成都七中15级中考数学模拟试题(10)

合集下载

四川省成都七中实验学校2015-2016学年七年级上学期期中考试数学试题

四川省成都七中实验学校2015-2016学年七年级上学期期中考试数学试题

成都七中实验学校初2015级七年级(上)期中素质测试数 学 试 题考生注意:1、开考之前请考生将自己的姓名、班级、考号等准确的填写在指定的位置,对错误填写的考生成绩以0分计算。

2、本试卷分A 卷、B 卷,A 卷总分100分、B 卷50分,全卷总分150分。

考试时间120分钟。

A 卷(100分)一、 选择题(每小题3分,共30分)1、圆锥体的截面不可能为( )A 、三角形B 、 圆C 、 椭圆D 、矩形 2、若a 的倒数为-12,则a 是( ) A 、12 B 、-12C 、2D 、-23、(-2)5表示( )A 、5乘以(-2)的积B 、5个(-2)连乘的积C 、 2个-5相乘的积D 、5个(-2)相加的和 4、两个互为相反数的有理数相除,其结果( )A 、商为正数B 、商为负数C 、 商为-1或无意义D 、商为15、已知数轴上表示-3和-100的两个点分别为A 、B ,那么A 、B 两点间的距离是( ) A 、97 B 、100 C 、103 D 、36、下列说法不正确的是( )A 、 a 2b 和ab 2是同类项B 、a 的系数是0C 、 15xy 2-15y 2x=0D 、20a 2b-(-17a 2b)=37a 2b7、代数式:3m+n,3ab,π523xy ,ba 22,m ,-13,733y x -,2ab -3c 中的单项式有( )A 、3个;B 、4个;C 、5个;D 、6个8、在下列说法中,(1)在有理数中,没有最小的正整数;(2)立方等于它本身的数只有两个;(3)有理数a 的倒数是1a;(4)若a=b ,则|a|=|b|。

其中正确的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个9、一批电脑进价为a 元,加上20%的利润后优惠8%出售,则售出价为( )A 、(1+20%)aB 、(1+20%)8%aC 、a %)81%)(201(-+D 、8%a10、按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有 ( )A 、2个B 、3个C 、4个D 、5个 二、填空题(每题4分,共20分)11、要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,x =____,y =______ 12、()20162015)4(25.0-⨯-=__________;()=-+-20162015)2(213、代数式0.6x a b 与3113y a b --是同类项,则x y +=________________14、如果|-x|=4,那么x= ;如果a 2=4,那么a= ;如果y 3=8,那么y= 15、某工厂原计划每天生产a 个零件,实际每天多生产b 个零件,那么生产m 个零件比原计划提前_____________________天 三、计算(每小题5分,共20分)16、)6()7(452-+--+- 17、 ()223232-⨯-⨯--|-1|18、21114()(60)31215--⨯- 19、 %252155.2425.0)41()370(⨯+⨯+-⨯-四、解下列各题(共17分)20、(5分)化简:22223232ab a b ab a b +---+21、(6分)先化简再求值:()()()2222225424,2,1mn m n m n m n ----+=-=其中1 2 3x y第11题22、(6分)已知|x+2|+(y-21)2=0,求代数式31x 3-2x 2y+32x 3+3x 2y-7的值。

成都七中15级中考数学模拟试题(2)

成都七中15级中考数学模拟试题(2)

成都七中育才学校初2015届初三下期数学第二周周练习出题人:罗丹梅 林玲 姓名 班级 学号:A 卷(100分)一、选择题:(每小题3分,共30分)1.2(-=( ) A .3 B .3- C .3± D .92.已知两圆的半径分别为2和3,圆心距为5,则这两圆的位置关系是( ) A .外离 B .外切 C .相交 D .内切3.甲、乙两人各打靶5次,甲所中的环数是8,7,9,7,9;乙所中环数的平均数为8x =乙,方差为20.5S =乙。

比较甲、乙的成绩,则( )A .甲的成绩较稳定B .乙的成绩较稳定C .甲、乙的成绩一样稳定D .甲、乙的成绩无法比较4.方程2650x x +-=的左边配成完全平方后所得方程为 ( ) A .14)3(2=-x B . 2(3)4x += C .21)6(2=+x D .14)3(2=+x . 5.如图,一个小球由地面沿着坡度1:2i =的坡面向上前进了10 m ,此时小球距离地面的高度为( ) A .5 m B .25m C .45m D .310m 6.若分式3342-+-x x x 的值为0,则x 的值为( )A .3B .1C .3或1D .3- 7.在函数12y x=-的图象上有三点111(,)A x y 、222(,)A x y 、333(,)A x y , 若1230x x x <<< , 则下列正确的是( )A .1230y y y <<<B .2310y y y <<<C .2310y y y <<<D .2130y y y <<< 8.下列命题正确的个数是( )①等腰三角形腰长大于底边;②三条线段a 、b 、c ,如果b a +>c ,则这三条线段一定可以组成三角形; ③等腰三角形是轴对称图形,它的对称轴是底边上的高;④面积相等的两三角形全等.A .0个B .1个C .2个D .3个 9.如图,小明从半径为5cm 的圆形纸片中剪下40%圆周的一个扇形,然后利用剪下的扇形制作成一个圆锥形玩具纸帽(接缝处不重叠),那么这个圆锥的高为( )A .3cmB .4cmC .21cmD .62cm10.如图所示,已知在三角形纸片ABC 中,BC =3, 6AB =, ∠BCA =90°在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为 ( ) A .6B .3C. DACD二、填空题:(本大题共4小题,共16分) 11.函数xx y 12+=中自变量x 的取值范围是 . 12.将直角边长为5cm 的等腰直角ABC △绕点A 逆时针旋转15 后得到AB C ''△,则图中阴影部分的面积是 2cm . 13.随着人们节能意识的增强,节能产品的销售量逐年增加。

四川省成都七中实验学校2015届九年级上学期期中考试 数学试题(含答案)

四川省成都七中实验学校2015届九年级上学期期中考试 数学试题(含答案)

4.若某商品的原价为100元,连续两次涨价x %后的售价为120元,则下面所列方程正确的是( )A 、2100(1)120x -=%B 、2100(1)120x +=%C 、2100(12)120x +=%D 、22100(1)120x +=%5.如右图是三个反比例函数x k y 1=,xk y 2=,x k y 3=在x 轴上方的图象,由此观察得到1k 、2k 、3k 的大小关系为( )A. 321k k k >>B. 123k k k >>C. 132k k k >>D. 213k k k >>6.如图,AD ⊥CD ,AB =13,BC =12,CD =3,AD =4,则sinB= ( )A 、513 B 、1213 C 、35 D 、457.在下列命题中真命题是( )A 、两条对角线相等的四边形是矩形B 、两条对角线互相垂直的四边形是菱形C 、两条对角线互相平分的四边形是平行四边形D 、两条对角线互相垂直且相等的四边形是正方形8.成都市为了解决街道路面问题,需在中心城区重新铺设一条长3000米的路面,实施施工Oyxxky 1=xk y 2=xk y 3=BD CA时“ ”,设实际每天....铺设路面x 米,则可得方程153000103000=--xx ,根据此情景,题中用“ ” 表示的缺失的条件应补为( ) A 、 每天比原计划多铺设10米,结果延期15天才完成; B 、 每天比原计划少铺设10米,结果延期15天才完成; C 、 每天比原计划多铺设10米,结果提前15天才完成;D 、 每天比原计划少铺设10米,结果提前15天才完成;9.形如的式子叫做二阶行列式,它的运算法则用公式表示=ad -bc , 则计算4231-的结果为( ) 依此法A 、-10B 、10C 、2D 、-210.如图4,边长为2正方形ABCD 绕点A 逆时针旋转45度后得到正方形D C B A ''',边C B ''与DC 交于点O ,则四边形OD B A '的周长..是( ) A 、24B 、6C 、22D 、2+22二、填空题:(每小题3分,共12分) 图411. 在Rt △ABC 中,090C ∠=,5tan 12A =,则sinB 的值为 。

