根轨迹,频率分析24页PPT
自动控制原理根轨迹PPT课件
m
szj
K * j1
1
n
s pi
i 1
(4-11)
m
s
z
j
n
s
pi
2k
1
(4-12)
j 1
j 1
式中 k 0,1,2,
第11页/共102页
复平面上的s点如果是闭环极点,那么它与开环零、极点所组成的向量必须满足上式的模值条件和相角 条件。
从上式可以看出,根轨迹的模值增益条件与根轨迹增益K*有关,而相角条件与K*无关。我们说,相角条 件是确定s平面上根轨迹的充分必要条件,这就是说,绘制根轨迹时,可用相角条件确定轨迹上的点,用模值 条件确定根轨迹上该点对应的K*值。
式中 K * K 2
是根轨迹增益。
第21页/共102页
令A(s)=s+4,B(s)=(s+1)(s+2)=s2+3s+2,则A’(s)=1,B’(s)=2s+3。代入A’(s)B(s)-A(s)B’(s)=0中, 得s2+8s+10=0 解出上式的根为s1≈-1.55,s2≈-6.45。 根据规则2,根轨迹在实轴上的分布为[-∞,-4]和[-2,-1],从而可知s1是实轴上的分离点,s2是实轴上的汇合 点。 分离点和汇合点处的根轨迹增益分别为:
第22页/共102页
K* d1
B(s) A(s)
(s 1)(s 2) s4
s1.55
0.1
K* d2
B(s) A(s)
(s 1)(s 2) s4
s6.45
9.9
规则6 根轨迹与虚轴的交点。若根轨迹与虚轴相交。则交点上的K*值和ω值可用两 种方法求得。
(1)劳斯判据; (2)令闭环系统特征方程中的s=jω ,并令虚部和实部分别为零而求得。
自动控制理论 第四章根轨迹分析法PPT课件
s3 不是根轨迹上的点。
根据相角方程得系 统的根轨迹为:
第一节 根轨迹的基本概念
作业习题: 4-2 4-3 4-7
返回
第四章 根轨迹分析法
第二节 绘制根轨迹的基本方法
根据根轨迹方程,无需对闭环特征方程式 求解,只需寻找所有满足相角方程的 s ,便可 得到闭环特征方程式根的轨迹。同时,可由幅
值方程来确定根轨迹所对应的Kr值。
闭s环s22 +特K2rs=征0+↑KKr 方1r=程s110 式 特征-2 方程-1的根0 σ
(1R)左(从s) 半根- 平轨s面(迹sK+r为2可) 稳C知(s定): 极点;右半平面为 不稳Kr定极s1点;虚s2轴 上为0临界0极点。-2
(2)有01<2呈Kr过<-11-阻1+时j 尼,状-系1-1-态j统。
根据根轨迹的基本特征和关键点,就能比较 方便地近似绘制出根轨迹曲线。
根轨迹基本特征为以下八条:
第二节 绘制根轨迹的基本方法
一、根轨迹的对称性和分布性 二、根轨迹的起点和终点 三、实轴上的根轨迹段 四、根轨迹的渐近线 五、根轨迹的分离点和会合点 六、根轨迹的出射角和入射角 七、根轨迹与虚轴的交点 八、开环极点与闭环极点的关系
p2
p1
-2
0σ
环传递函数的极点
第二节 绘制根轨迹的基本方法
2. 终点
根轨迹方程:
m
i
n=1((ss--pzji))=
-
1 Kr
m
j =1
Kr
i n=1((ss--pzji))=0
j =1
m
则 i =1(s-zi) =0 即 s=zi
8 8
m条根轨迹终止于开环传递函数的零点
根轨迹法(自动控制原理)ppt课件精选全文完整版
课程:自动控制原理
第4章 根轨迹法
➢ 以K为参变量的根轨迹上的每一点都必须满足以上方程, 相应地,称之为‘典型根轨迹方程’。
也可以写成
m
n
(s zl ) K (s pi ) 0
可见,根轨迹可以清晰地描绘闭环极点与开环增益K之间的 关系。
课程:自动控制原理
第4章 根轨迹法
2.根轨迹的基本条件
❖ 考察图示系统,其闭环传递函数为:
Y(s) G(s) R(s) 1 G(s)H(s)
闭环特征方程为:
1 G(s)H(s) 0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
l 1
i 1
对应的幅值条件为:
相角条件为:
n
( s pi ) K i1
m
(s zl )
l 1
m
n
(s zl ) (s pi ) (2k 1)180
k 1,2,
l 1
i 1
