>es.normE - Electric field norm.5In the Model Builder window, right-click Electric Potential (es) and choose Arrow Volume.6In the Settings window for Arrow Volume, locate the Arrow Positioning section.7Find the x grid points subsection. In the Points text field, type 20.8Find the y grid points subsection. In the Points text field, type 1.9Find the z grid points subsection. In the Points text field, type 10.10On the 3D plot group toolbar, click Plot. Compare the resulting plot with Figure 2. Next, apply a Floating Potential boundary condition on the outermost surface. This condition overrides the default Zero Charge condition.E L E C T R O S T A T I C S(E S)Floating Potential 11On the Physics toolbar, click Boundaries and choose Floating Potential.2In the Settings window for Floating Potential, locate the Boundary Selection section.3From the Selection list, choose Outermost surface.Add a new study to keep the result from the previous computation.A D D S T U D Y1On the Model toolbar, click Add Study to open the Add Study window.2Go to the Add Study window.3Find the Studies subsection. In the Select study tree, select Preset Studies>Stationary.4Click Add Study in the window toolbar.5On the Model toolbar, click Add Study to close the Add Study window.S T U D Y2Parametric Sweep1On the Study toolbar, click Parametric Sweep.2In the Settings window for Parametric Sweep, locate the Study Settings section.3Click Add.4In the table, enter the following settings:Parameter name Parameter value list Parameter unitr_air range(15,6,39)5In the Model Builder window, click Study 2.6In the Settings window for Study, locate the Study Settings section.7Clear the Generate default plots check box.8On the Study toolbar, click Compute.R E S U L T SElectric Potential (es) 11In the Model Builder window, under Results right-click Electric Potential (es) and choose Duplicate.2In the Settings window for 3D Plot Group, locate the Data section.3From the Data set list, choose Study 2/Parametric Solutions 2.4On the 3D plot group toolbar, click Plot. The reproduced plot should look like Figure 3.Data Sets1On the Results toolbar, click More Data Sets and choose Join.2In the Settings window for Join, locate the Data 1 section.3From the Data list, choose Study 1/Parametric Solutions 1.4Locate the Data 2 section. From the Data list, choose Study 2/Parametric Solutions 2. 5Locate the Combination section. From the Method list, choose General.6In the Expression text field, type (data1+data2)/2.1D Plot Group 31On the Results toolbar, click 1D Plot Group.2On the 1D plot group toolbar, click Global.3In the Settings window for Global, locate the Data section.4From the Data set list, choose Study 1/Parametric Solutions 1.5Click Replace Expression in the upper-right corner of the y-axis data section. From the menu, choose Model>Component 1>Electrostatics>Terminals>es.C11 -Capacitance.6Click Replace Expression in the upper-right corner of the x-axis data section. From the menu, choose Model>Global Definitions>Parameters>r_air - Radius, air domain.7Click to expand the Legends section. From the Legends list, choose Manual.8In the table, enter the following settings:LegendsZero charge9On the 1D plot group toolbar, click Plot.10Right-click Results>1D Plot Group 3>Global 1 and choose Duplicate.11In the Settings window for Global, locate the Data section.12From the Data set list, choose Study 2/Parametric Solutions 2.13Locate the Legends section. In the table, enter the following settings:LegendsFloating potential14On the 1D plot group toolbar, click Plot.15Right-click Results>1D Plot Group 3>Global 2 and choose Duplicate.16In the Settings window for Global, locate the Data section.17From the Data set list, choose Join 1.18Locate the Legends section. In the table, enter the following settings:LegendsAverage19On the 1D plot group toolbar, click Plot. This reproduces Figure 4.Optionally, to allow recomputing Study 1, you can disable the Floating Potential boundary condition for that study as follows.S T U D Y1Step 1: Stationary1In the Model Builder window, expand the Study 1 node, then click Step 1: Stationary.2In the Settings window for Stationary, locate the Physics and Variables Selection section.3Select the Modify physics tree and variables for study step check box.4In the Physics and variables selection tree, select Component 1 (comp1)>Electrostatics (es)>Floating Potential 1.5Click Disable.。
翻译
The ejector pin is positioned with respect to the core so that there is a step of 0.13 mm (0.005 in) between the edge of the ejector pin hole and the side wall of the core (Figure 3.32b). Without this step, there is a probability that at some stage in the mould’s life the ejector pin will score the side wall of the core.Students beginning their study of mould design have the tendency to make the diameter of the parting surface pin approximately the same as the wall section of the moulding. The ineptitude of this is best illustrated by a diagram. Assume a moulding wall section of 3 mm (Figure 3.33). If a 25 mm diameter ejector pin is used then the actual ejection area is only 4.92 mm2 (Figure 3.33a). As the diameter of the ejector pin is increased (Figure 3.33b, c) to 5 mm and 10 mm, respectively, the ejection area increases similarly to 9.8 mm2and 15.3 mm2, respectively. Thus the larger the parting surface pin used, the greater will be the ejection area.Figure 3.34 is a graph on which is plotted the effective ejection area versus the moulding wall section for various sizes of ejection pin.On certain large area mouldings it is often advantageous to use both parting surface pins and moulding face pins. The former are used around the periphery of the moulding and the latter are used to eject local bosses, etc., and to provide extra ejection area where it may be needed.The location of the ejector pin elements, and the number used, is dependent on the component’s size and shape. The aim of the designer must always be to eject the moulding with as little distortion as possible. The ejector pins should be located, therefore, so that the moulding is pushed off evenly from the core. Abrupt changes in shape (i.e. corners) tend to impede ejection; therefore an ejector pin or pins should always be located adjacent to these points. Once the size of the ejector pins has been decided upon, then the greater the number of ejector pins incorporated, the greater will be the effective ejection force and the less the likelihood of distortion occurring. For this reason it is better to err by having too many ejector pins than by having too few.Pin ejection is the cheapest of the mechanical ejection methods. The close tolerance holes in the mould plate are made by a simple boring and reaming operation and the ejector pins too are made by an equally simple turning and grinding operation.A more rigidly fixed ejector pin is preferred by some designers, and this preference applies particularly to certain European countries.The design is based upon a countersunk headed type of ejector pin (Figure 3.35), which is accommodated in a complimentary shaped recess in the retaining plate. The head of the ejector pin is secured in position by the ejector plate. The included seating angle for the head is standardised at 60°.Both plain and countersunk headed types of ejector pin are available as standard parts in an extremely large number of sizes ranging from 1.5 mm to 32 mm diameter respectively. For example, the DME* type ‘A’ejector pin is available in 35 different diameters ranging from 2 mm up to 32 mm. Each ejector pin diameter has a number of different lengths associated with it. The 5 mm diameter pin, for example, has nine lengths from which to choose. Obviously the length of standard ejector pin must be adjusted by the mould-maker to suit a specific mould. A similar range in Imperial dimensions is available from 3/64 to 1 inch diameter respectively, from the same company.Ejector pins are subject to friction, thermal and mechanical stresses, and therefore a high surface hardness (exceeding 40 Rc), coupled with a tough core is required. Chrome-vanadium type steels are often used for this purpose and these are either through-hardened or are hardened and subsequently nitrided.3.4.2 Stepped ejector pinsNext consider the case where small-diameter ejector pins (under 3 mm (i in) diameter) are required for a particular design. Now slender, long length-to-diameter ratio ejector pins have the tendency to concertina in use. It is desirable therefore to keep the working length of such ejector pins to a minimum. This is achieved by designing the ejector pin as shown in Figure 3.24. This is known as a stepped ejector pin.The diagram illustrates a stepped ejector pin manufactured from a solid rod. Alternatively, it could have been made from two pieces of steel, the small diameter portion being fitted into a suitable hole machined in the large-diameter portion, the two parts being subsequently brazed together. This latter method has the advantage that should the ejector pin break only the small-diameter portion has to be remade.The stepped ejector pin is normally used as a moulding face pin for the ejection of moulded bosses and ribs, etc. (Figure 3.36). Note that the main ejection is provided by standard plain type ejector pins.The length of the small diameter portion of the stepped ejection pin should be kept as short as possible. This length need only equal the length in contact with the mould plate (i.e. length X) plus the ejector stroke (i.e. length Y) plus a small allowance of 5 mm (3/16 in). Note that the length of ejector pin contact with the mould plate (X) is kept to a minimum by incorporating a clearance diameter hole in the mould plate (at Z). A suitable contact length (X) for these small-diameter ejector pins is five to six times the diameter.The two part assembly design, discussed above, is not worth considering in countries where standard stepped ejector pins are available, unless a non-standard size is required. These standard parts are obtainable, relatively cheaply, in an excellent range of sizes. Standard parts manufacturer 'DME5*, for example, offer a range