成都七中15级中考数学模拟试题

成都七中15级中考数学模拟试题

成都七中育才 学校 2015届九年级(下)数 学第八周周练习命题人:刘馨梅审题人:姜向阳班级 姓名 学号:A 卷(共 100分)一、选择题:(每小题3分,共 30分)1.已知 2a b 1,则 4a 2b 1 的值为()A . 1B . 0C .1D .32.将如图 Rt △ABC 绕直角边 AC 旋转一周,所得几何体 的左视图是()AA12B CA .B .C .D .BC3.下列计算正确 的是 ( )A . x ·x =x 8B . x ÷x =x 2 2 4 6 3C . 2a +3a =5a 5 2 3D . (2x ) =4x 63 24.抛物线 y (x 8) 2 2 的顶点坐标是()A 、(2, 8)B 、(8,2)C 、(— 8,2)D 、(— 8,— 2)5.若圆 A 和圆 B 相切 ,它们 的半径分别为 8cm 和 2 cm .则圆心距 AB 为()A . 10cmB . 6cmC . 10cm 或 6cmD .以上答案均不对 o6.如图,在 ABC 中, A=60,按图中虚线将 A 剪去后, 1 2=()○A .120○B . 240○C . 300 ○D .360x 有意义 的 x 的取值范围是()7.使分式2x 4A . x 2B . x 0且 x 2C . x 0D . x 28.已知:圆锥 的底面半径为 9cm ,母线长为 30cm ,则圆锥 的侧面积为()27018013590D .A .B .C . 9.设 min x, y 表示,x , y 两个数中 的最小值,例如 min 0,2 0 min 12,8 8,若y min 2x, x 2,则关于 x 的函数 y 可以表示为()2x ( x 2) x 2 x 2)x 2 (x 2) 2x x 2)yyA .B .C . y =2xD . y=x +22x 的方程 ax 4x 1 0只有正实数根,那么 a 值是(10 .关于未知数) a 04 a 04 a 04 a 0D .A .B .C . 题号 12345678 910答案二、填空题(每小题 4分,共 16分)11.在 Rt ABC 中, C 90, cos A3,则 tan A = 2.12.小虹在距离路灯 9米 的地方,发现自己在地面上 的影长是 3米,如果小虹 的身高为 1.6米,那么路灯离地面 的高度是 米.13.如图,△ ABC 内接于⊙ O ,∠ BAC=120°, AB=AC ,BD 为⊙ O 的直径, AD=6,则 BC = 14.已知 A ( 2,3)B ( 4,6)在 X 轴上找一点 P ,使 PA+PB 最小,则点 P 坐标为 ,在 Y 轴上找一点 Q,使 BQ — AQ 最大, Q 点 的坐标为 。

四川省成都七中育才学校2015年中考数学二诊试题(含解析)

四川省成都七中育才学校2015年中考数学二诊试题(含解析)