课程:自动控制原理
第4章 根轨迹法
❖ 上述相角条件,即为绘制根轨迹图的依据。具体绘制方法 是:在复平面上选足够多的试验点,对每一个试验点检查 它是否满足相角条件,如果是则该点在根轨迹上,如果不 是则该点不在根轨迹上,最后将在根轨迹上的试验点连接 就得到根轨迹图。
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
课程:自动控制原理
第4章 根轨迹法
第四章根轨迹.ppt
3
§4- 2 绘制根轨迹依据
一 绘制根轨迹的基本条件
系统特征方程
1+G(s)H(s)=0 G(s)H(s)=-1
幅值条件: |G(s)H(s)|=1 相角条件: ∠G(s)H(s)=±(2q+1)π, q=0,1,2,…
m
K1 (s z j )
12
§4-5 增加开环零极点对根轨迹的影响
一 添加开环极点
添加位于左半平面的开环极点,将使根轨迹向右 半平面移动,系统的稳定性能降低。
二 添加开环零点
添加位于左半平面的开环零点,将使根轨迹向左 半平面移动,系统的相对稳定性得到改善。
三 增加开环偶极子对根轨迹的影响
1 偶极子指系统中相距很近的一对极点和零点。 2 偶极子不影响远处根轨迹的形状及根轨迹增益K,对
二 通过输出反馈任意设定希望的闭环主 导极点
15
i 1
j 1
n
s si 0
i 1
n
si a1
n
si an
i 1
i 1
可利用此性质判闭环极点的分布情况
n
n
n m 2时, si pi a1 常数
i 1
i 1
一些变化后,另一些会做相反变化.
8
三 闭环极点的确定:
∵ G(s)H (s)
j 1 n
(s pi )
i 1
4
幅值条件:
m
K1 | s z j |
或
j 1
1
n
| s pi |
i 1
n
| s pi |
K1
根轨迹法优秀课件
系统性能改善不显著, 系统增益超过临界值 时,系统仍会不稳定。
闭环复数极点距离虚轴较远, 实数极点距离虚轴较近,系 统有较低的响应速度。
开 环 零 点 在 不 同 取 值 情 况 下 的 根 轨 迹
17
从以上四种情况来看,一般第三种情况比较理想,这 时系统具有一对共轭复数主导极点,其暂态响应性能指标 也比较令人满意。
点的零、极点对来改善系统的稳态性能。这对零、极点彼此
相距很近,又非常靠近原点,且极点位于零点右边,通常称
这样的零、极点对为偶极点对或偶极子。
在系统中附加下述网络
1
s 1 T
s 1
1 0
T
若上述网络的极点和零点彼此靠得很近,即为偶极子。
32
例4-15 系统的开环传递函数为
WK
(s)
s(s
1.06 1)( s
由根轨迹求出闭环系统极点和零点的位置后,就可以按 第三章所介绍的方法来分析系统的暂态品质。
4
1. 二阶系统 设二阶系统的结构图如下图所示。它的开环传递函数为
WK
(s)
KK s(1 Ts)
Kg s(s
1
)
T
5
(1)闭环系统有两个负实极点 暂态过程主要决定于离虚轴近的极点。 一般当时 R2 5R1,可忽略极点 R2的影响。
2
用根轨迹图分析控制系统的稳定性,比仅仅知道一组闭环极点 要深刻得多。
比如,当Kg在(0,∞)间取值时,如果n支根轨迹全部位于虚 轴的左边,就意味着不管Kg取任何值闭环系统都是稳定的。
反之,根轨迹只要有一支全部位于虚轴的右边,就意味着不管
Kg取何值,闭环系统都不可能稳定,这种情况下,如果开环
零、极点是系统固有的、不可改变的,那么要使系统稳定就 必须人为增加开环零、极点,这就是通常讲的要改变系统的 结构,而不仅仅是改变系统的参数。
《根轨迹分析法》课件
《根轨迹分析法》课件1. 课件简介根轨迹分析法是一种用于分析和设计反馈控制系统的方法,通过绘制系统的根轨迹来了解系统在不同参数下的稳定性和动态性能。
本课件将介绍根轨迹分析法的基本概念、方法和应用。
2. 课件内容2.1 根轨迹分析法的基本概念2.1.1 根轨迹的定义根轨迹是指在系统参数变化范围内,使闭环系统稳定的闭环极点轨迹。
2.1.2 根轨迹的性质(1)根轨迹是闭环极点在复平面上的轨迹,反映了闭环系统的稳定性。
(2)根轨迹的形状由系统开环传递函数的极点和零点决定。
(3)根轨迹的分布与系统参数有关,通过改变参数可以改变系统的稳定性和动态性能。