of sizes from 0.8 mm (0.031 in) to 2.5 mm (0.098 in). Four lengths of stepped pin are available for each diameter from the above manufacturer.3.4.3 D-shaped ejector pinThis is the name given to a flat-sided ejector pin. It is made quite simply by machining a flat on to a standard ejector pin (Figure 3.24c). It is used primarily for the ejection of thin-walled box-type mouldings.The main advantage of this irregular-shaped ejector pin over the standard parting surface pin is that, size for size, the former has a greatly increased effective ejection area. Figure 3.33 clearly shows that the ejection area obtained with the parting surface pin is confined to the extreme edge. Thus, because we are dealing with a segment of a circle, the effective ejection area rapidly diminishes as the wall section of the moulding is reduced. With the D-shaped ejection pin however, reduction of the moulding wall section does not have the same effect on effective ejection area because in this case this is situated at the centre of the ejector pin.Now turn to the machining of the D-shaped hole. If we attempt to machine this complex shape through the mould plate or mould insert, the cost will be relatively high. However, by adopting a slightly modified insert —bolster assembly to that already described (Chapter 2) the incorporation of D-shaped ejector pins only increases mould cost slightly.The D-shaped ejector pin is fitted into a complementary shaped hole in the mould plate, adjacent to the core, as shown in Figure 3.37. Note that the flat side of the ejector pin is parallel to the core insert face.The procedure adopted for producing the D-shaped hole is shown in Figure 3.38 (a part-plan view of the mould plate and a corresponding cross-section through the plate).(a)Mark out the required position of the ejector pin hole.(b)Bore and ream the required diameter hole in the bolster.(c)Machine out the recess to accommodate the mould insert.(d)Fit the insert and hold back with screws.Thus the side wall of the mould insert forms the flat side of the D- shaped hole (Figure 3.37). Another application for the D-shaped ejector pin is illustrated in Figure 3.39. This shows a part-section through a mould for a box lid. Note that the lid incorporates a projecting rim situated a short distance from the edge. By incorporating a part of the rim form on the ejector pin, as shown,it can be positively ejected. When the ejection is in the fully forward position a jet of air may be necessary to dislodge the moulding from the ejector pins.An alternative-method for producing the ‘D’shaped hole in the mould plate is to use the spark erosion technique described in Section 1.7. This method is both beneficial from the basic manufacturing time and for the subsequent fitting time for many applications.3.4.1Sleeve ejectionWith this method the moulding is ejected by means of a hollow ejector pin, termed a sleeve (Figure3.24d). It is used in one of three circumstances:(i)For the ejection of certain types of circular mouldings.(ii)For the ejection (usually local) of circular bosses on a moulding of any shape.(iii)To provide positive ejection around a local core pin forming a round hole in moulding.A part-section through a mould which incorporates sleeve ejection is shown in Figure 3.40. The sleeve, which is a sliding fit in the cavity insert and on the core pin,is fitted at its rear end to the ejector assembly. It is important for the beginner to note that the core pin extends completely through the sleeve, and is attached to the back plate. Beginners often attempt to anchor the core pin to the mould plate. This is impracticable because the core pin is completely surrounded by the sleeve.The attachment of the core pin to the back plate can be accomplished in one of several ways. In the design illustrated, the core pin is anchored by a local core-retaining plate. An alternative method, to be adopted when several core- pins have to be held back, is to use one large retaining plate securely attached to the back plate by screws (Figure 3.41).A third method, which is used either when very few core pins are required, or when the diameter of the core pin is relatively large, is to adopt a directly mounted core pin. This design is essentially a standard core pin, but one in which an internally threaded hole is incorporated in the shank end. Thus this type of core pin may be held back directly onto the back plate by means of socket headed screws,and thereby eliminates the necessity of incorporating a core retaining plate.Such directly mounted core pins are available from standard parts manufacturers. ‘H a s c o,⑧,* for example, produce a range of sizes extending from 3 mm (0.12 in) to 16.5 mm (0.65 in) inclusive. Two lengths of each diameter are produced, and these lengths, naturally, must be modified by a machining and griding operation to suit a specific mould.Whichever method of attachment is used, because the outside diameter of the sleeve is a sliding fit in the cavity insert the sleeve and the core pin must be allowed to float in their respective anchorages.When the ejector assembly is actuated, the sleeve is moved relative to the core (and to the cavity) and the moulding is ejected.Ejection by means of a sleeve is a particularly efficient method because the ejection force is applied to a relatively large surface area. In the case of the example shown (Figure 3.40) the effective ejection area is practically the complete area at the base of the moulding.While any shape of sleeve can be made, in practice the design is normally restricted to circular types, because of the high expense involved in the machining and the fitting of other shapes.It is undesirable to allow the sleeve to be in contact with the core pin over its entire length. To reduce frictional wear, to facilitate fitting,and to lessen the possibility of scoring, the surface contact between the two parts is kept to a minimum. The method for achieving this is to counterbore the hole in the rear side of the sleeve to a predetermined depth, leaving about 35 mm (1.4 in) of sliding contact.One important point to note, however, is that as the ejector assembly is operated the length of the bearing contact between the sleeve and the core pin is reduced. Care must therefore be exercised in the design to ensure that when the sleeve is in the fully forward position a minimum effective bearing length of 7 mm (1/4 in) is still maintained.A wide selection of ejection sleeve sizes are available as standard parts, a similar design being adopted by all manufacturers. About 30 alternative.sizes are available ranging from a working bore diameter of between1.6mm (0.062 in) and 16 mm (0.62 in). Note that the above complete range is not available from one particular manufacturer and that some 'shopping around’may be necessary to get the specific size required.A mating core pin is normally supplied with the sleeve ejector and this may be of a standard length, say 50 mm (2 in) greater than the sleeve ejector length, or, a number of core pin lengths may be offered. The above alternatives, vary between manufacturers and the respective catalogues must be consulted.For many applications it is necessary for the mouldmaker to grind the outside diameter of the standard sleeve to the dimensions appropriate to the moulding being produced. As this grinding operation removes part or all of a nitrided surface, the designer should specify that through-hardened and tempered sleeves are supplied for this purpose.Another sleeve design is shown in Figure 3.41. This is known as the stepped sleeve. It is used when a particular moulding necessitates a sleeve with a wall section of less than 2 mm (0.08 in). Long, thin wall-section sleeves are difficult to manufacture and are prone to failure in operation. By enlarging the diameter of the sleeve at the lower end, the length of the thin wall section is shortened, thereby lessening the machining difficulties and producing a generally stronger sleeve. A recess may be provided in the rear side of the mould plate (directly below the cavity) to accommodate the larger-diameter portion of the sleeve when the ejector assembly is in the forward position. This permits the length of the thin wall section to be kept to a minimum.It is undesirable to allow the sleeve to be in contact with the core pin over its entire length. To reduce frictional wear,to facilitate fitting, and to lessen the possibility of scoring, the surface contact between the two parts is kept to a minimum.Here again it is undesirable to allow the sleeve to be in contact with the core pin over its entire length. There are two possible alternative methods to consider. The first is to counterbore the rear side of the sleeve to a predetermined depth in an identical manner to that discussed above for the parallel sleeve. The same clearances may be adopted for this design.The alternative technique is to relieve a portion of the core pin by reducing its diameter locally by 0.26 mm (0.010 in). This offers the advantage (over the above technique) in that irrespective of the length of the relieved section the effective bearing area between the sleeve and the core pin remains constant over the complete ejector stroke. Thus a smaller length of contact bearing area is acceptable with this design. Note that this method is particularly desirable for use with stepped sleeve design in that it does not necessitate reducing the thin wall of the sleeve even further (Figure 3.41).Typical examples of mouldings which can be ejected by the sleeve technique are now illustrated (Figure 3.42).3.4.5 blade ejectionThe main purpose of the blade ejector is for the ejection of very slender parts, such as ribs and other projections, which cannot satisfactorily be ejected by the standard type of ejector pin. (i) A blade is basically a rectangular ejector pin and examples are shown in Figure 3.43. There are two alternative methods for manufacturing the blade ejector: (i) machining the form from a solid rod (Figure 3.43a), and fabricating the element (Figure 3.43b), in which case a blade of steel is inserted into a slot machined into a