四川省成都七中育才学校2015年中考数学二诊试题一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上)1.﹣2015的相反数是()A.2015 B.﹣2015 C.D.2.下列四个几何体中,主视图为圆的是()A.B.C.D.3.长度单位1纳米=10﹣9米,目前发现一种新型病毒直径为25 100纳米,用科学记数法表示该病毒直径是()A.25.1×10﹣6米 B.0.251×10﹣4米C.2.51×105米D.2.51×10﹣5米4.下列说法正确的是()A.对角线互相垂直且相等的四边形是菱形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形5.如图,将△AOB绕点O按逆时针方向旋转60°后得到△COD,若∠AOB=15°,则∠AOD的度数是()A.15° B.60° C.45° D.75°6.在函数y=中,自变量x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≥17.如图,⊙O的弦CD与直径AB相交,若∠ACD=35°,则∠BAD=()A.55° B.40° C.35° D.30°8.某果园2012年水果产量为100吨,2014年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=1449.将抛物线y=(x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2B.y=(x﹣2)2+6 C.y=x2+6 D.y=x210.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A.B.C.D.二、填空题(本大题共4个小题,每小题4分,共16分)11.分解因式:x2﹣2x= .12.如图,直线a∥b,∠1=65°,则∠2的度数.则我市各县(区)市这组气温数据的极差是.14.如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是.三、解答题(本大题共6个小题,共54分)15.(1)计算:(﹣1)0+sin45°﹣2﹣2;(2)解不等式组:(3)解方程:x2﹣4x+1=0.16.△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)17.某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球 B.乒乓球C.羽毛球 D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)18.如图,在一个坡角为40°的斜坡上有一棵树BC,树高4米.当太阳光AC与水平线成70°角时,该树在斜坡上的树影恰好为线段AB,求树影AB的长.(结果保留一位小数)(参考数据:sin20°=0.34,tan20°=0.36,sin30°=0.50,tan30°=0.58,sin40°=0.64,tan40°=0.84,sin70°=0.94,tan70°=2.75)19.已知一次函数y1=x+m的图象与反比例函数y2=的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的解析式;(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.20.如图1,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作DP∥BA交CA 的延长线于点P;(1)求证:PD是⊙O的切线;(2)如图2,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,试猜想线段AE,EF,BF之间有何数量关系,并加以证明;(3)在(2)的条件下,如图2,若AC=6,tan∠CAB=,求线段PC的长.四、填空题(本大题共5个小题,每小题4分,共20分)21.若x2+x﹣2=0,则9﹣2x2﹣2x= .22.有6张正面分别标有数字﹣2,﹣1,0,2,4,6的不透明卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x的不等式有实数解的概率为.23.如图已知A1,A2,A3,…A n是x轴上的点,且OA1=A1A2=A2A3=A3A4=…=A n﹣1A n=1,分别过点A1,A2,A3,…A n′作x轴的垂线交二次函数y=x2(x>0)的图象于点P1,P2,P3,…Pn,若记△OA1P1的面积为S1,过点P1作P1B1⊥A2P2于点B1,记△P1B1P2的面积为S2,过点P2作P2B2⊥A3P3于点B2,记△P2B2P3的面积为S3,…依次进行下去,则S3= ,最后记△P n﹣1B n﹣1P n(n>1)的面积为S n,则S n= .24.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数y=(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,则线段OG的长为.25.如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB的中点,⊙O过C、D两点且分别交边AC、BC 于点E、F,连接CO、EF.下列结论:①AE2+BF2=EF2;②设⊙O的面积为S,则π≤S≤π;③当⊙O从过点A变化到过点B时,点O移动的路径长为5;④当CO⊥AB时,△CEF面积的最大.其中正确的结论的序号是(把所有正确结论的序号都填上).五、解答题(本大题共3个小题,共30分)26.把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计).(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子.①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况).27.如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长交边AD于点F,交CD的延长线于点G.已知DF:FA=1:2.(1)求证:△APB≌△APD;(2)当线段DP的长为6时,求线段FG的长;(3)当△DGP是等腰三角形时,求出tan∠DAB的值.28.如图1,已知直线y=kx 与抛物线y=交于点A (3,6).(1)求直线y=kx 的解析式和线段OA 的长度;(2)点P 为抛物线第一象限内的动点,过点P 作直线PM ,交x 轴于点M (点M 、O 不重合),交直线OA 于点Q ,再过点Q 作直线PM 的垂线,交y 轴于点N .试探究:线段QM 与线段QN 的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B 为抛物线上对称轴右侧的点,点E 在线段OA 上(与点O 、A 不重合),点D (m ,0)是x 轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m 在什么范围时,符合条件的E 点的个数分别是1个、2个?2015年四川省成都七中育才学校中考数学二诊试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上)1.﹣2015的相反数是( )A .2015B .﹣2015C .D .【考点】相反数.【分析】根据相反数的定义即可得出答案.【解答】解:﹣2015的相反数是2015;故选A .【点评】此题考查了相反数,掌握好相反数的定义,只有符号不同的两个数是互为相反数.2.下列四个几何体中,主视图为圆的是( )A.B.C.D.【考点】简单几何体的三视图.【分析】先分析出四种几何体的主视图的形状,即可得出主视图为圆的几何体.【解答】解:A、圆柱的主视图是长方形,故A错误;B、圆锥的主视图是三角形,故B错误;C、球的主视图是圆,故C正确;D、正方体的主视图是正方形,故D错误.故选:C.【点评】本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.3.长度单位1纳米=10﹣9米,目前发现一种新型病毒直径为25 100纳米,用科学记数法表示该病毒直径是()A.25.1×10﹣6米 B.0.251×10﹣4米C.2.51×105米D.2.51×10﹣5米【考点】科学记数法—表示较小的数.【专题】应用题.【分析】先将25 100用科学记数法表示为2.51×104,再和10﹣9相乘.【解答】解:2.51×104×10﹣9=2.51×10﹣5米.故选D.【点评】a×10n中,a的整数部分只能取一位整数,1≤|a|<10.此题中的n应为负数.4.下列说法正确的是()A.对角线互相垂直且相等的四边形是菱形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形【考点】矩形的判定;平行四边形的判定;菱形的判定.【分析】利用菱形的判定、矩形的判定定理、平行四边形的判定定理分别判断后即可确定正确的选项.【解答】解:A、对角线互相垂直且相等的四边形可能是等腰梯形,故错误;B、对角线相等的平行四边形才是矩形,故错误;C、对角线互相垂直的四边形不一定是平行四边形,故错误;D、对角线相等且互相平分的四边形是矩形,正确.故选D.【点评】本题考查了菱形的判定、矩形的判定定理、平行四边形的判定,了解各个图形的判定定理是解答本题的关键,难度不大.5.如图,将△AOB绕点O按逆时针方向旋转60°后得到△COD,若∠AOB=15°,则∠AOD的度数是()A.15° B.60° C.45° D.75°【考点】旋转的性质.【分析】根据∠AOD=∠DOB﹣∠AOB求解.【解答】解:∵将△AOB绕点O按逆时针方向旋转60°后得到△COD,∴∠BOD=60°,∵∠AOB=15°,∴∠AOD=∠DOB﹣∠AOB=60°﹣15°=45°.故选:C.【点评】本题考查了图形的旋转的性质,解题的关键是一个旋转图形的对应点的连线所夹的角相等,都等于旋转角.6.在函数y=中,自变量x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≥1【考点】函数自变量的取值范围.【专题】函数思想.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0可知:x﹣1>0,可求自变量x的取值范围.【解答】解:根据题意得:x﹣1>0,解得x>1.故选B.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.7.如图,⊙O的弦CD与直径AB相交,若∠ACD=35°,则∠BAD=()A.55° B.40° C.35° D.30°【考点】圆周角定理.【分析】由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B的度数,又由AB是⊙O的直径,根据半圆(或直径)所对的圆周角是直角,即可求得∠ADB=90°,继而可求得∠BAD的度数.【解答】解:∵∠ACD与∠B是对的圆周角,∴∠B=∠ACD=35°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠BAD=90°﹣∠B=55°.故选A.【点评】此题考查了圆周角定理与直角三角形的性质.此题比较简单,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等与半圆(或直径)所对的圆周角是直角定理的应用.8.某果园2012年水果产量为100吨,2014年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】2014年的产量=2012年的产量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:设该果园水果产量的年平均增长率为x,则2013年的产量为100(1+x)吨,2014年的产量为100(1+x)(1+x)=100(1+x)2吨,根据题意,得100(1+x)2=144,故选:D.【点评】本题考查了由实际问题抽象出一元二次方程;得到2014年产量的等量关系是解决本题的关键.9.将抛物线y=(x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2B.y=(x﹣2)2+6 C.y=x2+6 D.y=x2【考点】二次函数图象与几何变换.【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物线y=(x﹣1)2+3向左平移1个单位所得直线解析式为:y=(x﹣1+1)2+3,即y=x2+3;再向下平移3个单位为:y=x2+3﹣3,即y=x2.故选D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A.B.C.D.【考点】相似三角形的判定与性质.【专题】压轴题.【分析】由∠ADC=∠BDE,∠C=∠E,可得△ADC∽△BDE,然后由相似三角形的对应边成比例,即可求得答案.【解答】解:∵∠ADC=∠BDE,∠C=∠E,∴△ADC∽△BDE,∴,∵AD=4,BC=8,BD:DC=5:3,∴BD=5,DC=3,∴DE==.故选:B.【点评】此题考查了相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.二、填空题(本大题共4个小题,每小题4分,共16分)11.分解因式:x2﹣2x= x(x﹣2).【考点】因式分解-提公因式法.【分析】提取公因式x,整理即可.【解答】解:x2﹣2x=x(x﹣2).故答案为:x(x﹣2).【点评】本题考查了提公因式法分解因式,因式分解的第一步:有公因式的首先提取公因式.12.如图,直线a∥b,∠1=65°,则∠2的度数115°.【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由补角的定义即可得出结论.【解答】解:∵直线a∥b,∠1=65°,∴∠1=∠3=65°,∴∠2=180°﹣∠3=180°﹣65°=115°.故答案为:115°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.则我市各县(区)市这组气温数据的极差是7℃.【考点】极差.【分析】找出这组数据中的最高气温和最低气温,进行相减,即可得出答案.【解答】解:最高气温是37℃,最低气温是30℃,则我市各县(区)市这组气温数据的极差是37℃﹣30℃=7℃.故答案为:7℃.【点评】此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.14.如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是4cm .【考点】垂径定理;勾股定理.【专题】探究型.