2.2 根轨迹分析法的方法2.2.1 绘制根轨迹的基本步骤(1)确定系统开环传递函数。
(2)画出开环传递函数的极点和零点。
(3)根据系统参数的变化,绘制出根轨迹。
(4)分析根轨迹的形状,判断闭环系统的稳定性。
2.2.2 根轨迹的绘制技巧(1)利用软件工具,如MATLAB,自动绘制根轨迹。
(2)手动绘制根轨迹时,注意利用对称性和周期性简化绘制过程。
2.3 根轨迹分析法的应用2.3.1 设计控制器通过分析根轨迹,可以确定控制器参数,使闭环系统具有所需的稳定性和动态性能。
2.3.2 系统优化根轨迹分析法可以帮助我们找到系统参数的最佳组合,从而优化系统的性能。
2.3.3 故障诊断分析根轨迹可以帮助我们发现系统中的故障,为故障诊断提供依据。
3. 课件总结本课件介绍了根轨迹分析法的基本概念、方法和应用。
通过学习本课件,您可以了解根轨迹分析法在控制系统设计和分析中的重要性,并掌握绘制根轨迹的基本方法。
希望这有助于您在实际工作中更好地应用根轨迹分析法。
科学性:1. 内容准确:课件内容基于控制理论的基本原理,准确地介绍了根轨迹分析法的概念、方法和应用。
2. 逻辑清晰:课件从基本概念入手,逐步深入到方法介绍和应用实例,逻辑结构清晰,易于理解。
3. 实例典型:课件中提供了控制系统的实例,帮助学习者更好地理解根轨迹分析法的应用场景。
第4章根轨迹PPT
第四章 根 轨 迹 法
4.1 根轨迹的概念 4.2 绘制根轨迹的依据 4.3 绘制根轨迹的基本法则
4.4 参数根轨迹和多回路系统根轨迹
4.5 正反馈根轨迹 4.6 滞后系统的根轨迹 4.7 根轨迹的应用 4.8 计算机绘制根轨迹
小结
轨迹
§4—1 根轨迹的基本概念
一、根轨迹的定义 如图所示一般闭环系统的闭 环传递函数为
另外,必须指出,用上式求出的点不一定都是分离点或 会合点,还必须满足特征方程或用相应的规则来检验。
轨迹
例4.1的分离点和汇合点
s( s 4)( s 2 2s 2) kg ( s 5)
dk g ds 0
得到-5.93,-3.38,-0.67+j0.46,-0.67-j0.46
轨迹
§4—4
一、参数根轨迹
参数根轨迹和多回路根轨迹
*参数根轨迹:系统闭环极点随Kg以外的参数变化而变化的
轨迹。
*绘制方法:把特征方程作等效处理,把要研究迹的绘制方法,进行绘制。
例4.2 单位反馈系统开环传递函数为
*
绘制以a为变量的根轨迹。并分析a与系统性能的关系。
*
软实验
轨迹
§4—5 正反馈系统的根轨迹
一、正反馈系统的特征方程 传递函数
Y ( s) G1 ( s) G( s) X ( s) 1 G1 ( s) H ( s)
X(s)
G1(S) H(S)
Y(s)
特征方程
1 G1 (s) H (s) 1 G0 (s) 0
简写为
G0 ( s) 1
轨迹
§4—2 绘制根轨迹的依据和条件
根轨迹的绘制依据是特征方程,根据特征方程可以得出比
根轨迹法PPT课件
W.R.EVAOVS(依万斯)于1948年首先提出了求解特征方程 式根的图解法─根轨迹法。
根轨迹简称根迹,它是开环系统某一参数从零变到无穷
时,闭环系统特征方程的根在 s 平面上变化的轨迹。
解: n 3,m 0
① p1 0,p2 1,p3 2 为根轨迹的起点;
开环无零点,故三个分支终点均趋向无穷远。
②
a
(2q 1)
nm
(2q 1)
3
60、180、300
(q 0,1,2)
n
m
a
i 1
pi z j
j 1
nm
3 0 1 3
③ 实轴上根轨迹:
( ,2],[1,0]
j
p3 2
第四章 线性系统的根轨迹法
§4-1 根轨迹法的基本概念 §4-2 绘制根轨迹的基本条件和基本规则 §4-3 参数根轨迹 §4-4 正反馈回路和零度根轨迹 §4-5 利用根轨迹法分析系统的暂态响应
§4-1 根轨迹法的基本概念
一、根轨迹的概念
从上一章讨论知道,闭环系统的动态性能与闭环极点在
s 平面上的位置是密切相关的,分析系统性能时往往要求确
对于实轴上0至1线段的实数根而言,其对应的K*值在
b 点为极大值。
可以证明,当l 条根轨迹分支进入并立即离开分离点时,
分离角为 (2k 1) l .