standard type of ejector pin. The blade may be pinned (as shown) or, alternatively, it may be brazed. The advantage of the two-part construction is thatthe blade can easily be replaced should it become damaged.Standard blade ejectors are all of the first type, and should be adopted whenever possible, as even if a failure occurs in production the ejector can be quickly and economically replaced. The number of sizes available are, however, more limited than other types of ejector element. Note that a variation in both width and depth is required and this feature increases the number of possible combinations. In practice the number of widths is limited to eight at the present time (1989) and for reference these are as follows: 3.5,3.8, 4.5, 5.5, 7.5,9.5, 11.5 and 15.5 mm. Similarly the available depths are restricted to five sizes as follows 1,1.2, 1.5, 2 and2.5mm. Note, however, that each width size does not have the complete depth range associated with it. So here again the manufacturers catalogue must be consulted.The blade ejector element is fitted to the ejector assembly in an identical manner to that described for the standard ejector pin (Section 3.4.1). A cross-sectional view through part of a mould which incorporates blade ejectors is shown in Figure 3.44.The rectangular blade ejector is accommodated in a complementary shaped hole in the mould plate. Now if this slot is to be machined into a solid mould plate, it must either be spark eroded or end milled. For the latter case it is desirable to facilitate the machining of this aperture by adopting a built-up assembly.For a moulding which incorporates a small projecting rib, it is usually possible to introduce a split bush into the design. Now this split bush (Figure 3.45) will carry the relevant part of the impression form, and by making the bush in two parts a slot can be milled to accommodate the blade ejector. The blade is fitted to the split bush before this latter member is fitted to the core plate. By adopting this technique, machining of both the local impression form and the rectangular aperture (for the blade) is simplified.A somewhat similar method is adopted where a blade ejector is used on the edge of a moulding. In this case a shouldered core insert is adopted (Figure 3.46). A slot is machined completely through the shouldered portion, and when the core insert is fitted into a suitable recess in the mould plate a rectangular aperture is formed into which the ejector blade slides.This latter method is adopted in the design shown in Figure 3.44. Assume that we wish to mould a lattice type component and that we want to have all the moulding form in one mould half (i.e. so that the other mould half will be perfectly plain). Pin ejection is not suitable here because only very small-diameter ejector pins can be fitted at the bottom of the slots in the mould plate. The effective ejection area of even a relatively large number of such pins would be insufficient to eject this type of moulding. Thus for such a moulding we would use blade ejection.。
注塑英文词汇汇总
英文中文英文中文Layout布置图机械设计及周边其它用语Conveyer流水线物料板assembly drawing装配图Rivet table拉钉机auto tool change cycle自动换刀时间周期Rivet gun拉钉枪beam横梁Screw driver起子bottoming底靠Electric screw driver电动起子buckling纵弯曲Pneumatic screw driver气动起子chamfering去角斜切fit together组装在一起channel凹槽fasten锁紧(螺丝)chattering颤动fixture ,jig夹具(治具)check point查核点barcode条形码chip切屑barcode scanner条形码扫描仪chip conveyor排屑输送机fuse together熔合coefficient of friction摩擦系数fuse machine热熔机compact小型的repair修理,纠正,返修cooling pipe冷却管thumb screw大头螺丝coupon试样胚lbs.inch镑、英寸distortion扭曲变形EMI gasket导电条draft taper拔模锥度front plate前板fit tolerance配合公差rear plate后板flexible rigidity弯曲刚性chassis |'∫æsi|基座gas vent气孔,排气管bezel panel面板heater cooler加热器冷却装置power button电源按键hook cavity钩穴reset button重置键lug凸缘Hi-pot test of SPS高源高压测试maintenance维修保固Voltage switch of SPS电源电压接柆键metallurgy冶金学sheet metal parts冲件notch effect切口效果plastic parts塑料件out of roughness真圆度sub-line支线performance动作性能uncoiler and straightener开卷矫直机pit坑robot机械手plane strain倒角应力hydraulic machine油压机plug mill蕊棒轧管机lathe车床repeated load重复载荷刨床riveted joint铆钉接合miller铣床sand paper砂纸grinder磨床shift偏移driller钻床shrink fit热压配合linear cutting线切割shrinkage hole缩孔electrical sparkle电火花sinking凹陷welder电焊机sketch草图staker=reviting machine铆合机spalling剥落compound die合模,复式压膜straightness直度die locker锁模器submarine深陷式pressure plate,plate压板,夹板surface roughness表面粗度bolt螺栓tapping攻螺丝automatic screwdriver电动启子thermocouple热电耦thickness gauge厚薄规torsion load扭转载荷gauge量规toughness韧性power wire电源线tracing描图buzzer蜂鸣器under cut凹割screwdriver holder起子插座abnormal glow不规则辉光放电pedal踩踏板abrasive砂轮stopper阻挡器access通路flow board流水板accretion炉瘤hydraulic handjack油压板车accurate die casting精密压铸head of screwdriver起子头acid converter酸性转炉chain链条,链条槽acid lining cupola酸性熔铁炉production line流水线,生产线acid open-hearth furnance ,酸性平炉magnetizer加磁器activator活化剂die repair模修acetylene乙炔die worker模工adjustable spanner活动扳手equipment设备aerator松砂机to start a press开机after service售后服务stop/switch off a press关机age hardening时效硬化board基板ageing老化处理feeder送料机air hardening气体硬化sliding rack滑料架air patenting空气韧化die change换模air permeability test透气性试验to fix a die装模air set mold常温自硬铸模to take apart a die拆模all core molding集合式铸模to repair a die修模alloy tool steel合金工具钢to pull and stretch拉深allround die holder通用模型to put material in place,to cut material, to input 落料aluminium alloy铝合金钢to impose lines,groove压线amendment修正to compress, compressing压缩ampere电流安培character die字模anchor pin锚梢parameters参数angle cutter角铣刀rotating speed, revolution转速angle welding角焊steel plate钢板angular pin角梢,倾斜梢to switch over to,switch---to throw--over switching 切换anode effect阳极效应engineering,project difficulty 工程瓶颈straightness直线度stage die工程模flatness平面度automation自动化roundness圆度add lubricating oil加润滑油Cylindnicity圆柱度shut die架模line profile线轮廓shut height闭合高度surface profile面轮廓shut height of a die架模高度parallelism平行度analog-mode device类模器perpendicularity垂直度die lifter举模器angularity倾斜度argon welding氩焊symmetry对称度vocabulary for stamping冲压常词汇coaxiality同轴度punch press,dieing out press,punching machine 冲床concentricity同心度uncoiler & strainghtener整平机true position位置度rack, shelf, stack料架runout圆跳动cylinder汽缸套,油缸,气缸total run-ou全跳动taker取料机学理实验与试验用语conveyer belt输送带austenitic steel沃斯田铁钢transmission rack输送架brinell hardness布耐内尔硬度top stop上死点brinell hardness test布氏硬度试验bottom stop下死点charpy impact test夏比冲击试验one stroke一行程conical cup test圆锥杯突试验inch寸动cup flow test杯模式流动度试验to continue, cont.连动dart drop impact test落锤冲击试验to grip(material)吸料Elmendorf test埃罗门多撕裂强度试验location lump,locating piece, block stop ,stock 定位块environmental stress crackingtest环境应力龟裂试验reset复位ericessen test埃留伸薄板拉伸试验smoothly顺利falling ball impact test落球冲击试验filing锉刀修润,锉削加工fatigue test疲劳试验filings铁削gantt chart甘特图to draw holes抽孔heat cycle test热循环试验reverse angle = chamfer倒角histogram柱状图to take apart a die卸下模具hot bend test热弯试验to load a die装上模具izod impact test埃左德冲击试验to tight a bolt拧紧螺栓loop tenacity环结强度to looser a bolt拧松螺栓martens heat distortiontemperature test 马顿斯耐热试验to move away a die plate移走模板mullen bursting strength tester密廉式破裂强度试验机easily damaged parts易损件nol ring test诺尔环试验standard parts标准件normal distribution常态分配breaking.(be)broken,(be)c racked 断裂ozone resistance test抗臭氧试验to lubricate润滑pareto diagram柏拉图common vocabulary for die engineering 模具工程常用词汇peeling test剥离试验die模具pinhole test针孔试验机cutting die, blanking die冲裁模rattler test磨耗试验progressive die,follow(-on)die 连续模rockweel hardness test洛氏硬度试验compound die,gang dies复合模rockweel hardness洛氏威尔硬度punched hole,pierce冲孔rolinx process罗林克斯射出压缩成形panel board,embedded镶块rossi-peakes flow test罗西皮克斯流动试验side cut,side scrap切边sampling inspection抽样检查to bending折弯scratch hardness抗刮硬度to pull, to stretch拉伸shore hardness萧氏硬度Line streching,line pulling 线拉伸spiral flow test螺旋流动试验engraving, to engrave刻印surface abrasion test表面磨耗试验upsiding down edges翻边taber abraser泰伯磨耗试验机staking铆固tensile impact test拉伸冲击试验designing, to design设计tensile strength抗拉强度design modification设计变化tension test张力试验folded block折弯块thermal shock test冷热剧变试验sliding block滑块torsion test扭曲试验die plate, front board模板ubbelohde viscometer乌别洛德黏度计padding block垫块vicat indentation test维卡针压陷试验stepping bar垫条Vickers hardness test维氏硬度试验lower die base,die set下模座warpage test翘曲试验upper supporting blank上承板weatherometer人工老化试验机upper padding plate blank,punch pad 上垫板weissenberg effect威森伯格回转效应spare dies模具备品砂轮用语plate电镀Al2O3氧化铝mold模具,模型bond结合material for engineering mold testing 工程试模材料borazon氧化硼立方晶not included in physical inventory 不列入盘点diamond钻石tox machine自铆机dresser砂轮整修机wire EDM线割endless grinding belt循环式研磨带EDM放电机finishing allowance加工留量,加工余量coil stock,roll material卷料grain磨粒sheet stock片料grinding disc研磨盘tolerance工差jamp up孔眼堵塞score成绩mesh网筛目cam block凸轮块,滑块resinoid grinding wheel半树脂型砂轮pilot试产,试验vitrified陶瓷的trim修剪,整理,装饰wheel旋转pierce剪内边模具常用之工作机械drag form压锻差3D coordinate measurement三次元量床pocket for the punch head挂钩槽boring machine搪孔机slug hole废料孔cnc milling machine CNC铣床feature die公母模 contouring machine轮廓锯床expansion dwg展开图copy grinding machine仿形磨床shim(wedge)楔子copy lathe仿形车床torch-flame cut火焰切割copy milling machine仿形铣床round pierce punch=die button 圆冲子copy shaping machine仿形刨床shape punch=die insert异形子cylindrical grinding machine外圆磨床under cut=scrap chopper清角die spotting machine合模机cover plate盖板drilling machine钻孔机male die公模(凸模)engraving machine雕刻机female die母模(凹模)engraving E.D.M.雕模放置加工机groove punch压线冲子form grinding machine成形磨床air-cushion eject-rod气垫顶杆graphite machine石墨加工机spring-box eject-plate弹簧箱顶板horizontal boring machine卧式搪孔机bushing block衬套horizontal machine center卧式加工制造中心club car高尔夫球车internal cylindrical machine内圆磨床capability能力jig boring machine冶具搪孔机factor系数jig grinding machine冶具磨床phosphate皮膜化成lap machine研磨机viscosity涂料粘度machine center加工制造中心alkalidipping,degrease脱脂multi model miller靠磨铣床main manifold主集流脉NC drilling machine NC钻床bezel斜视规NC grinding machine NC磨床dejecting顶固模NC lathe NC车床demagnetization去磁;消磁NC programming system NC程序制作系统high-speed transmission高速传递 planer龙门刨床heat dissipation热传profile grinding machine仿形磨床,投影磨床rack上料projection grinder光学曲线磨床,投影磨rinse水洗radial drilling machine旋臂钻床alkaline etch龄咬surface grinder平面磨床desmut剥黑膜try machine试模机D.I. rinse纯水次turret lathe转塔车床Chromate铬酸处理universal tool grindingmachine 万能工具磨床Anodize阳性处理vertical machine center立式加工制造中心seal封孔wire E.D.M.