【分析】由垂径定理及CD=6cm可求出CP及PD的长,再由P是半径OB的中点可设出PB及AP的长,再由相交弦定理可求出PB的长,进而可求出直径AB的长.【解答】解:∵AB为⊙O的直径,AB⊥CD,CD=6cm,∴CP=PD=3cm,∵P是半径OB的中点,∴设PB=x,则AP=3x,由相交弦定理得,CP•PD=AP•PB,即3×3=3x•x,解得x=cm,∴AP=3cm,PB=cm,∴直径AB的长是3+=4cm.【点评】考查的是垂径定理及相交弦定理,解答此题的关键是利用相交弦定理列出方程求出PB的长,进而可求出直径AB的长.三、解答题(本大题共6个小题,共54分)15.(1)计算:(﹣1)0+sin45°﹣2﹣2;(2)解不等式组:(3)解方程:x2﹣4x+1=0.【考点】实数的运算;零指数幂;负整数指数幂;解一元二次方程-配方法;解一元一次不等式组;特殊角的三角函数值.【专题】计算题.【分析】(1)原式第一项利用零指数幂法则计算,第二项利用特殊角的三角函数值计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可确定出不等式组的解集;(3)找出a,b,c的值,代入求根公式即可求出解.【解答】解:(1)原式=1+3×﹣=3;(2),由①得:x>1;由②得:x≤2,则不等式组的解集为1<x≤2;(3)这里a=1,b=﹣4,c=1,∵△=16﹣4=12,∴x==2±.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)【考点】作图-旋转变换;轴对称-最短路线问题;作图-平移变换.【专题】压轴题.【分析】(1)延长AC到A1,使得AC=A1C1,延长BC到B1,使得BC=B1C1,即可得出图象;(2)根据△A1B1C1将各顶点向右平移4个单位,得出△A2B2C2;(3)作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,再利用相似三角形的性质求出P点坐标即可.【解答】解;(1)如图所示:(2)如图所示:(3)如图所示:作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,可得P点坐标为:(,0).【点评】此题主要考查了图形的平移与旋转和相似三角形的性质等知识,利用轴对称求最小值问题是考试重点,同学们应重点掌握.17.某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球 B.乒乓球C.羽毛球 D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200 人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)【考点】条形统计图;扇形统计图;列表法与树状图法.【专题】计算题.【分析】(1)由喜欢篮球的人数除以所占的百分比即可求出总人数;(2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可;(3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:20÷=200(人),则这次被调查的学生共有200人;(2)补全图形,如图所示:则P==.【点评】此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.18.如图,在一个坡角为40°的斜坡上有一棵树BC,树高4米.当太阳光AC与水平线成70°角时,该树在斜坡上的树影恰好为线段AB,求树影AB的长.(结果保留一位小数)(参考数据:sin20°=0.34,tan20°=0.36,sin30°=0.50,tan30°=0.58,sin40°=0.64,tan40°=0.84,sin70°=0.94,tan70°=2.75)【考点】解直角三角形的应用-坡度坡角问题.【分析】本题可通过构造直角三角形来解答,过B点作BD⊥AC,D为垂足,在直角三角形BCD中,已知BC 的长,可求∠BCD的度数,那么可求出BD的长,在直角三角形ABD中,可求∠DAB=70°﹣40°=30°,前面又得到了BD的长,那么就可求出AB的长.【解答】解:过B点作BD⊥AC,D为垂足,在直角三角形BCD中,∠BCD=180°﹣70°﹣90°=20°,BD=BC•sin20°=4×0.34=1.36米,在直角三角形ABD中,∠DAB=70°﹣40°=30°,AB=BD÷sin30°=1.36÷≈2.7米.答:树影AB的长约为2.7米.【点评】本题是将实际问题转化为直角三角形中的数学问题,可通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中,使问题解决.19.已知一次函数y1=x+m的图象与反比例函数y2=的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的解析式;(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.【考点】反比例函数与一次函数的交点问题.【专题】压轴题.【分析】(1)首先根据x>1时,y1>y2,0<x<1时,y1<y2确定点A的横坐标,然后代入反比例函数解析式求出点A的纵坐标,从而得到点A的坐标,再利用待定系数法求直线解析式解答;(2)根据点C到y轴的距离判断出点C的横坐标,代入反比例函数解析式求出纵坐标,从而得到点C的坐标,过点C作CD∥x轴交直线AB于D,求出点D的坐标,然后得到CD的长度,再联立一次函数与双曲线解析式求出点B的坐标,然后△ABC的面积=△ACD的面积+△BCD的面积,列式进行计算即可得解.【解答】解:(1)∵当x>1时,y1>y2;当0<x<1时,y1<y2,∴点A的横坐标为1,代入反比例函数解析式, =y,解得y=6,∴点A的坐标为(1,6),又∵点A在一次函数图象上,∴1+m=6,解得m=5,∴一次函数的解析式为y1=x+5;(2)∵第一象限内点C到y轴的距离为3,∴点C的横坐标为3,∴y==2,∴点C的坐标为(3,2),过点C作CD∥x轴交直线AB于D,则点D的纵坐标为2,∴x+5=2,解得x=﹣3,∴点D的坐标为(﹣3,2),∴CD=3﹣(﹣3)=3+3=6,点A到CD的距离为6﹣2=4,联立,解得(舍去),,∴点B的坐标为(﹣6,﹣1),∴点B到CD的距离为2﹣(﹣1)=2+1=3,S△ABC=S△ACD+S△BCD=×6×4+×6×3=12+9=21.【点评】本题考查了反比例函数图象与一次函数图象的交点问题,根据已知条件先判断出点A的横坐标是解题的关键.20.如图1,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作DP∥BA交CA 的延长线于点P;(1)求证:PD是⊙O的切线;(2)如图2,过点A作AE⊥C D于点E,过点B作BF⊥CD于点F,试猜想线段AE,EF,BF之间有何数量关系,并加以证明;(3)在(2)的条件下,如图2,若AC=6,tan∠CAB=,求线段PC的长.【考点】圆的综合题.【分析】(1)连接OD,OA,OB,根据圆周角定理可知∠ADB=∠ACB=90°,再由∠ACB的平分线交⊙O于点D可知∠BCD=45°,故∠DAB=45°,由直角三角形的性质可知∠ABD=45°,故△ABD是等腰直角三角形,再由点O是AB的中点可知OD⊥AB,根据DP∥BA可知OD⊥PD,进而可得出结论;(2)根据圆周角定理易得∠ADE+∠BDF=90°=∠FBD+∠BDF=90°,从而得到∠FBD=∠ADE,易得AD=BD,从而得出△ADE≌△DBF,得到BF=DE,AE=DF,从而得出结论BF﹣AE=EF.(3)先根据勾股定理计算出AB=10,由于△DAB为等腰直角三角形,可得到AD==5;由△ACE为等腰直角三角形,得到AE=CE==3,在Rt△AED中利用勾股定理计算出DE=4,则CD=7,易证得△PDA∽△PCD,得到===,所以PA=PD,PC=PD,然后利用PC=PA+AC可计算出PD,故可得出PC的长.【解答】(1)证明:连接OD,OA,OB,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°.∵∠ACB的平分线交⊙O于点D,∴∠BCD=45°,∴∠DAB=45°,∴∠ABD=90°﹣45°=45°,∴△ABD是等腰直角三角形.∵点O是AB的中点,∴OD⊥AB.∵DP∥BA,∴OD⊥PD,即PD是⊙O的切线;(2)BF﹣AE=EF,证明如下:∵AB是⊙O的直径,∴∠ADB=∠ADE+∠BDF=90°,∵AE⊥C D,BF⊥CD,∴∠AED=∠BFD=90°,∴∠FBD+∠BDF=90°,∴∠FBD=∠ADE,∵∠AOD=∠BOD,∴AD=BD,在△ADE和△DBF中,,∴△ADE≌△DBF(AAS),∴BF=DE,AE=DF,∴BF﹣AE=DE﹣DF,即BF﹣AE=EF;(3)解:在Rt△ACB中,AC=6,tan∠CAB=,∴BC=8,∴AB==10,∵△DAB为等腰直角三角形,∴AD===5,∵AE⊥CD,∴△ACE为等腰直角三角形,∴AE=CE===3,在Rt△AED中,DE===4,∴CD=CE+DE=3+4=7,∵∠PDA=∠PCD,∠P=∠P,∴△PDA∽△PCD,∴===,∴PA=PD,PC=PD.∵PC=PA+AC,∴PD+6=PD,∴PD=,∴PC=×=.【点评】本题考查的圆的综合题,涉及到切线的性质和圆周角定理定理、等腰直角三角形的性质和三角形相似的判定与性质等知识,根据题意作出辅助线,构造出直角三角形是解答此题的关键.四、填空题(本大题共5个小题,每小题4分,共20分)21.若x2+x﹣2=0,则9﹣2x2﹣2x= 5 .【考点】代数式求值.【专题】计算题.【分析】所求式子后两项提取﹣2变形后,将已知等式变形代入计算即可求出值.【解答】解:∵x2+x﹣2=0,即x2+x=2,∴9﹣2x2﹣2x=9﹣2(x2+x)=9﹣4=5.故答案为:5.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.22.有6张正面分别标有数字﹣2,﹣1,0,2,4,6的不透明卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x的不等式有实数解的概率为.【考点】概率公式;解一元一次不等式组.【分析】首先求得关于x的不等式有实数解时,a的取值范围,再利用概率公式即可求得答案.【解答】解:,由①得:x<3,由②得:x>,∴当<3,即a<4时,关于x的不等式有实数解,∴使关于x的不等式有实数解的概率为: =.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.23.如图已知A1,A2,A3,…A n是x轴上的点,且OA1=A1A2=A2A3=A3A4=…=A n﹣1A n=1,分别过点A1,A2,A3,…A n′作x轴的垂线交二次函数y=x2(x>0)的图象于点P1,P2,P3,…Pn,若记△OA1P1的面积为S1,过点P1作P1B1⊥A2P2于点B1,记△P1B1P2的面积为S2,过点P2作P2B2⊥A3P3于点B2,记△P2B2P3的面积为S3,…依次进行下去,则S3= ,最后记△P n﹣1B n﹣1P n(n>1)的面积为S n,则S n= =.【考点】二次函数图象上点的坐标特征.【专题】规律型.【分析】先根据二次函数图象上点的坐标特征,求出P1(1,),则根据三角形面积公式计算出S1=,同样可得S2=;S3=,S4=,所有相应三角形的面积等于分母为4,分子为奇数的分式,从而得到S n=.【解答】解:当x=1时,y=x2=,则P1(1,),所以S1=×1×=;当x=2时,y=x2=2,则P2(2,2),所以S2=×1×(2﹣)=;当x=3时,y=x2=,则P3(3,),所以S3=×1×(﹣2)=,同样方法可得S4=,所以S n=.故答案为,.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了三角形面积公式.24.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数y=(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,则线段OG的长为.【考点】反比例函数综合题.【专题】综合题.【分析】由E的坐标确定出OA的长,根据tan∠BOA,利用锐角三角形函数定义求出AB的长,确定出B的坐标,根据D为OB的中点,确定出D坐标,进而确定出反比例函数解析式中k的值,求出反比例解析式,设F(a,2),代入反比例解析式求出a的值,得到CF的长,连接FG,在之间三角形CGF中,设OG=t,利用勾股定理列出关于t的方程,求出方程的解即可得到t的值,即可确定出OG的长.【解答】解:∵点E(4,n)在边AB上,∴OA=4,在Rt△AOB中,tan∠BOA=,∴AB=OA×tan∠BOA=4×=2,∴点B的坐标为(4,2),∵点D为OB的中点,∴点D(2,1),∴=1,解得k=2,∴反比例函数解析式为y=,如图,设点F(a,),∵反比例函数的图象与矩形的边BC交于点F,∴=2,解得a=1,∴CF=1,连接FG,设OG=t,则OG=FG=t,CG=2﹣t,在Rt△CGF中,GF2=CF2+CG2,即t2=(2﹣t)2+12,解得t=,∴OG=t=.故答案为:【点评】此题属于反比例函数综合题,涉及的知识有:待定系数法确定反比例函数解析式,坐标与图形性质,勾股定理,锐角三角函数定义,熟练掌握待定系数法是解本题的关键.25.如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB的中点,⊙O过C、D两点且分别交边AC、BC 于点E、F,连接CO、EF.下列结论:①AE2+BF2=EF2;②设⊙O的面积为S,则π≤S≤π;③当⊙O从过点A变化到过点B时,点O移动的路径长为5;④当CO⊥AB时,△CEF面积的最大.其中正确的结论的序号是①④(把所有正确结论的序号都填上).【考点】圆的综合题.【分析】(1)由中线倍长将三条线段转移到一个三角形当中,然后判定这个三角形为直角三角形即可.(2)要求圆的面积的取值范围,就是求半径的取值范围,而EF是直径,从而将问题转化为求EF长度的取值范围.注意到CD长度是不变的,且是圆的一条弦,连接OD由三角形三边关系可知CD就是直径的最小值,由于E点只能在AC上运动,所以当E点取极端位置(与A点或C点重合)时,EF取最大值,由此确定圆面积的取值范围.(3)如果说E只能在AC上变动,那么圆O是不可能经过B点的,此论断描述有误.(4)设CE=b,CF=a,由勾股定理得出4a+3b=25,和为定值,由此考虑利用均值不等式判断出△CEF面积最大时的条件为 4a=3b,再看这一条件能否等价推出CO垂直AB,从而作出判断.【解答】解:(1)如图1,连接DF、DE,延长FD至G,使DG=DF,连接EG、AG.∵AD=BD,∠ADG=∠BDF,从而△AGD与△BFD全等,∴AG=BF,∠FBD=∠GAD,∴AG∥BF,。