k 0,1, ,l -1
例4-3:求上例中 b 点的坐标。
[规则3] 根轨迹的渐进线
当开环有限极点数 n大于有限零点数时,有 (n m)
条根轨迹分支沿着与实轴交角为 a 、交点为 a的一组
自动控制原理根轨迹法PPT课件PPT课件
23
第23页/共69页
4.3 绘制根轨迹的基本规则
24
又,渐近线上,对于s =sk → ∞,相当于有-zoi=-poj=sA
m
则
(s zoi )
j
Asymptote Centroid
G(s)H (s) Kg
i 1 n
(s poj )
j 1
s
(
s
Kg
sA
)
nm
(4.16)
由二项式定理
sA s A
-poj : 开环(传函的)极点, j=1,2,..,n.
3
第3页/共69页
4.2 根轨迹的基本概念
于是,特征方程
m
(s zoi )
1 G(s)H (s) 1 Kg
i 1 n
0
(s poj )
j 1
(4.3)
根轨迹法:根据开环传函(开环零点、极点),找出开环增益 (或别的某个参数)由0→∞变化时,闭环系统特征根的轨迹。 根轨迹法的基本思想:开环传函等于-1的s值,必为特征根。
<例4.1>:绘制某二阶系统 的根轨迹图;
特征方程: s2 2s K s2 2n n2 0 特征根: s1, s2 n n 2 1 1 1 K
K由0→1变化时,特征根 s1,s2: K= 0, s1= 0 , s2 = -2;
K= 1, s1 = s2 = -1 ( = 1); 0<K<1,( >1), s1,s2:为两个实根
对于一阶二阶系统很容易在它的根轨迹上确定对应参数的闭环极点对于三阶以上的高阶系统通常用简单的作图法如作等阻尼比线等求出系统的主导极点如果存在的话将高阶系统近似地简化成由主导极点通常是一对共轭复数极点构成的二阶系统最后求出其各项性能指标
自动控制理论 第四章根轨迹分析法PPT课件
Kr(s+ 1) s(s+ T1)
ב
jω
(1) 开环零、极点分布
p1=0 z1= τ- 1 p2=-T1
p2 z1
p
-
1 T
τ- 1
01
(2) 实轴上根轨迹段
p1~z1段: 右侧一个开环极点 p2 ~-∞段:右侧三个开环零极点
(3)系统的 根轨迹
第二节 绘制根轨迹的基本方法
2)τ<T
z1
1
趋于z1无= 穷-1远+j。z2 = -1-j
p3 p2
p
系统的三条根轨迹起始
-2
-1 10
于三个开环传递函数的极
点。
z2
-1
第二节 绘制根轨迹的基本方法
三、实轴上的根轨迹段
系共统轭开开环环零零、、极极点点构分布为: 设实成轴的上相角任正意负点抵s1消
z1
φ1
jω
p3
θ3
s1与开环零、极 点之实间轴的上矢根量轨:迹段右侧 的奇s2开数1的环。相零角、方极程点4 个为数:之和为
点重称根为必根须轨同迹时的满分足离以点下或两会式合点。 离离KK开开rdrBBd复实(s(ss平轴))++A面进d(一Ads进入(s)般s=入复)0=将0实平根轴面即轨的的迹点点KKr称称Br='为为(-sB)A会分+''(A(s合离s)')(s点点)=0 解设上系式统得的开A环(s传)B递'(s函)=数A'为(s)B(s) 注意:只分有离G位点(s)于或H(根会s)轨=合K迹点ArB(上。s()s的) 重根才是
8
jω