线割放电加工机stamping冲压检验量测工具用语molding成型autocollimator自动准直机coordinate坐标bench comparator比长仪dismantle the die折模block gauge块规auxiliary fuction辅助功能bore check精密小测定器poly-line多义线calibration校准heater band加热片caliper gauge内量卡规thermocouple热电偶check gauge校对规sand blasting喷沙clearance gauge间隙规grit砂砾clinoretee测斜仪derusting machine除锈机comparator比测仪degate打浇口cylinder square圆筒直尺dryer烘干机depth gauge测深规response=reaction=interac tion 感应dial indicator针盘指示表induction light感应光dial snap gauge千分表卡规ram连杆digital micrometer数位式测微计edge finder巡边器feeler gauge测隙规concave凸gauge plate量规定位板convex凹height gauge测高规short射料不足inside calipers内卡钳nick缺口 inside micrometer内分厘卡speck瑕疪interferometer干涉仪shine亮班leveling block平台splay银纹limit gauge限规gas mark焦痕micrometer测微计delamination起鳞mil千分之一吋cold slug冷块monometer压力计blush导色morse taper gauge莫氏锥度量规gouge沟槽;凿槽nonius游标卡尺satin texture段面咬花optical flat光学平晶witness line证示线optical parallel光学平行patent专利passimeter内径仪grit沙砾position scale位置刻度granule=peuet=grain细粒profile projector轮廓光学投影仪grit maker抽粒机protractor分角器cushion缓冲radius半径magnalium镁铝合金ring gauge环规magnesium镁金sine bar正弦量规metal plate钣金snap gauge卡模mill锉square master直角尺plane刨stylus触针grind磨telescopic gauge伸缩性量规drill铝working gauge工作量规boring镗模具钢材blinster气泡bearing alloy轴承合金fillet镶;嵌边bonderized steel sheet邦德防蚀钢板through-hole form通孔形式carbon tool steel碳素工具钢voller pin formality滚针形式clad sheet被覆板cam driver铡楔clod work die steel冷锻模用钢shank摸柄emery金钢砂augular offset角度偏差ferrostatic pressure钢铁水静压力velocity速度forging die steel锻造模用钢production tempo生产进度现状galvanized steel sheet镀锌铁板torque扭矩hard alloy steel超硬合金钢spline=the multiple keys花键high speed tool steel高速度工具钢annealing退火hot work die steel热锻模用钢carbonization碳化low alloy tool steel特殊工具钢alloy合金low manganese casting steel低锰铸钢tungsten high speed steel钨高速的marging steel马式体高强度热处理钢moly high speed steel钼高速的martrix alloy马特里斯合金organic solvent有机溶剂meehanite cast iron米汉纳铸钢liaison联络单meehanite metal米汉纳铁volatile挥发性merchant iron市售钢材resistance电阻molybdenum high speed steel钼系高速钢ion离子molybdenum steel钼钢titrator滴定仪nickel chromium steel镍铬钢beacon警示灯prehardened steel顶硬钢coolant冷却液silicon steel sheet硅钢板crusher破碎机stainless steel不锈钢模具工程类tin plated steel sheet镀锡铁板plain die简易模tough pitch copper ,tough韧铜pierce die冲孔模troostite吐粒散铁forming die成型模tungsten steel钨钢shearing die剪边模vinyl tapped steel sheet塑料覆面钢板riveting die铆合模表面处理关连用语forming成型(抽凸,冲凸)anodizing阳极氧化处理emboss凸点atomloy treatment阿扥木洛伊表面dome凸圆austempering奥氏体等温淬火semi-shearing半剪austenite奥斯田体/奥氏体stamp mark冲记号bainite贝氏体deburr or coin压毛边banded structure条纹状组织punch riveting冲压铆合barrel滚筒(加工)side stretch侧冲压平barrel plating滚镀reel stretch卷圆压平barrel tumbling滚筒打光stamp letter冲字(料号)blackening染黑法shearing剪断blue shortness青熟脆性tick-mark nearside正面压印bonderizing磷酸盐皮膜处理tick-mark farside反面压印box annealing箱型退火冲压名称类box carburizing封箱渗碳extension dwg展开图bright electroplating辉面电镀procedure dwg工程图bright heat treatment光辉热处理die structure dwg模具结构图bypass heat treatment旁路热处理material材质carbide炭化物material thickness料片厚度carburized case depth浸碳硬化深层factor系数carburizing渗碳upward向上cementite炭化铁downward向下chemical plating化学电镀press specification冲床规格chemical vapor deposition化学蒸镀die height range适用模高coarsening结晶粒粗大化die height闭模高度coating涂布被覆weight重量cold shortness低温脆性total wt.总重量comemtite渗碳体punch wt.上模重量controlled atmosphere大气热处理五金零件类corner effect锐角效应inner guiding post内导柱creeping discharge蠕缓放电inner hexagon screw内六角螺钉decarburization脱碳处理coil spring弹簧decarburizing脱碳退火lifter pin,lifting pin顶料销depth of hardening硬化深层eq-height sleeves=spool等高套筒diffusion扩散pin销diffusion annealing扩散退火wire spring圆线弹簧electrolytic hardening电解淬火outer guiding post外导柱embossing浮花压制加工,压花加stop screw,set screw止付螺丝,固定螺丝raising(embossing)压花起伏成形located pin,stop pin,定位销etching表面蚀刻outer bush外导套ferrite纯铁体,肥粒铁模板类first stage annealing第一段退火top plate上托板(顶板)flame hardening火焰硬化top block上垫脚flame treatment火焰处理punch set,upper die base上模座full annealing完全退火punch holder上夹板gaseous cyaniding气体氧化法stripper pad脱料背板 globular cementite球状炭化铁up stripper上脱料板grain size结晶粒度upper plate上模板granolite treatment磷酸溶液热处理lower plate下模板graphitizing石墨退火die pad下垫板 hardenability硬化性die holder下夹板hardenability curve硬化性曲线bottom block下垫脚hardening硬化stripping plate内外打(脱料板)heat treatment热处理outer stripper外脱料板hot bath quenching热浴淬火inner stripper内脱料板hot dipping热浸镀lower stripper下脱料板induction hardening高周波硬化零件类ion carbonitriding离子渗碳氮化punch冲头ion carburizing离子渗碳处理deburring punch压毛边冲子ion plating离子电镀stamped punch字模冲子isothermal annealing等温退火special shape punch异形冲子liquid honing液体喷砂法roller滚轴low temperature annealing低温退火supporting block for location 定位支承块malleablizing可锻化退火air cushion plate气垫板martempering麻回火处理trimming punch切边冲子martensite马氏体/硬化铁炭stiffening rib punch= stinger 加强筋冲子metallikon金属喷镀法ribbon punch压筋冲子metallizing真空涂膜reel-stretch punch卷圆压平冲子nitriding氮化处理guide plate导板,定位板nitrocarburizing软氮化sliding dowel block滑块固定块normalizing正常化active plate活动板oil quenching油淬化lower sliding plate下滑块板overageing过老化upper holder block上压块overheating过热upper mid plate上中间板pearlite针尖组织spring box弹簧箱phosphating磷酸盐化(金属表面处spring-box eject-rod弹簧箱顶杆physical vapor deposition物理蒸镀guide pad导料块plasma nitriding离子氮化塑件&模具相关英文pre-annealing预备退火compre sion molding压缩成型precipitation析出flash mold溢流式模具precipitation hardening析出硬化plsitive mold挤压式模具press quenching加压硬化split mold分割式模具process annealing制程退火cavity型控母模quench ageing淬火老化core模心公模quench hardening ,淬火taper锥拔quenching crack淬火裂痕leather cloak仿皮革quenching distortion淬火变形shiver饰纹quenching stress淬火应力flow mark流痕 reconditioning再调质welding mark溶合痕recrystallization再结晶post screw insert螺纹套筒埋值red shortness红热脆性self tapping screw自攻螺丝residual stress残留应力striper plate脱料板retained austenite残留奥piston活塞rust prevention防蚀chip细碎物salt bath quenching盐浴淬火handle mold手持式模具sand blast喷砂处理移转成型用模具seasoning时效处理encapsulation molding低压封装成型second stage annealing第二段退火射出成型用模具secular distortion经年变形two plate两极式(模具)segregation偏析well type蓄料井selective hardening部分淬火insulated runner绝缘浇道方式shot blast喷丸处理hot runner热浇道shot peening珠击法runner plat浇道模块single stage nitriding等温渗氮valve gate阀门浇口sintering烧结处理band heater环带状的电热器soaking均热处理spindle阀针softening软化退火spear head刨尖头solution treatment固溶化热处理slag well冷料井spheroidizing球状化退火cold slag冷料渣stabilizing treatment安定化处理welding line熔合痕straightening annealing矫直退火eject pin顶出针strain ageing应变老化knock pin顶出销stress relieving annealing应力消除退火return pin回位销反顶针subzero treatment生冷处理sleave套筒supercooling过冷insert core放置入子surface hardening表面硬化处理runner stripper plate浇道脱料板temper brittleness回火脆性guide pin导销,导正销,定位temper colour回火颜色lifter guide pin浮升导料销tempering回火eject rod (bar)(成型机)顶业捧tempering crack回火裂痕subzero深冷处理 texture咬花three plate三极式模具thermal refining调质处理three plates mold三片式模具 thermoechanical treatment加工热处理runner system浇道系统time quenching时间淬火stress crack应力电裂transformation变态orientation定向tufftride process软氮化处理sprue gate射料浇口,直浇口under annealing不完全退火nozzle射嘴vacuum carbonitriding真空渗碳氮化sprue lock pin料头钩销(拉料杆)vacuum carburizing真空渗碳处理side gate侧浇口vacuum hardening真空淬火edge gate侧缘浇口 vacuum heat treatment真空热处理tab gate搭接浇口vacuum nitriding真空氮化slit gate缝隙浇口water quenching水淬火fan gate扇形浇口wetout浸润处理dish gate因盘形浇口焊接用语diaphragm gate隔膜浇口arc电弧ring gate环形浇口argon arc welding氩弧焊接subarine gate潜入式浇口bare electrode光熔接条tunnel gate隧道式浇口butt welding对接焊接pin gate针点浇口cascade阶迭熔接法Runner less无浇道clad weld被覆熔接(sprue less)无射料管方式crator焊疤long nozzle延长喷嘴方式excess metal多余金属sprue浇口;溶渣filler rod焊条各种模具常用成形方式fillet weld填角焊接powder forming粉末成形gas shield气体遮蔽calendaring molding压延成形groove welding起槽熔接powder metal forging粉末锻造hand face shield手握面罩cold chamber die casting冷式压铸hard facing硬表面堆焊precision forging精密锻造jig welding工模焊接cold forging冷锻laser beam welding雷射光焊接press forging冲锻metal electrode insert gaswelding MIG熔接compacting molding粉末压出成形nugget点焊熔核rocking die forging摇动锻造overlaying堆焊compound molding复合成形peening of welding珠击熔接法rotary forging回转锻造plug welding塞孔熔接compression molding压缩成形positioned welding正向熔接rotational molding离心成形pressure welding压焊dip mold形浸渍成propane gas cutting丙烷气切割rubber molding橡胶成形pure nickel electrode纯镍熔接条encapsulation molding注入成形reinforcement of weld加强焊接sand mold casting砂模铸造resist抗蚀护膜extrusion molding挤出成形root running背面熔接shell casting壳模铸造seam裂痕foam forming发泡成形seaming接合,折弯重迭加工sinter forging烧结锻造seam welding流缝熔接six sides forging六面锻造series seam welding串联缝熔接gravity casting重力铸造skip welding process跳焊法slush molding凝塑成形spark火花hollow(blow) molding中空(吹出)成形spot welding点焊接squeeze casting高压铸造stitch welding针角焊接hot chamber die casting热室压铸stud arc welding电弧焊接swaging挤锻under laying下部焊层hot forging热锻void焊接空隙transfer molding转送成形weld flow mark焊接流痕injection molding射出成形weld flush焊缝凸起warm forging温锻weld line焊接纹investment casting失模铸造,精密铸造,weld mark焊接痕matched die method配合成形法,对模成形weld penetration熔接透入laminating method被覆淋膜成形weld zone焊接区low pressure casting低压铸造welding焊接lost wax casting脱蜡铸造welding bead焊接泡matched mould thermal forming 对模热成形模welding direction焊接方向各式模具分类用语welding distortion焊接变形bismuth mold铋铸模welding flux焊剂landed plunger mold有肩柱塞式模具welding ground电熔接地burnishing die挤光模welding interval焊接周期landed positive mold有肩全压式模具welding stress熔接应变button die镶入式圆形凹模welding torch熔接气炬loading shoe mold料套式模具射出成形关联用语center-gated mold中心浇口式模具bag moulding气胎施压成形loose detail mold活零件模具bonding strength黏合强度chill mold冷硬用铸模breathing排气loose mold活动式模具caulking compound填隙料clod hobbing冷挤压制模cell单元louvering die百叶窗冲切模cold slug半凝式射出composite dies复合模具colorant着色剂manifold die分歧管模具color matching调色counter punch反凸模color masterbatch色母料modular mold组合式模具compound混合料double stack mold双层模具copolymer共聚合体multi-cavity mold多模穴模具cull残料废品electroformed mold电铸成形模cure凝固化multi-gate mold复式浇口模具cryptometer不透明度仪expander die扩径模daylight开隙offswt bending die双折冷弯模具dry cycle time空料试车周期时间extrusion die挤出模ductility延性palletizing die迭层模elastomer弹性体family mold反套制品模具extruded bead sealing压出粒涂层法plaster mold石膏模feed供料blank through dies漏件式落料模filler充填剂porous mold通气性模具film blowing薄膜吹制法duplicated cavity plate复板模floating platen活动模板positive mold全压式模具foaming agent发泡剂fantail die扇尾形模具gloss光泽pressure die压紧模granule颗粒料fishtail die鱼尾形模具gunk料斗profile die轮廓模hot mark热斑flash mold溢料式模具hot stamping烫印progressive die顺序模injection nozzle射出喷嘴gypsum mold石膏铸模injection plunger射出柱塞protable mold手提式模具injection ram射出冲柱hot-runner mold热流道模具isomer同分异构物prototype mold雏形试验模具kneader混合机ingot mold钢锭模leveling agent匀涂剂punching die落料模lubricant润滑剂lancing die切口模mould clamping force锁模力re-entrant mold凹入模,侧凹模,倒角mould release agent脱模剂sectional die对合模具,拼合模,组oriented film取向薄膜runless injection mold无流道冷料模具parison吹气成形坏料segment mold组合模pellet粒料semi-positive