成都七中中考数学模拟试卷

成都七中中考数学模拟试卷

6.已知下列命题:①同位角相等;②若a>b>0,则a <b;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2-2x与坐标轴有3个不同交点;⑤已知一圆锥的高为4,母线长为5,则该圆锥的侧面积为15π.从中任选一个命题是真命题的概率为()A.1B.2C.3D.4(注:图2中相邻两虚线形成的圆心角为30°.)21.如图,小明用一块有一个锐角为30°的直角三角板测量树高,已知小明离树的距离为4米,DE为1.68米,那么这棵树大约有多高?(精确到0.1米)22.已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE,BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连AF,求∠AFE的度数.23.已知:AB为⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,设切点为C.(1)当点P在AB延长线上的位置如图1所示时,连接AC,作∠APC的平分线,交AC于点D,请你测量出∠CDP的度数;(2)当点P在AB延长线上的位置如图2和图3所示时,连接AC,请你分别在这两个图中用尺规作∠APC的平分线(不写作法,保留作图痕迹).设此角平分线交AC于点D,然后在这两个图中分别测量出∠CDP的度数;猜想:∠CDP的度数是否随点P 在AB延长线上的位置的变化而变化?请对你的猜想加以证明.24.小明家想要在自己家的阳台上铺地砖,经测量后设计了如图的图纸,黑色区域为宽度相等的一条“7”形的健身用鹅卵石小路,空白部分为地砖铺设区域.要使铺地砖的面积为14平方米.(1)小路的宽度应为多少?(2)小明家决定在阳台上铺设规格为80×80的地砖(即边长为80厘米的正方形),为了美观起见,工人师傅常采用下面的方法来估算至少需要的地砖数量:尽量保证整块地砖的铺设,边上有多余空隙的,空隙宽度小于地砖边长一半的,可将一块割成两块来铺设空隙处,大于一半的只能铺设一处一边长80厘米的矩形空隙,请你帮助工人师傅估算一下小明家至少需要多少块地砖?25.如图1,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D,AD与BC相交于E点,已知:A(-2,-6),C (1,-3),一抛物线经过A,E,C三点.(1)求点E的坐标及此抛物线的表达式;(2)如图2,如果AB位置不变,将DC 向右平移k(k>0)个单位,求△AEC的面积S关于k的函数表达式;(3)在第(2)问中,是否存在k的值,使AD⊥BC?如果存在,求出k的值;如果不存在,请说明理由.。

成都七中15级中考数学模拟试题(10)

成都七中15级中考数学模拟试题(10)

成都七中育才学校初 2015届初三下期数学第十周周练习姓名 __________ 班级 ________ 学号 _________7.为了了解某县3万名学生参加高中入学考试的情况, 有关部门从中抽取了 600名学生的成绩进行统计分析,在这个问题中表达正确的是( )A .样本容量是600B .每个考生是个体C . 3万考生是总体D . 600名考是总体的一个样本&下列命题中,错误的是( ) A. 矩形的对角线互相平分且相等 B. 对角线互相垂直的四边形是菱形C .三角形的三条角平分线相交于一点,并且这点到三条边的距离相等D .到一条线段两个端点距离相等的点在这条线段的垂直平分线上9.是某蓄水池的横断面示意图,分深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大 致表示水的最大深度 h 与时间t 之间的关系的图象是( )边BC 与DC 交于点O ,则四边形 AB OD 的周长是( )fA . 4.2B.6A 卷 一、选择题:(每小题3分,共30分) 1.3的绝对值是()A . 3B . - 32. 下列运算中,正确的是( ) 小小小(满分100分)C ./ 2、3(X )= ,2、224D . (x+y) = x + y在下列图形中,既是轴对称图形又是中心对称图形的是 4.反比例函数y —,下列判断错误的是(xA .它的图象是双曲线C . y 随x 增大而增大1 x , 亠、冃中,自变量xB .当x<0时, D .当x>0时, 图象在第二象限内 y 随x 增大而增大5.函数y x 的取值范围是(A . x 16.如图,O A . 28 °1O 是厶ABC 的外接圆,已知/ B=62°则B . 30°C . 31 1且x 0CAO 的度数是(D . 62 °10.如图,边长为 2正方形ABCD 绕点A 逆时针旋转45度后得到正方形ABC D ,3.C .BAB C D二、填空题:(每小题4分,共16分)1 2 3211. 将二次函数y 二- x +x+5改写成y 二a (x- h ) + k 的 22形式,为 _____________ 。