z1 p2 p -3 -2 1-1 0
根轨迹ppt课件.ppt
3.分析方法及思路 1)从数学模型的建立看开环传递函数的特点: 物理元件→典型环节→开环结构→闭环结构→系统数学模型
(1)开环结构中的典型环节直接对应着开环传递函数的零极 点,-------很容易获得;
(2)各个典型环节中的参数可以直接反映系统的物理参数, 这一点对分析系统和改造系统非常有利; (3)可以直接求取稳态误差; (4)同各种传递函数(如闭环传递函数和误差传递函数)有 简单的关系。 2)一个美好的愿望: 开环零极点图+开环增益→闭环零极点全部可能的分布图→ 分析系统的三大类性能。
j 1 n i 1
)
(s z
j 1 n i 1
j
)
s ( s pi )
(s p )
i
则幅值条件和相角条件可以进一步写成如下实用形式:
幅值条件:
G1 ( s ) H1 ( s )
sz
j 1 n i 1
m
j
s p
1 K*
基本公式
i
幅值条件:
第四章 根轨迹法
4.1 4.2 4.3 4.4 根轨迹法的基本概念 根轨迹绘制的基本规则 广义根轨迹 线性系统性能的根轨迹分析法
一、本章内容提要: 1.介绍已知系统开环传递函数的极点、零 点的条件下确定闭环系统的根轨迹法,并分 析系统参量变化时对闭环极点位置的影响; 2.根据闭环特征方程得到相角条件和幅值 条件由此推出绘制根轨迹的基本法则; 3.根轨迹绘制:常规根轨迹、参数根轨迹 、根轨迹曲线族、零度根轨迹; 4.根轨迹法分析系统性能
三、本章重点、关键、难点 1.重点:根轨迹的绘制和利用根轨迹 图分析控制系统 2.关键点:根轨迹方程,幅值条件, 相角条件 3.难点:广义根轨迹的绘制
第4章根轨迹 ppt课件
n m
商定:相角逆时针为正,顺时针为负。s k
p2 p1
p3
(2 k 1 ),(k 0 ,1 , n m 1 )
n m
180 0
nm1
90
90 0
nm2
180 60
0
nm3 60
180
45
45 0
nm4
渐近线与实轴的交点
假零设点根和轨极迹点在到s k无限的远矢处量有长一度点都s相k 等,。那可么以s平以面为上:一对切无开限环远有闭限环
★相角方程是决议闭环根轨迹的充要条件。
绘制根轨迹只需根据相角方程足以,而幅值方程
用来确定根轨迹上各点对应的Kr值。
4.2 绘制根轨迹的方法
4.2.1 绘制根轨迹的根本规那么 4.2.2 根轨迹绘制举例
4.2.1 绘制根轨迹的根本规那么
1. 根轨迹的对称性和分支数
根轨迹对称于实轴,其分支数等于开环 极点数n和开环零点数m中的最大数。
例4-1 知系统的开环传送函数为
G(s)H(s)Kr(s22s2) s(s1)(s2)
试确定系统的根轨迹图。
解 : 系统的开环零、极点为 p1=0, p2=-1, p3=-2, z1= -1+ j, z2= -1- j,根轨迹如图4-5所示。
图中,“×〞表示开环传送函 数的极点,“°〞表示开环传送 函数的零点。系统的三条根轨迹 起始于三个开环传送函数的极点, 其中两条根轨迹终止于开环传送 函数的两个零点,另一条趋于无 穷远。
第4章 根轨迹分析法
4.1 根轨迹的根本概念 4.2 绘制根轨迹的方法 4.3 参量根轨迹 4.4 零度根轨迹 4.5 用根轨迹分析系统性能 4.6 MATLAB用于根轨迹分析