mold半全压式模具plasticizer可塑剂shaper牛头刨床,定型模套,plunger压料柱塞single cavity mold单腔模具porosity孔隙率solid forging die整体锻模post cure后固化split forging die拼合锻模premix预混料split mold双并式模具purging清除sprueless mold无注道残料模具reciprocating screw往复螺杆squeezing die挤压模resilience回弹性stretch form die拉伸成形模resin injection树脂射出法sweeping mold平刮铸模rheology流变学swing die振动模具sheet塑料片trimming die切边模shot注射unit mold单元式模具shot cycle射出循环universal mold通用模具slip agent光滑剂unscrewing mold退扣式模具take out device取料装置yoke type die轭型模toggle type mould clampingsystem 肘杆式锁模装置模具厂常用之标准零配件torpedo spreader鱼雷形分流板baffle调节阻板transparency透明性baffle plate挡块void content空洞率baffle plate折流檔板塑料原料ball button球塞套acrylic压克力ball plunger定位球塞casein酪素ball slider球塞滑块cellulose acetate醋酸纤维素CA blank holder防皱压板cellulose acetate butyrate醋酸丁酸纤维素CAB bottom board浇注底板composite material复合材料bolster上下模板,垫板cresol resin甲酚树脂CFbottom plate下托板(底板)dially phthalate苯二甲酸二烯丙酯bottom plate下固定板disperse reinforcement分散性强化复合材料bracket小磁导engineering plastics工程塑料bracket扥架epoxy resin环氧树脂EP bumper block缓冲块ethyl cellulose乙基纤维素buster堵口ethylene vinylacetatecopolymer 乙烯-醋酸乙烯EVAcasting ladle浇注包ethylene-vinlacetate copolyme醋酸乙烯共聚物EVA casting lug铸耳expanded polystyrene发泡聚苯乙烯EPS cavity模穴(模仁)fiber reinforcement纤维强化热固性/纤维强cavity retainer plate模穴扥板high density polyethylene高密度聚乙烯HDPEcenter pin中心梢high impact polystyrene高冲击聚苯乙烯HIPSclamping block锁定块high impact polystyrenerigidity 高冲击性聚苯乙烯coil spring螺旋弹簧low density polyethylene低密度聚乙烯LDPE cold punched nut冷冲螺母melamine resin三聚氰胺酚醛树脂MF cooling spiral螺旋冷却栓nitrocellulose硝酸纤维素core心型phenolic resin酚醛树脂core pin心型梢plastic塑料cotter开口梢polyacrylic acid聚丙烯酸PAPcross十字接头polyamide耐龙PAcushion pin缓冲梢polybutyleneterephthalate聚对苯二甲酸丁酯PBT diaphragm gate盘形浇口polycarbonate聚碳酸酯PCdie approach模口角度,模头料道polyethyleneglycol聚乙二醇PFGdie bed型底polyethyleneoxide聚氧化乙烯PEOdie block块形模体polyethyleneterephthalate聚乙醇对苯PETPdie body铸模座polymetylmethacrylate聚甲基丙烯酸甲酯die bush合模衬套polyoxymethylene聚缩醛POMdie button冲模母模polyphenylene oxide聚硫化亚苯die clamper夹模器polyphenyleneoxide聚苯醚PPOdie fastener模具固定用零件polypropylene聚丙烯PPdie holder母模固定板polystyrene聚苯乙烯PSdie lip模唇polytetrafluoroethylene聚四氟乙烯PTFEdie plate冲模板polythene聚乙烯PEdie set冲压模座polyurethane聚氨基甲酸酯PU direct gate直接浇口polyvinylacetate聚醋酸乙烯PVACdog chuck爪牙夹头polyvinylalcohol聚乙烯醇PVAdowel hole导套孔polyvinylbutyral聚乙烯醇缩丁醛PVB dowel pin合模梢,固定、定位梢polyvinylchloride聚氯乙烯PVCdozzle辅助浇口polyvinylfuoride聚氟乙烯PVFdraft拔模锥度polyvinylidenechloride聚偏二氯乙烯PVDC draw bead张力调整杆prepolymer预聚物drive bearing传动轴承silicone resin硅树脂ejection pad顶出衬垫thermoplastic热塑性ejector脱模器thermosetting热固性ejector guide pin顶出导梢thermosetting plastic热固性塑胶ejector leader busher顶出导梢衬套unsaturated polyester不饱和聚酯树脂ejector pad顶出垫模具常用刀具与工作法用语ejector pin顶出梢anvil铁钻ejector plate顶出板arbour心轴ejector rod顶出杆backing sand背砂ejector sleeve顶出衬套backing衬垫ejector valve顶出阀buffing wheel抛光布轮eye bolt环首螺栓buffing抛光filling core椿入蕊,埋入砂心chamfering machine倒角机film gate薄膜形浇口chamfering tool去角刀具finger pin指形梢chisel扁錾finish machined plate角形模板chuck夹具finish machined round plate 圆形模板compass两角规fixed bolster plate固定侧模板concave cutter凹面铣刀flanged pin带凸缘销convex cutter凸形铣刀flash gate毛边形浇口,闸门浇口cross joint十字接头flask上箱cutting edge clearance刃口余隙角floating punch浮动冲头drill stand钻台gate浇口edge file刃用锉刀gate land浇口面file锉刀gib凹形拉紧销,滑块引导flange joint凸缘接头goose neck鹅颈管grinder砂轮机guide bushing引导衬套hammer铁锤guide post引导柱hand brace手摇钻guide rail导轨hatching剖面线head punch顶镦冲头hexagon headed bolt六角头螺栓headless punch直柄冲头hexagon nut六角螺帽heavily tapered solid整体模蕊盒index head分度头hose nippler管接头jack千斤顶impact damper缓冲器kit工具箱injection ram压射柱塞lapping研磨inlay busher嵌入衬套metal saw金工锯inner plunger内柱塞nose angle刀角inner punch内冲头pinchers钳子insert入块(嵌入件)pliers铗钳insert pin,retainer pin嵌件梢plug柱塞头king pin转向梢polisher磨光器king pin bush主梢衬套protable driller手提钻孔机knockout bar脱模杵sand paper砂纸land area合模面scraper刮刀leader busher导梢衬套screw driver螺丝起子lifting pin起模顶销scribing划线lining内衬second out file中纹锉locating center punch定位中心冲头spanner扳手locating pilot pin定位导梢spline broach方栓槽拉刀locating ring定位环square sleeker方形镘刀lock block压块square trowel直角度locking plate定位板stripping剥离工具loose bush活动衬套T-slot T形槽making die打印冲子 tool for lathe车刀manifold block歧管档块tool point angle刀刃角master plate靠模样板tool post刀架match plate分型板tosecan划线盘mold base塑料模座waffle die flattening压纹效平mold clamp铸模紧固夹wiper脱模钳mold platen模用板wrench螺旋扳手moving bolster换模保持装置计算机关联用语moving bolster plate可动侧模板3D modeling三次元模拟one piece casting整体铸件bug瑕疵parallel block平行垫块bus总线paring line分模线CAD计算机辅助设计parting lock set合模定位器CAE计算机辅助工程分析pass guide穴型导板CAM计算机辅助制造peened head punch镶入式冲头cassette卡座pilot pin导销 color display彩色显示器pin gate针尖浇口command指令fardage,sarking衬板communication通信pre extrusion punch顶挤冲头compact精简小型puncher推杆computer计算机pusher pin衬套梢copy复制rack机架cursor游标rapping rod起模杆curve modeling曲面仿真retainer plate扥料板database数据库return pin回位梢digitizing数字化riding stripper浮动脱模器disk磁盘ring gate环型浇口dot点roller滚筒eyelet眼孔runner跑步者,流道floppy磁盘片runner ejector set流道顶出器format格式化runner lock pin流道拉梢graphic圆解screw plug头塞hardware硬件set screw固定螺丝honeycomb蜂巢shedder ,knockout脱模装置interface界面shim分隔片know how秘诀shoe模座之上下模板laser printer激光打印机shoot拍摄,流道lay out布置shoulder bolt肩部螺丝memory记忆skeleton骨架memory swap交换记忆slag riser冒渣口microprocessor微处理器slide(slide core)滑动,滑块,滑心modeling造型slip joint滑配接头module,die block模块spacer block间隔块monitor屏幕spacer ring间隔环mouse鼠标spider模蕊支架need,Requirement,Demand需求spindle主轴network网络sprue注道new version新版sprue bushing注道衬套on line上线中sprue bushing guide注道导套option选择权sprue lock bushing注道定位衬套plotter绘图机sprue puller注道拉料销program,Procedure程序spue line合模线scanning扫描square key方键simulation仿真square nut方螺帽software软件square thread方螺纹solid model实体模型stop collar限位套system系统stop pin止动梢tape磁带,胶带stop ring止动环terminal终端机,端子stopper定位停止梢texture构造straight pin圆柱销venter排气风扇stripper bolt脱料螺栓word processor文书处理器stripper bushing脱模衬套各种冲模加工关连用语stripper plate剥料板blanking die落料冲头stroke end block行程止梢blanking穿落模,下料support pillar支撑支柱/顶出支柱blanking下料加工support pin支撑梢bulging撑压加工supporting plate扥板burring冲缘加工sweep templete造模刮板cam die bending凸轮弯曲加工tab gate辅助浇口caulking铆合加工taper key推拔键coining压印加工taper pin拔锥梢/锥形梢compressing压缩加工teeming浇注compression bending押弯曲加工three start screw三条螺纹crowning凸面加工thrust pin推力销curl bending卷边弯曲加工tie bar拉杵curling卷曲加工tunnel gate隧道形浇口cutting切削vent通气孔dinking切断蕊骨wortle plate拉丝模板double shearing迭板裁断模具加工方法drawing引伸加工bending stress弯曲应力drawing with ironing抽引光滑加工bending弯曲加工extrusion挤制加工bending moment弯矩fine blanking精密下料加工bending block,form折刀finish blanking光制下料加工broaching拉刀切削finishing精整加工centering定中心flanging凸缘加工cylindrical lathe cutting外圆车削folding折边弯曲加工,折迭加工electric discharge machine 放电加工forming ,shaping成形加工,组成,计划electrolytic grinding电解研磨impact extrusion冲击挤压加工facing面车削indenting压痕加工hand finishing手工修润ironing引缩加工hemming卷边加工louvering百叶窗板加工hobbing滚齿加工marking刻印加工joggling摇动加工notching冲口加工laser beam machining雷射加工parting分断加工lathe cutting车床车削piercing冲孔加工planning刨削加工progressive bending连续弯曲加工polishing抛亮光progressive blanking连续下料加工rough machining粗切削progressive drawing连续引伸加工rounding圆形加工progressive forming连续成形加工sawing锯削reaming铰孔修润,铰孔加工scaling清除钢碇缺陷restriking二次精冲加工skiving表面研磨riveting铆接加工slotting切缝切削roll bending滚筒弯曲加工taper turning锥度车削roll finishing滚压加工thread cutting螺纹切削rolling压延加工ultrasonic machining超音波加工roughing粗加工up cut milling逆铣加工scrapless machining无废料加工锻铸造关连用语shaving缺口修整加工airless blasting cleaning离心喷光shearing切断加工all round die holder通用模座sizing精压加工/矫正加工assembly mark铸造合模记号slitting切缝量,割缝加工back pouring补浇注spinning卷边铆接base bullion粗金属锭staking铆固base permeability原砂透气度stamping锻压加工belling压凸,压凸加工swaging挤锻压加工billet坏料trimming去毛边,整缘加工bleed漏铸upsetting锻粗加工blocker预锻模膛wiring抽线加工blocking粗胚锻件质量人员名称类blow hole破孔,铸件气孔QC quality control品质管理人员board drop hammer板落锤FQC final quality control终点质量管理人员bottom pour mold底浇IPQC in process qualitycontrol 制程中的质量管理人员bottom pouring底注OQC output quality control最终出货质量管理人员boxless mold脱箱砂模IQC incoming quality control进料质量管理人员break-off core缩颈砂心TQC total quality control ,全面质量管理brick molding砌箱造模法POC passage quality control段检人员buckle剥砂面QA Quality Assurance质量保证(处),质量保证camlachie cramp铸包OQA output qualityassurance 出货质量保证人员cast blade铸造叶片质量保证类casting flange铸造凸缘FAI first article inspection新品首件检查casting on flat水平铸造FAA first article assurance首件确认cleaning of casting ,铸件清理TVR tool verification report模具确认报告core template砂心模板3B 3B 模具正式投产前确core vent砂蕊排气孔capability index能力指数CPcorner gate压边浇口CPK capability index ofprocess 模具制程能力参数counter lock止口镶嵌方式SSQA standardized supplierquality 合格供货商质量评估draw out拉拔、锻造拔长OOBA out of box audit开箱检查draw plate起模板QFD quality functiondeployment 质量机能展开draw spike起模长针8 disciplines8项回复内容dummying预锻FA final audit最后一次稽核embedded core加装砂心CAR corrective actionrequest 改正行动要求erosion冲砂corrective action report改正行动报告filling in填砂FQC运作类finishing slag炼后熔渣flash gutter锻模飞边槽flask molding砂箱造模hammer man锻工heading machine顶镦机impacter卧式锻造机inblock cast整体铸造ingot铸锭ingot blank铸坯inlay casting镶铸法loose piece木模活块molding pit铸模地坑pouring process浇注法recasting重铸rolled surface轧制表面rough sand粗砂roughing forge粗锻sand crushing塌箱seamless forging无缝锻造slag熔渣slag inclusion夹渣strip layout带状胚料排样法tap casting顶注top gate顶注浇口unworked casting不加工铸件upender翻转装置upending顶锻uphill casting底铸white cast iron白口铸件。
模具DFM常用中英文对照
DFM常用中英文对照15、如果分型面此处,模具上会有尖角和刀口,对模具寿命有影响。
There are sharp edges if we set the parting line here, it will reduce the tool life.16、此处料厚段差很大,成品表面会有应力痕,建议修改如图示。
The thickness is not equal and it will bring the stress lines on the surface, suggest to improve the part as the picture shown.17、此大行位上有小行位,开模时小行位需先退,大行位做延时,合模时则相反。
The small slider is inside the big slider, when the mold open, the smallslider need to recede first and the big slider have to postpone. When the mold close, it is contrary.18、此处需做强顶。
This position need to force ejection.19、由于此处没有足够空间下热咀,所以需做一个柱子进胶。
This position need to make a pole for gating because there have noenough space for hot sprue.20、沾模,Stick1.High shrinkage values could indicate sink marks or voids at gate location 高缩水率的产品容易产生缩印,但在浇口附近可以避免。
2.Welding line on the cosmetic surface 熔接线在外表面3.Two banana gate was to being confluent in the end of melt flow. 两个香蕉浇口在流动未端熔合。
多维压型钢板产品手册
聚氨酯节能板
核心优势 Core Competencies of Duowei Polyurethane Panels
● 节能保温:芯材闭孔率≥97%,隔热性能优越。 ● Energy saving and heat insulation: The closed cell rate is equal to or larger than
3
● 气密隔音:吸音性好,对雨水、冰雹等冲击而引起的声响有消减作用。
● Air tightness and sound insulation: The products have great sound insulation and decrease the sounds due to impacts of rainwater or hailstone.