成都七中数学中考模拟试卷

成都七中数学中考模拟试卷

成都七中数学中考模拟试卷A 卷(共100分)一、选择题(每小题3分,共30分) 1.4的平方根是( )A .±2B .2C .±D .2.如图在长方体中挖去一个圆柱体后,得到的几何体的左视图为( )3.花粉的质量很小,一粒某种花粉的质量约为0.000103毫克,那么0.000103用科学计数法表示为( )A .510.310-⨯B .41.0310-⨯C .30.10.10-⨯D .31.0310-⨯ 4.在Rt △ ABC 中,∠ C=90°,BC=2,AB=4,则cosA=( ) A .B .C .D .5.如图,一个正六边形转盘被分成6个全等的三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是( )A .13B .14C .16D .126.下列计算正确的是( )A .448a a a +=B .3(2)32a b a b -=-C .532a a a ÷=D .222(2)4a b a b -=-7.若一个多边形的内角和是900°,则这个多边形的边数是( ) A .5 B .6 C .7 D .88.将抛物线y=2(x ﹣1)2﹣1,先向上平移2个单位,再向右平移1个单位后其顶点坐标是( ) A .(2,1) B .(1,2) C .(1,﹣1) D .(1,1) 9.已知在正方形ABCD 中,对角线AC 与BD 相交于点O ,//OE AB 交BC 于点E ,若8AD cm =,则OE 的长为( )A .3cmB .4cmC .6cmD .8cm 10.如图,在圆O 中,30C ∠=,2AB =,则弧AB 的长为( )A .πB .6πC .4πD .23π二、填空题(每小题4分,共16分)11.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为 米.12.关于x 的一元二次方程x 2﹣4x+2m=0没有实数根,则实数m 的取值范围是 .13.如图,在△ ABC 中,点D 在线段BC 上且∠ BAD=∠ C ,BD=2,CD=6,则AB 的值是 . 14.如图,在△ABC 中,AB=AC=7,BC=6,AF ⊥BC 于F ,BE ⊥AC 于E ,D 是AB 的中点,则△DEF 的周长是 . 三、解答题(共54分)15(1)计算:|﹣3|﹣14﹣2tan45°﹣(π﹣1)0 (6分)(2)解不等式组1123(1)5x x x x-⎧-≤⎪⎨⎪-<⎩,在数轴上表示其解集,并写出该不等式组的整数解. (6分)16.先化简再求值:165)121(2-+-÷--x x x x ,其中x 从0,1,2,3四个数中适当选取.(6分)17.(8分)如图,放置在水平桌面上的台灯的灯臂AB 长为42cm ,灯罩BC 长为32cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?(结果精确到0.1cm ,参考数据:≈1.732)18.(9分)成都市某校在推进新课改的过程中,开设的体育选修课有:A ﹣篮球,B ﹣足球,C ﹣排球,D ﹣羽毛球,E ﹣乒乓球,学生可根据自己的爱好选修一门,学校王老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图). (1)求出该班的总人数,并补全频数分布直方图;(3分) (2)求出“足球”在扇形的圆心角是多少度;(3分)(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.(3分)19.(9分)如图,一次函数y=ax+b 的图象与反比例函数xky 的图象交于C ,D 两点,与x ,y 轴交于B ,A 两点,且tan ∠ABO=21,OB=4,OE=2. (1)求一次函数的解析式和反比例函数的解析式;(3分) (2)求△OCD 的面积;(3分)(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x 的取值范围.(3分)20.(10分)如图,在Rt △ABC 中,∠C=90°,AD 是角平分线,DE ⊥AD 交AB 于E ,△ADE 的外接圆⊙O 与边AC 相交于点F ,过F 作AB 的垂线交AD 于P ,交AB 于M ,交⊙O 于G ,连接GE . (1)求证:BC 是⊙O 的切线;(3分) (2)若43tan =∠GEM ,BE=20,求⊙O 的半径;(4分) (3)在(2)的条件下,求AP 的长.(3分)成都七中数学中考模拟试卷B 卷(共50分)一、填空题(每小题4分,共20分)21.已知实数a ,b 同时满足01122=-+b a ,0552=--b a ,则b = .22.从-3,﹣1,1,2这四个数字中,随机抽取一个数,记为a ,那么,使关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形的面积为41,且使关于x 的方程xx a 111=-+有正数解的概率为 .23.把一副三角板如图放置,∠ACB=∠ADB=90°,E 是AB 的中点,连接CE 、DE 、CD ,F 是CD 的中点,连接EF .若AB =4,则S △CEF = .24.等边三角形ABO 的顶点B 的坐标分别为B (﹣2,0),过点C (0,732)作直线交AB 于点E ,交AO 于点 D ,交x 轴于点F ,点E 在双曲线)0(<=x xky 上,若S △ADE =S △OFD ,则k = .25.如图,AB 为半圆直径,AC ⊥AB ,BF ⊥AB ,BF=3,AB=4,CA=5,连接AF 交半圆于D ,连接CD ,作DE ⊥CD 交直径AB 于E ,则tan ∠ACE= .CABDEF姓名: 班级: 学号:二、解答题(共30分)26.某公司投资1300万元购买了一条新生产线生产新产品.根据市场调研,生产每件产品需要成本50元,该产品进入市场后不得低于80元/件且不得超过160元/件,该产品销售量y(万件)与产品售价x(元)之间的关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(3分)(2)第一年公司是盈利还是亏损?求出当盈利最大或亏损最小时的产品售价;(3分)(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,公司第二年重新确定产品售价,能否使前两年盈利总额达690万元?若能,求出第二年产品售价;若不能,说明理由.(2分)27.如图,有一等腰直角三角形ABC ,AC=BC=4,有一条过点B 的直线MN 与BC 形成的夹角∠CBN=45°.点P 为直线MN 上一动点,连接CP ,作∠CPQ=45°,交射线BA 于点Q. (1)如图,若PC ⊥QC ,求证:BP=AQ ;(3分) (2)若AQ=2,求BCP tan 的值;(4分)(3)直线MN 绕点B 顺时针旋转15°,当点Q 从B 点运动到A 点时,求线段PQ 的中点所经过的路径(线段)长。

成都七中数学中考模拟试卷

成都七中数学中考模拟试卷

成都七中数学中考模拟试卷姓名:班级:学号:成都七中数学中考模拟试卷(满分150分,考试时间120分钟)出题人:XXX、XXX 审题人:XXXA卷(共100分)一、选择题(每小题3分,共30分)1.4的平方根是()A。