Corporate Values
Duty For All Customers Duty For All Employee To All Shareholders
-1-
-2-
集团简介
集团简介 Group Introduction
多维联合集团,驰名于钢结构行业20年的著名品牌,中国新型节能建筑板材行业领先者,中 国最优秀的钢结构建筑系统综合服务商之一。 多维联合集团涉足建筑钢结构、节能建筑板材行业20余年,集设计、制造、营销、施工、外 贸为一体,形成以轻钢结构、重钢结构、空间钢结构为主的三大钢结构建筑系统,以聚氨酯 节能夹芯板、新型防火岩棉-玻璃丝棉夹芯板、钢筋桁架楼承板、新型闭口组合楼板、彩钢压 型板为主的五大板材围护结构系统。拥有国家建筑工程甲级设计资质、钢结构工程专项设计 甲级资质、钢结构制造一级资质、钢结构工程专业承包一级资质、ISO9001:2000国际质量 管理体系认证。 集团总部位于北京中关村科技园区总部基地,分别在北京、天津、沈阳、哈尔滨、包头、新 疆设有15家分公司,拥有10大钢结构及节能建筑板材生产基地,产品已覆盖中国本土,并成 功进入海外40个国家与地区。目前年产各类节能建筑板材3000万平方米,新型建筑板材300万 平方米,钢结构年产超25万吨,年产值超25亿元,海外出口超3亿元。 近几年,先后承建中国石油、中国航天、中国一汽、中国国电、中国北车、中煤集团、蒙牛 集团等著名企业建设项目,及和谐号机车、央视新址、水立方、国家大火箭、国家大飞机、 航天煤气化等国家重点项目。并荣膺“中国驰名商标”、“中国十大行业隐形冠军企业”、 “北京市高新技术企业”。 多维拥有包括国家一级注册建造师、国家一级注册结构师、国家一级注册建筑师在内的中高 级技术管理人才团队。 展望未来,多维联合集团以MBA为核心的管理团队,将继续坚持专业化、品牌化、国际化的 发展模式,送精品于客户,布诚信于天下,为推动中国钢结构事业的发展做出不懈努力!
氧气乙炔加热钢板用量多少计算公式
氧气乙炔加热钢板用量多少计算公式1.氧气和乙炔的加热不同比例下可产生不同温度的火焰。
Oxygen and acetylene produce flames of different temperatures when heated in different proportions.2.加热钢板所需的氧气和乙炔比例应根据钢板的厚度和材质进行计算。
The proportion of oxygen and acetylene required to heat the steel plate should be calculated according to the thickness and material of the plate.3.乙炔气体可以通过火焰切割达到高温,用于切割和焊接金属。
Acetylene gas can reach high temperatures through flame cutting and is used for cutting and welding metals.4.根据钢板的尺寸和需要的加热温度,确定所需的氧气和乙炔气体的用量。
Determine the required amount of oxygen and acetylene gas based on the size of the steel plate and the required heating temperature.5.加热过程中,应严格控制氧气和乙炔的流量,以确保安全和效率。
During heating, the flow of oxygen and acetylene should be strictly controlled to ensure safety and efficiency.6.乙炔气体的使用需注意防止泄漏,并配备相应的安全设备和防护措施。
The use of acetylene gas requires precautions to prevent leaks and appropriate safety equipment and protective measures.7.氧气和乙炔在加热过程中应与钢板充分接触,通过燃烧产生高温。
211237934_电催化氧化处理脱硫废水COD的试验研究
DOI :10.19965/ki.iwt.2022-0646第 43 卷第 5 期2023年 5 月Vol.43 No.5May ,2023工业水处理Industrial Water Treatment 电催化氧化处理脱硫废水COD 的试验研究武宇鹏,房慧,刘潇冉,张玉蕾(太原科技大学环境与资源学院,山西太原 030024)[ 摘要 ] 燃煤电厂脱硫废水成分复杂,COD 来源主要为亚硫酸盐和连二硫酸盐等还原性无机物。
此外,脱硫废水中的Cl -浓度很高,在降解COD 时会形成较大干扰。
电催化氧化法在工业废水处理中的应用较多,但较少应用于脱硫废水。
尝试采用钌铱、铂金、掺硼金刚石(BDD )这3种不同材料作为阳极极板,电催化氧化处理脱硫废水COD 。
首先筛选出最佳极板材料,再用单因素实验方法确定响应面分析实验条件,采用BBD (Box -Behnken Design )法设计实验并分析极板间距、电压、反应时间的交互影响作用,最后研究SO 42-和Cl -对电催化氧化处理脱硫废水COD 的影响。
结果表明,BDD 极板对于脱硫废水的电催化氧化性最强,最佳反应条件:极板间距为1.52 cm ,电压为25 V ,反应时间为40 min 。
此时COD 去除率最高,为87.1%。
适当质量浓度的SO 42-和Cl -在溶液中可起到促进氧化的作用,但当SO 42-和Cl -分别超过8 000 mg/L 和5 000 mg/L 时会抑制COD 的去除效果。
[关键词] 脱硫废水;化学需氧量;电催化氧化[中图分类号] X703.1 [文献标识码]A [文章编号] 1005-829X (2023)05-0122-07Experimental study on COD treatment of desulphurizationwastewater by electrocatalytic oxidationWU Yupeng ,FANG Hui ,LIU Xiaoran ,ZHANG Yulei(College of Environment and Resources ,Taiyuan University of Science and Technology ,Taiyuan 030024,China )Abstract :Desulphurization wastewater from coal -fired power plants is complicated in composition. The main chemical oxygen demand (COD ) are from reductive inorganic substances such as sulfites and dithionate. In addition ,the content of chloride ions in desulfurization wastewater is very high ,which can affect COD removal of desulfurization wastewater ,so it is difficult to degrade the COD of desulfurization wastewater. Electrocatalytic oxidation is widely used in industrial wastewater treatment ,but rarely used in desulfurization wastewater. In this study ,three different materials including ruthenium -iridium ,platinum and boron -doped diamond (BDD ) were used as anode plates to treat COD from desul⁃phurization wastewater by electrocatalytic oxidation. Firstly ,the optimal plate material was selected ,and then the response surface analysis experimental conditions were determined by single factor experiment method. BBD (Box -Behnken Design ) method was used to design experiments and analyze the interaction between plate spacing ,voltage and reaction time. Finally ,the influence of sulfate radical and chloride ion on electrocatalytic oxidation treatment of COD in desulfurization wastewater was experimentally studied. The results showed that BDD electrode had the strongest electrocatalytic oxidationfor desulfurization wastewater ,and the best reaction conditions were as follows :plate spacing 1.52 cm ,voltage 25 V ,reaction time 40 min. Under these conditions ,the COD removal rate was the highest ,which was 87.1%. Appropriate concentration of sulfate and chloride ions can promote oxidation in the solution ,but when the concentration of sulfate and chloride ions exceed 8 000 mg/L and 5 000 mg/L ,respectively ,the removal effect of COD was inhibited.Key words :desulfurization wastewater ;COD ;electrocatalytic oxidation我国当前电源结构仍以燃煤火力发电为主〔1〕,大多数燃煤电厂均采用湿法脱硫工艺去除SO 2,由此排出的脱硫废水成分复杂,水质恶劣,直接排放到环境中危害巨大〔2〕。
SNPEVG GWAS图形化工具说明书
SNPEVG:a graphical tool for GWAS graphing with mouse clicksShengwen Wang,Daniel Dvorkin and Yang Da *BackgroundGWAS analysis generally yields large quantities of test results.Global and local graphical viewing of the test results is an effective approach and often is a necessary step for interpreting GWAS results.A widely used graphical viewing of GWAS results is the Manhattan plot,which provides a global graphic view of GWAS results of all chromosomes for a trait on one graph to quickly identify genome locations with the most significant SNP effects [1,2].Following this global view,detailed graphical examination of each chromosome is helpful for further understand-ing the GWAS results,and more graphical work often is needed for effective presentation of the GWAS results.The purpose of the SNPEVG package is to provide a graphical tool for rapid digestion ofGWAS results and to accomplish large quantities of graphical tasks of GWAS analysis in a seamless fashion.ImplementationThe SNPEVG computer package is implemented in the C++programming language.The object orientation fea-ture of the C++language enables the efficient software development cycle by easy reuse of modules for different applications with similar features.The SNPEVG com-puter package used the Qt library under the terms of the GNU Lesser General Public License (LGPL)version 2.1as shown [3].Results and discussionSNPEVG Version 3.2includes three graphical pro-grams:SNPEVG1,SNPEVG2and SNPEVG3.SNPEVG1is for graphing effects of one trait per graph for up to 100traits,SNPEVG2is for graphing*Correspondence:***********Department of Animal Science,University of Minnesota,St.Paul,USA©2012Wang et al.;licensee BioMed Central Ltd.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (/licenses/by/2.0),which permits unrestricted use,distribution,and reproduction in any medium,provided the original work is properly cited.Wang et al.BMC Bioinformatics 2012,13:319/1471-2105/13/319multiple traits on the same graph,and SNPEVG3 processes directly uses an output file of EPISNP or EPISNPmpi[2]as the input file.Both SNPEVG1and SNPEVG2using the same format of the input file, which contain name,chromosome number and chromosome position of each SNP marker,and P-values of statistical tests from any method.Each program has a scalable GUI allowing efficient and flexible use of computer screen and allows the pro-duction of graphical images with user defined verti-cal/horizontal ratios.Each program can be launched multiple times by mouse click of the executable program so that the user can compare graphical effects of different graph options simultaneously. SNPEVG3.2is available from Additional files1and 2or from the website at . Full features of the SNPEVG package are described in the SNPEVG user manual[4]Additional file3. The SNPEVG1programSNPEVG1supports a maximum100traits.The GUI (Figure1A)has numerous graphical options for Manhat-tan plots,including user-customized colors(Figure1B), shading P-values below the threshold P-value lineBC D EFigure1SNPEVG1GUI and Manhattan and Q-Q plots for global viewing and graphing of GWAS results.A:The user friendly GUI of SNPEVG1offers user interactive viewing and graphing of global and local test results.B:The‘Manhattan setting’plate for customized chromosome color,fixed pixel size,or dynamic pixel size proportional to P-values in Manhattan plot.C:A Manhattan plot with color Template1, proportional pixel size,and shading of P-values below the threshold P-value line.D:A Manhattan plot with color Template2,proportional pixel size,and elimination of P-values below the line of cut-off P-value.E:A Q-Q plot.(Figure1C),and scalable pixel size proportional to P-values[5](Figure1A-1C),and displaying P-values above the specified cut-off P-value(Figure1D).Each Manhattan plot uses true chromosome size defined by the starting and ending SNP marker positions of the chromosome.P-values for the unknown chromo-some are displayed in sequential order of SNP markers rather than chromosome positions.Manhat-tan plots and Q-Q plots(Figure1E)provide global view of test results for each trait.In addition to global viewing,the GUI produces graphs for each chromosome and each trait.For each chromosome, P-values can be presented as connected lines (Figure2A)or separate symbols(Figure2B).The total number of graphs that can be generated is n (c+2),where n is the number of‘traits’with0<n≤100,and c is the number of chromosomes.Assuming 30traits and30chromosomes per trait,the program produces960graphs for interactive viewing by one click of‘run’,including30Manhattan plots,30Q-Q plots and900chromosome graphs.The upper-right window of the GUI(Figure1A)is the‘Graph list’by trait,showing a list of graphs produced by the ‘Run’button.The user can turn off Manhattan and Q-Q plots,scroll the chromosome graphs of each trait using the up or down arrow key,and switch be-tween traits using the left or right key.Any selected graph,or graphs for selected traits,or all graphs can be saved as graphical images with publication quality by clicking a button on the GUI.SNPEVG1requires a simple text input file with the following columns: CHR,POSITION,SNP,and P-VALUE columns, where CHR=chromosome number,POSITION= chromosomal position of the SNP marker,SNP=name of the SNP marker,and P-VALUE is the P-value for a trait.The SNPEVG2programSNPEVG2is designed to display P-values of multiple traits on the same graph.Each chromosome figure can display P-values in log scale or the original values of a variable on either Y1or Y2axis(up to100traits) (Figure3A).The Y2axis can be used to display a vari-able unrelated to P-values such as minor allele frequency or allele frequency difference between the best and worst individuals,allowing the production of more flexible and informative graphs than using Y1axis presenting P-values only.The chromosome graphs can be crowded and difficult to view if the number of traits is large.This problem can be solved by the option to select traits to display,to customize the color of each trait or switch Y1 and Y2axes using the‘Setting’button on the GUI (Figure3B).Each Y axis,Y1or Y2,can have its own threshold P-value or cut-off P-value(Figures3A and C). SNPEVG2requires a simple text input file