±2 B。

2 C。

± D。

无解2.如图,在长方体中挖去一个圆柱体后,得到的几何体的左视图为(删除图)3.花粉的质量很小,一粒某种花粉的质量约为0.毫克,那么0.用科学计数法表示为()A。

10.3×10⁻⁵ B。

1.03×10⁻⁴ C。

0.10.×10⁻³ D。

1.03×10⁻³4.在直角三角形ABC中,∠C=90°,BC=2,AB=4,则cosA=()A。

1/2 B。

2/3 C。

3/4 D。

4/55.如图,一个正六边形转盘被分成6个全等的三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是(删除图)6.下列计算正确的是()A。

a+a=a B。

3(a-2b)=3a-2b C。

a÷a=1 D。

(2a-b)÷2=a-b/27.若一个多边形的内角和是900°,则这个多边形的边数是()A。

5 B。

6 C。

7 D。

88.将抛物线y=2(x-1)⁻¹,先向上平移2个单位,再向右平移1个单位后其顶点坐标是()A。

(2,1) B。

(1,2) C。

(1,-1) D。

(1,1)9.已知在正方形ABCD中,对角线AC与BD相交于点O,OE//AB交BC于点E,若AD=8cm,则OE的长为()A。

3cm B。

4cm C。

6cm D。

8cm10.如图,在圆O中,∠C=30°,AB=2,则弧AB的长为(删除图)二、填空题(每小题4分,共16分)11.如图,路灯距离地面8米,身高1.6米的XXX站在距离灯的底部(点O)20米的A处,则XXX的影子AM长为4米。

12.关于x的一元二次方程x²-4x+2m=0没有实数根,则实数m的取值范围是(-1,1/2]。

2015年四川省成都七中中考数学模拟试卷(一)资料

2015年四川省成都七中中考数学模拟试卷(一)资料

2015年四川省成都七中中考数学模拟试卷(一)一、选择题:(每小题3分,共30分)2013×(﹣3)=1 B 3.(3分)(2013•益阳)据益阳市统计局在网上发布的数据,2012年益阳市地区生产总值(GDP)突破千亿元大关,达到了1020亿元,将102 000 000 000用科学记数法表示正确的4.(3分)(2011•昭通)如图是一个由4个相同的正方体组成的立体图形,它的三视图为( )B5.(3分)(2009•西藏)若方程:x 2﹣2x+m=0有两个不相等的实数根,则m 的取值范围是6.(3分)(2013•台州)在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也随之改变.密度ρ(单位:kg/m 3)与体积V (单位:m 3)满足函数关系式ρ=(k 为常数,k ≠0),其图象如图所示,则k 的值为( )7.(3分)(2012•六盘水)定义:f(a,b)=(b,a),g(m,n)=(﹣m,﹣n).例如f8.(3分)(2009•安徽)武汉市2010年国内生产总值(GDP)比2009年增长了12%,由于受到国际金融危机的影响,预计今年比2010年增长7%,若这两年GDP年平均增长率为x%,9.(3分)(2013•广安)已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>O,②2a+b=O,③b2﹣4ac<O,④4a+2b+c>O其中正确的是()10.(3分)(2012•岳阳)如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是()B二、填空题:(每小题3分,共15分)11.(3分)(2014•内江)a﹣4ab2分解因式结果是.12.(3分)(2014•达州)己知实数a、b满足a+b=5,ab=3,则a﹣b=.13.(3分)(2013•德州)函数y=与y=x﹣2图象交点的横坐标分别为a,b,则+的值为.14.(3分)(2010•威海)如图,点A,B,C的坐标分别为(2,4),(5,2),(3,﹣1).若以点A,B,C,D为顶点的四边形既是轴对称图形,又是中心对称图形,则点D的坐标为.15.(3分)(2012•六盘水)两块大小一样斜边为4且含有30°角的三角板如图水平放置.将△CDE绕C点按逆时针方向旋转,当E点恰好落在AB上时,△CDE旋转了度,线段CE旋转过程中扫过的面积为.三、计算题:((每小题18分,共18分)16.(18分)(2015•成都校级模拟)解答下列各题:(1)计算:(﹣1)2003+(2sin30°)0﹣+()﹣1;(2)解方程:;(3)先化简,再求值:,其中m是方程x2+3x+1=0的根.四、解答题:(17题8分,18题9分,共17分)17.(8分)(2013•咸宁)如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线y=(x>0)交于D点,过点D作DC⊥x轴,垂足为C,连接OD.已知△AOB≌△ACD.(1)如果b=﹣2,求k的值;(2)试探究k与b的数量关系,并写出直线OD的解析式.18.(9分)(2014•本溪)某海域有A、B、C三艘船正在捕鱼作业,C船突然出现故障,向A、B两船发出紧急求救信号,此时B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏东33°方向,同时又位于B船的北偏东78°方向.(1)求∠ABC的度数;(2)A船以每小时30海里的速度前去救援,问多长时间能到出事地点.(结果精确到0.01小时).(参考数据:≈1.414,≈1.732)五、解答题:(19题8分,20题12分,共20分)19.(8分)(2015•成都校级模拟)甲口袋有2个相同的小球,它们分别写有数字1和2,;乙口袋中装有3个相同的小球,它们分别写有数字3、4、5,从这两个口袋中各随机地取出1个球.(1)用“树状图法”或“列表法”表示所有可能出现的结果;(2)取出的两个小球上所写数字之和是偶数的概率是多少?20.(12分)(2014•绵阳)如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶点Q落在线段AE上,定点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.六、填空题:(每小题4分,共20分)21.(4分)(2015•湖北模拟)若函数,则当函数值y=8时,自变量x 的值等于.22.(4分)(2014•内江)已知+=3,则代数式的值为.23.(4分)(2012•黄石)“数学王子”高斯从小就善于观察和思考.在他读小学时就能在课堂上快速地计算出1+2+3+…+98+99+100=5050,今天我们可以将高斯的做法归纳如下:令S=1+2+3+…+98+99+100 ①S=100+99+98+…+3+2+1 ②①+②:有2S=(1+100)×100 解得:S=5050请类比以上做法,回答下列问题:若n为正整数,3+5+7+…+(2n+1)=168,则n=.24.(4分)(2009•陕西)如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.25.(4分)(2013•杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)七、解答题:(共30分)26.(10分)(2012•朝阳)某商家经销一种绿茶,用于装修门面已投资3000元,已知绿茶每千克成本50元,在第一个月的试销时间内发现,销量w(kg)随销售单价x(元/kg)的设该绿茶的月销售利润为y(元)(销售利润=单价×销售量﹣成本﹣投资).(1)请根据上表,写出w与x之间的函数关系式(不必写出自变量x的取值范围);(2)求y与x之间的函数关系式(不必写出自变量x的取值范围).并求出x为何值时,y 的值最大?(3)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元?27.(10分)(2014•成都)如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,=,求PD的长;(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)28.(10分)(2013•荆州)如图,已知:如图①,直线y=﹣x+与x轴、y轴分别交于A、B两点,两动点D、E分别从A、B两点同时出发向O点运动(运动到O点停止);对称轴过点A且顶点为M的抛物线y=a(x﹣k)2+h(a<0)始终经过点E,过E作EG∥OA 交抛物线于点G,交AB于点F,连结DE、DF、AG、BG.设D、E的运动速度分别是1个单位长度/秒和个单位长度/秒,运动时间为t秒.(1)用含t代数式分别表示BF、EF、AF的长;(2)当t为何值时,四边形ADEF是菱形?判断此时△AFG与△AGB是否相似,并说明理由;(3)当△ADF是直角三角形,且抛物线的顶点M恰好在BG上时,求抛物线的解析式.2015年四川省成都七中中考数学模拟试卷(一)参考答案一、选择题:(每小题3分,共30分)1.B 2.B 3.A 4.B 5.B 6.A 7.A 8.D 9.C 10.B二、填空题:(每小题3分,共15分)11.a(1-2b)(1+2b) 12.±13.-2 14.(0,1)15.30三、计算题:((每小题18分,共18分)16.四、解答题:(17题8分,18题9分,共17分)17.18.五、解答题:(19题8分,20题12分,共20分)19.20.六、填空题:(每小题4分,共20分)21.4或-22.-23.12 24.4 25.t=2或3≤t≤7或t=8七、解答题:(共30分)26.27.28.。