with the same format as for SNPEVG1,i.e.,CHR,POSITION,SNP, and P-VALUE columns,where CHR=chromosome number,POSITION=chromosomal position of the SNP marker,SNP=name of the SNP marker,and P-VALUE is the P-value for a trait.The SNPEVGconvert programThe SNPEVGconvert program is designed to convert an output file from any GWAS analysis software to the for-mat of SNPEVG1and SNPEVG2.With this format con-version program,virtually any GWAS software could SNPEVG1and SNPEVG2.To use this program,the user only needs to specify the number of columns in theBAChromosome graphs of SNPEVG1.A:Chromosome figure of SNPEVG1with connecting line between adjacent data figure of SNPEVG1without connecting line between adjacent data points.original files and identify the column numbers to be printed in the input file for SNPEVG1and SNPEVG2. The SNPEVG3programSNPEVG3is developed for graphical analysis of GWAS using the output file of single-locus test results of EPISNP or EPISNPmpi[2]as the input file for drawing figures.SNPEVG3has similar GUI features as SNPEVG1,but it does not have the limit of100traits. This program draws graphs for P-values of additive, dominance and genotypic effects on the Y1axis and draws sample size on the Y2axis.The P-values can be displayed with lines connecting adjacent data points (Figure3D)or use symbols without connecting lines (Figure3E).The user has an option to draw a figure by a sorted effect such as additive or dominance effect. Evaluation of sample size limitationsCurrently,SNPEVG1,SNPEVG2and SNPEVG3have a Microsoft Windows32-bit version and a64-bit version for Mac OS X10.6or newer.A Windows 64-bit version is expected to become available at a later time.For practical purposes,either the32-bit or the64-bit version would be powerful enough for real GWAS data sets.For a single trait,the32-bit version could process10million markers per traitBC D EFigure3SNPEVG2program GUI and chromosome graphs of SNPEVG2and SNPEVG3.A:The user friendly GUI of SNPEVG2offers user interactive viewing and graphing of global and local test results from multiple traits on the same graphs.B:The‘Effect setting’plate for the selection of traits to be displayed,the selection of Y1or Y2axis,and customized chromosome color for each trait.C:A chromosome graph with two threshold value lines for Y1and Y2axes,and elimination of P-values below the line of cut-off P-value line.D:Chromosome figure of SNPEVG3 with connecting line between adjacent data points.E:Chromosome figure of SNPEVG3without connecting line between adjacent data points.in about30seconds but failed for12million mar-kers,and the64-bit version could process30mil-lion markers in80.62seconds(Table1).For multiple traits,the number of markers that can be processed per trait is approximately the numbers in Table1divided by the number of traits(Table2). ConclusionsThe SNPEVG package is a versatile and efficient graph-ical tool for rapid digestion of large quantities of test results from GWAS and can be customized for graphical viewing and drawing of non-GWAS information such as allele frequency differences.Availability and requirementsProject name:SNPEVGProject homepage:/Operating system(s):Microsoft Windows7,Mac OS X10.6or newerOther requirements:none.Table1Processing time and limit of SNP markers for SNPEVG1and SNPEVG3of32-bit(Windows7)and64-bit versions(Mac OS X)for one traitNumber of SNPs SNPEVG132-bit SNPEVG164-bit SNPEVG332-bit SNPEVG364-bit (N)Time(sec)Time(sec)Time(sec)Time(sec)1,000,000 3.08 2.82 4.17 3.322,000,000 5.88 4.757.67 5.923,000,0008.54 6.7810.908.575,000,00013.6710.5217.7113.117,000,00019.1714.4124.5917.7210,000,00026.7120.1134.9125.7613,000,000Fail25.92Fail33.4917,000,000Fail33.85Fail43.1221,000,000Fail43.50Fail54.2425,000,000Fail51.50Fail67.8430,000,000Fail61.70Fail80.62The32-bit version was run on a desktop PC with Microsoft Windows7and Intel Core i7-2600CPU of3.40GHz and8GB memory.The64-bit version was run on the MacBook Pro with Mac OS X10.7and Intel Core i7CPU of2.2GHz and8GB memory.Table2Processing time and limit of SNP markers for SNPEVG1and SNPEVG2of32-bit(Windows7)and64-bit versions(Mac OS X)for100traitsNumber of SNPs SNPEVG132-bit SNPEVG164-bit SNPEVG232-bit SNPEVG264-bit (N)Time(sec)Time(sec)Time(sec)Time(sec) 10,000 1.56 1.57 1.75 1.4120,000 2.57 2.21 2.36 1.7830,000 3.75 2.73 2.96 2.1750,000 5.74 4.17 4.61 2.7570,0008.38 5.78 5.80 3.49100,00011.798.298.09 4.75130,000Fail9.239.99 6.18170,000Fail13.2413.267.82210,000Fail15.90Fail9.09250,000Fail18.93Fail11.14300,000Fail23.10Fail13.11350,000Fail27.35Fail14.96400,000Fail31.86Fail17.07The32-bit version was run on a desktop PC with Microsoft Windows7and Intel Core i7-2600CPU of3.40GHz and8GB memory.The64-bit version was run on the MacBook Pro with Mac OS X10.7and Intel Core i7CPU of2.2GHz and8GB memory.License:none.Any restrictions to use by non-academics:none. Additional filesAbbreviationsGWAS:Genome-wide association study;SNP:Single nucleotide polymorphism.Competing interestsThe authors declare that they have no competing interests.Authors’contributionsSW is the author of SNPEVG1,SNPEVG2,and SNPEVG3.DD is the author of the EPISNPPLOT program that is partially used in SNPEVG3.YD designed most functions of the computing tools,and is the lead writer of the manuscript.All authors read and approved this manuscript.AcknowledgementsThis research is supported by USDA National Institute of Food and Agriculture Grant no.2011-67015-30333and by project MN-16-043of the Agricultural Experiment Station at the University of Minnesota.Received:11July2012Accepted:24November2012Published:30November2012References1.Zhao JH:Gap:Genetic analysis package.J Stat Softw2007,23(i08).http:///v23/i08/paper.2.Ma L,Runesha HB,Dvorkin D,Garbe JR,Da Y:Parallel and serialcomputing tools for testing single-locus and epistatic SNP effectsof quantitative traits in genome-wide association studies.BMC Bioinformatics2008,9(1):315.3.GNU Lesser General Public License,version2.1;1999./licenses/old-licenses/lgpl-2.1.html.4.Wang S,Dvorkin D,Da Y:A graphical tool for SNP effect viewing andgraphing,version3.2;2012..5.Cole JB:Data Structures and Visualization.ADSA/ASAS Joint Annual Meeting;2011./publish/presentations/ADSA11/ADSA11_jbc_files/frame.htm.。
VS#8-(2,4)-TF2Z252EN 五脉阀门 ISO 15407-2标准系列说明书
Instruction Manual5 Port Solenoid valve/ISO 15407-2 StandardSeries VS#8-(2,4)The intended use of this valve is to control the movement of an actuator.1 Safety InstructionsThese safety instructions are intended to prevent hazardous situationsand/or equipment damage. These instructions indicate the level of potential hazard with the labels of “Caution,” “Warning” or “Danger.”They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC) *1), and other safety regulations. *1)ISO 4414: Pneumatic fluid power - General rules relating to systems. ISO 4413: Hydraulic fluid power - General rules relating to systems.IEC 60204-1: Safety of machinery - Electrical equipment of machines. (Part 1: General requirements)ISO 10218-1: Robots and robotic devices - Safety requirements for industrial robots - Part 1: Robots.• Refer to product catalogue, Operation Manual and Handling Precautions for SMC Products for additional information. • Keep this manual in a safe place for future reference.CautionCaution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.WarningWarning indicates a hazard with a medium level of riskwhich, if not avoided, could result in death or serious injury.DangerDanger indicates a hazard with a high level of risk which, ifnot avoided, will result in death or serious injury.Warning• Always ensure compliance with relevant safety laws and standards.• All work must be carried out in a safe manner by a qualified person in compliance with applicable national regulations.Caution• The product is provided for use in manufacturing industries only. Do not use in residential premises.2 Specifications2.1 Valve specificationsValve typePlug-inMetal Seal Rubber sealFluidAir, inert gasMaximum operating pressure [MPa]1.0Minimumoperatingpressure [MPa] Single 0.10.15Double 0.13-position 0.15 0.2 4-position- 0.15 Ambient and fluid temperature [°C] Note 1) -10 to 60 -5 to 50Flow characteristics Refer to catalogue Response time [ms] Duty cycleContact SMCMinimum operating frequency 1 cycle / 30 days Maximum operating frequency Contact SMCManual overridePush type / Locking type(tool required) Impact / vibration resistance [m/s 2] Note 2) 150 / 50 LubricationNot required2 Specification - continuedMountingorientation Single, 4-position Unrestricted Double, 3-position Horizontal Enclosure (based on IEC60529) Note 3) IP65 Weight [g] Refer to catalogueTable 1.Note 1) No freezing. Use dry air to prevent condensation at low temperatures. Note 2) Impact resistance: No malfunction occurred when it is tested with a droptester in the axial direction and at the right angles to the main valve and armature in both energized and de-energized states every once for each condition. (Values quoted are for a new valve).Vibration resistance: No malfunction occurred in a one-sweep test between 8.3 and 2000 Hz. Test was performed at both energized states in the axial direction and at the right angles to the main valve and armature. (Values quoted are for a new valve).Note 3) Refer to 2.3 for applicable variations2.2 Solenoid specificationsRated coil voltage [VDC] 12, 24Allowable voltage fluctuation ±10% of rated voltage Coil insulation type Equivalent to Class BPower consumption [W] (current [mA])24 VDC 1 (42) 12 VDC1 (83) Surge voltage suppressor Varistor Indicator lightLEDTable 2. 2.3 Manifold specificationsMaximumnumber ofsolenoidsCircular connector 24 IP65 D-sub connector IP40 EX126 16 IP65EX25024 EX50016 EX60024 Flat ribbon connector IP40 Lead wireIP65 Terminal block box 20Weight [g]Refer to catalogueTable 3.2.4 Pneumatic symbolRefer to catalogue for pneumatic symbols. 2.5 Indicator lightFigure 1.2.6 Special productsWarningSpecial products (-X) might have specifications different from those shown in this section. Contact SMC for specific drawings.3 Installation3.1 InstallationWarning• Do not install the product unless the safety instructions have been read and understood. 3.2 EnvironmentWarning• Do not use in an environment where corrosive gases, chemicals, salt water or steam are present.• Do not use in an explosive atmosphere.• Do not expose to direct sunlight. Use a suitable protective cover.• Do not install in a location subject to vibration or impact in excess of the product’s specifications .• Do not mount in a location exposed to radiant heat that would result in temperatures in excess of the product’s specifications.• Products compliant with IP65 enclosures are protected against dust and water; however, these products cannot be used in water.• Products compliant with IP65 enclosures satisfy the specifications by mounting each product properly. Be sure to read the Specific Product Precautions for each product. 3.3 PipingCaution• Before connecting piping make sure to clean up chips, cutting oil, dust etc.• When installing piping or fittings, ensure sealant material does not enter inside the port. When using seal tape, leave 1 thread exposed on the end of the pipe/fitting.• Tighten fittings to the specified tightening torque.Connection thread size (R, G, NPTF) Tightening Torque [N∙m ]1/8” 7 to 9 1/4" 12 to 14 3/8” 22 to 24 1/2" 28 to 30Table 4.3.4 LubricationCaution• SMC products have been lubricated for life at manufacture, and do not require lubrication in service.• If a lubricant is used in the system, refer to catalogue for details. 3.5 Air supplyWarning• Use clean air. If the compressed air supply includes chemicals, synthetic materials (including organic solvents), salinity, corrosive gas etc., it can lead to damage or malfunction.Caution• Install an air filter upstream of the valve. Select an air filter with a filtration size of 5 μm or smaller. 3.6 Manual overrideWarning• Regardless of an electric signal for the valve, the manual override is used for switching the main valve. Since connected equipment will operate when the manual override is activated, confirm that conditions are safe prior to activation.• Locked manual overrides might prevent the valve responding to being electrically de-energised or cause unexpected movement in the equipment.• Refer to the catalogue for details of manual override operation. 3.7 Electrical wiring specificationsRefer to catalogue for electrical wiring specifications.3 Installation - continued3.8 Electrical circuit 3.8.1 Single solenoidFigure 2.3.8.2 Double solenoidFigure 3.3.9 Residual voltageCaution• If a varistor surge voltage suppressor is used, the suppressor arrests the back EMF voltage from the coil to approximately 1 V.• Ensure the transient voltage is within the specification of the host controller.• Valve response time is dependent on surge suppression method selected. 3.10 Countermeasure for surge voltageCaution• At times of sudden interruption of the power supply, the energy storedin a large inductive device may cause non-polar type valves in a de-energised state to switch.• When installing a breaker circuit to isolate the power, consider a valve with polarity (with polarity protection diode), or install a surge absorption diode across the output of the breaker.3.11 Extended periods of continuous energizationWarning• If a valve will be continuously energized for an extended period of time, the temperature of the valve will increase due to the heat generated by the coil assembly. This will likely adversely affect the performance of the valve and any nearby peripheral equipment. Therefore, if the valve is to be energized for periods of longer than 30 minutes at a time or if during the hours of operation the energized period per day is longer than the de-energized period, we advise using a valve with power consumption of 0.4 W or lower, such as the SY series, or a valve with a power-saving circuit.• For applications such as mounting a valve on a control panel, incorporate measure to limit the heat radiation so that it is within the operating temperature range. For example, the temperature will be high when a 3-station manifold or larger is put next to other valves and continuously energized or the long and continuous energization on both the A and B sides (simultaneous) of dual 3-port valves. 3.12 Effect of back pressure when using a manifoldWarning• Use caution when valves are used on a manifold because an actuator may malfunction due to back-pressure.• Special caution must be taken when using 3 position exhaust centre valve or when driving a single acting cylinder. To prevent a malfunction, implement counter measures such as using an individual EXH spacer assembly, a back pressure check valve or an individual exhaust manifold.SeriesVS#8-2 (VV802) VS#8-4 (VV801) EnclosurePort size1(P), 3(R)3/8” Built-in silencer (option) 1/2” Built-in silencer(option)2(A), 4(B) 1/8” (Side,bottom)3/8” (Side),1/4" (Side,bottom)12(PE), 14(X)1/8”Electrical entrySI units (EX500, EX250, EX600, EX126), D-sub connector, Flat ribbon, Terminal block box, Leadwire, Circular connectorORIGINAL INSTRUCTIONSSolenoidVaristorIndicator light (Green)A-side solenoidB-side solenoidV a r i s t o rV a r i s t o rIndicator light (Green)Indicator light (Green) COM.Indicator light (Green)Manual override4 Settings4.1 Changing from internal pilot manifold to external pilot typeRefer to catalogue for more details.Figure 4.Figure 5.5 How to OrderRefer to catalogue for ‘How to Order’ or to product drawing for specialproducts.6 Outline DimensionsRefer to catalogue for outline dimensions.7 Maintenance7.1 General maintenanceCaution•Not following proper maintenance procedures could cause the productto malfunction and lead to equipment damage.•If handled improperly, compressed air can be dangerous.Maintenance of pneumatic systems should be performed only byqualified personnel.•Before performing maintenance, turn off the power supply and be sureto cut off the supply pressure. Confirm that the air is released toatmosphere.•After installation and maintenance, apply operating pressure andpower to the equipment and perform appropriate functional andleakage tests to make sure the equipment is installed correctly.•If any electrical connections are disturbed during maintenance, ensurethey are reconnected correctly and safety checks are carried out asrequired to ensure continued compliance with applicable nationalregulations.•Do not make any modification to the product.•Do not disassemble the product, unless required by installation ormaintenance instructions.7.2 MountingCaution•After confirming the gasket is correctly placed under the valve and theO-ring is secure on the valve electrical connector, assemble the valveand base block, securely tighten the bolts with proper tightening torqueshown in the table below.•Tighten threads with proper tightening torque shown in the below table.Tightening outside of the allowable torque range will likely damage theproduct.7 Maintenance - continuedPartScrewsizeRecommendedtightening torque [N∙m]Terminal block cover mountingscrews (for T kit)M4 0.7 to 1.2Silencer cover mountingscrews(For manifold end plate)VV801 M5 2.3 to 3.7VV802M41 to 1.4Valve mounting screwsVS#8-2 1 to 1.8VS#8-4 M3 0.8 to 1.2Pilot valve mounting screws M1.7 0.12 to 0.13Valve holding screw for valve plate - 0.6 to 0.7Table 5.7.3 Built-in silencer element replacementCaution• A filter element on both sides is built into the manifold base end plate.When the element becomes dirty and clogged, this will cause troublesuch as a drop in the cylinder speed, etc. Therefore, replace theelement regularly.•Refer to catalogue for more details.Figure 6.7.4 Installation and removal of pilot valve coverCautionRefer to catalogue for more details.Figure 7.7.5 Pilot valve replacementCautionRefer to catalogue for more details.Figure 8.8 Limitations of Use8.1 Limited warranty and disclaimer/compliance requirementsRefer to Handling Precautions for SMC Products.Warning8.2 Cannot be used as an emergency shut-off valveThis product is not designed for safety applications such as anemergency shut-off valve. If the valves are used in this type of system,other reliable safety assurance measures should be adopted.8.3 Holding of pressure (including vacuum)Since valves are subject to air leakage, they cannot be used forapplications such as holding pressure (including vacuum) in a system.8.4 Intermediate stoppingRefer to Handling Precautions for 3/4/5 port Solenoid Valves.Caution8.5 Leakage voltageEnsure that any leakage voltage caused by the leakage current when theswitching element is OFF is ≤2% of the rated voltage across the valve.8.6 Low temperature operationUse within the operable ambient temperature range specified in table 1.Appropriate measures should be taken to avoid solidification or freezingof drainage and moisture, etc.8.7 Momentary energizationIf a double solenoid valve is operated with momentary energization, itshould be energized for at least 0.1 second. However, depending on thesecondary load conditions, it should be energized until the cylinderreaches the stroke end position, as there is a possibility of malfunctionotherwise.8.8 Air returned or air/spring returned spool valvesWarning•The use of 2-position single valves with air returned or air/springreturned spools has to be carefully considered.•The return of the valve spool into the de-energized position dependson the pilot pressure. If the pilot pressure drops below the specifiedoperating pressure the position of the spool cannot be defined.•The design of the system must take into account such behaviour.•Additional measures might be necessary. For example, the installationof an additional air tank to maintain the pilot pressure.EnergysourcestatusSingle Double 3 position Dual 3 PortAir supplypresent,electricitycutSpool returns tothe off position byair force andspring forceSpool stopsmoving afterelectricity cut(Position cannotbe defined)Spool returnsto the offposition byspring forceSpools return tothe off positionby air force andspring forceAir supplycut beforeelectricitycutSpool returns tothe off position byspring forceSpool stopsmoving after airpressure cut(Position cannotbe defined)Spool returnsto the offposition byspring forceSpools return tothe off positionby spring forceTable 6.9 Product DisposalThis product shall not be disposed of as municipal waste. Check yourlocal regulations and guidelines to dispose this product correctly, in orderto reduce the impact on human health and the environment.,10 ContactsRefer to or www.smc.eu for your localdistributor/importer.URL : https:// (Global) https:// www.smc.eu (Europe)SMC Corporation, 4-14-1, Sotokanda, Chiyoda-ku, Tokyo 101-0021, JapanSpecifications are subject to change without prior notice from the manufacturer.© 2021SMC Corporation All Rights Reserved.Template DKP50047-F-085MVV802 (VS#8-2 manifold) VV801 (VS#8-4 manifold)O-ringPilot valve coverMountingscrewSocketPin headerArrowInternal pilot External pilotMounting screwSilencerD-side end plateRivet。
高职英语综合教程第三册
高职英语综合教程第三册好的,以下是为您生成的 20 个关于高职英语综合教程第三册的相关内容示例,包括英语释义、短语、单词、用法和双语例句:---## 1. “accommodation”- 英语释义:a place to live, work, or stay, especially for a short time- 短语:“accommodation facilities”(住宿设施)- 单词用法:“accommodation”通常用作不可数名词,表示住宿、膳宿。
- 双语例句:The hotel offers comfortable accommodation. (这家酒店提供舒适的住宿。
)## 2. “opportunity”- 英语释义:a chance to do something or an occasion when it is possible to do something- 短语:“seize an opportunity”(抓住机会)- 单词用法:“opportunity”是可数名词,常与“for”或“to do sth.”搭配。
- 双语例句:I was given the opportunity to study abroad. (我得到了出国留学的机会。
)- 英语释义:to succeed in achieving something after trying for a long time- 短语:“attain one's goal”(达到目标)- 单词用法:“attain”是及物动词,后面直接接目标、成就等名词。
- 双语例句:He finally attained success in his career. (他终于在事业上取得了成功。
)## 4. “competent”- 英语释义:having the necessary skills, knowledge, or ability to do something well- 短语:“be competent for”(胜任)- 单词用法:“competent”常作形容词,在句中作表语或定语。