成都七中2015级高三“一诊”模拟考试数学答案

成都七中2015级高三“一诊”模拟考试数学答案

C D OBE'AH成都七中2015级高三“一诊”模拟考试数学试题参考答案一、选择题:(本大题共10小题,每小题5分,共50分) BAADB ACBAD 二、填空题:(本大题共5小题,每小题5分,共25分) 11. 180 12.12 13. - 14. (-7, 3) 15. ①②③⑤ 三、解答题:本大题共6小题,共75分。

解答应写出文字说明,证明过程或演算步骤。

16、(本小题满分12分)【解析】(I )由已知条件得:cos23cos 1A A +=22cos 3cos 20A A ∴+-=,解得1cos 2A =,角60A =︒ (II )1sin 2S bc A ==4c ⇒=,由余弦定理得:221a =,()222228sin a R A ==25sin sin 47bc B C R ∴==.17、(本小题满分12分) 解答:(1)331328()327p C ==,22232128()33327p C =⋅=,222342114()()33227p C =⋅=(2)由题意可知X 的可能取值为:0, 1, 2, 3. 乙队得分X 的分布列为:乙队得分X 的数学期望:1644170123.27272799EX =⨯+⨯+⨯+⨯=18、(本小题满分12分)【解析】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O = ,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角.3210X P2742742719结合图1可知,H 为AC 中点,故2OH =,从而A H '==所以cos 5OH A HO A H '∠==',所以二面角A CD B '--的平面角的余弦值为5.向量法:以O 点为原点,建立空间直角坐标系O xyz -如图所示, 则(A ',()0,3,0C -,()1,2,0D -所以(CA '= ,(1,DA '=-设(),,n x y z = 为平面A CD '的法向量,则 00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩令1x =,得(1,n =-由(Ⅰ) 知,(OA '=为平面CDB 的一个法向量,所以cos ,n OA n OA n OA '⋅'===',即二面角A CD B '--的平面角的余弦19、(本小题满分12分)(1)解:由222(1)()0n n S n n S n n -+--+=,得2[()](1)0.n n S n n S -++=由于{a n }是正项数列,所以20,.n n S S n n >=+于是112,2a S n ==≥时,221(1)(1)2.n n n a S S n n n n n -=-=+----= 综上,数列{a n }的通项2.n a n = (2)证明:由于2,n a n =221(2)n nn b n a +=+, 则22221111[4(2)16(2)n n b n n n n +==-++.2222222221111111111[11632435(1)(1)(2)n T n n n n =-+-+-++-+--++ 2221111[1]162(1)(2)n n =+--++2115(1).16264<+=【解析】(Ⅰ) 依题意,设抛物线C 的方程为24x cy =,2=结合0c >, 解得1c =.所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设()11,A x y ,()22,B x y (其中221212,44x x y y ==), 则切线,PA PB 的斜率分别为112x ,212x ,所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --= 同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y =所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92.。

成都七中实验学校2015-2016学年七年级下学期期中考试数学试题

成都七中实验学校2015-2016学年七年级下学期期中考试数学试题

成都七中实验学校初2015级七年级(下)期中考试数学试题一、选择题(每小题3分,共30分) 1、下列计算正确是( ) A .n n na a a32=+ B .n n n a a a 32=⋅ C .()624x a = D .()()235xy xy xy =÷2、下列各组长度的三条线段能组成三角形的是( )A.1cm ,2cm ,3cm B .1cm ,1cm ,2cm C.1cm ,2cm ,2cm D .1cm ,5cm ,7cm3、纳米是一种长度单位,1纳米=109-米,已知某种植物花粉的直径约为3500纳米,那么用科学记数法表示该种花粉直径为( ) A .3.5×104 米 B .3.5×104-米 C .3.5×105-米 D .3.5×106-米4、计算)1)(32(-+x x 的结果是( )A.322-+x x B.322--x x C.322+-x x D.322--x x5、如图,点E 在BC 的延长线上,下列条件中,不能判定AB//CD 的是( ) A.∠1=∠2 B.∠3=∠4 C.∠A=∠DCE D.∠D+∠DBA=180°6、下列乘法中,不能运用平方差公式进行运算的是( )A.()()a x a x -+B.()()x a a x +-+C.()()b x b x ---D.()()b a b a --+ 7、等腰三角形的周长为13cm ,其中一边长为3cm ,则该等腰三角形的底边长为( ) A.7cm B.3cm C.7cm 或3cm D.5cm 8、如图,下列条件不能证明△ABC ≌△DCB 的是( )A .AB=DC ,AC=DB B .∠A=∠D ,∠ABC=∠DCBC .BO=CO ,∠A=∠D D .AB=DB ,AC=DC 9、下列说法中正确的个数有( )(1)在同一平面内,不相交的两条直线必平行(2)同旁内角互补(3)相等的角是对顶角(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离(5)经过直线外一点,有且只有一条直线与已知直线平行A .2个 B.3个 C.4个 D.5个10、如图,△ABC 中,0α=∠A ,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于点1A ,BC A 1∠与CD A 1∠的平分线相交于点2A ,依此类推,(第5题图)(第8题图)(第10题图)BC A n 1-∠与CD A n 1-∠的平分线相交于点n A ,则n A ∠的度数为( ) A.0⎪⎭⎫ ⎝⎛n α B.02⎪⎭⎫ ⎝⎛n α C.02⎪⎭⎫ ⎝⎛n α D.012⎪⎭⎫ ⎝⎛+n α 二、填空题(每小题3分,共15分) 11、计算:=-223)2(z xy .12、如图,直线AB 、CD 、EF 相交于一点,∠1=50°,∠2=64°,则∠COF= 度.13、将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2= .14、如果多项式k x x ++82是一个完全平方式,则k 的值是 .15、如图,△ABC 中, BF 、CF 分别平分∠ABC 和∠ACB ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,那么下列结论:①△BDF 和△CEF 都是等腰三角形;②∠DFB=∠EFC ;③△ADE 的周长等于AB 与AC 的和;④BF=C F .其中正确的是 .(填序号,错选、漏选不得分) 三、计算与求值(每小题6分,共24分)16、(1)(121122332201641)()()()-⨯+---- (2)()()()33232--+-+-x x x(3)()()xy xy y x y x 33692234-÷+-(4)先化简,再求值[()()xy x y y y x 8422-+-+]()x 2-÷.其中1,2-==y x .(第12题图) (第13题图) (第15题图)四、解答题(共31分)17、(5分)解关于x 的方程:()()()62222=+--+x x x18、(6分)已知:4=-b a ,1-=ab ,求:()2b a +和226b ab a +-的值.19、(4+6=10分)如图,已知点A 、F 、E 、C 在同一直线上,AB ∥CD ,∠ABE=∠CDF ,AF=CE . (1)从图中任找两对全等三角形,并用“≌”符号连接起来;(2)求证:AB=CD .20、(4+3+3=10分)平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB ∥CD ,点P 在AB 、CD 外部,则有∠B=∠BOD ,又因∠BOD 是△POD 的外角,故∠BOD=∠BPD+∠D .得∠BPD=∠B-∠D .将点P 移到AB 、CD 内部,如图2,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD 、∠B 、∠D 之间有何数量关系?请证明你的结论;(2)在如图2中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图3,则∠BPD 、∠B 、∠D 、∠BQD 之间有何数量关系?(直接写出结论,不需要证明) (3)根据(2)的结论求如图4中∠A+∠B+∠C+∠D+∠E 的度数.(第19题图)B 卷(50分)一、填空题(4分,共20分) 21、已知:23=m,59=n ,则1233+-n m = .22、若()()b ax x x -+-22的积中不含x 的二次项和一次项,则a= ,b= .23、若0132=+-a a ,则=+221a a . 24、已知等腰△ABC 中一腰上的高与另一腰的夹角为30°,则△ABC 的底角度数为 度. 25、已知△ABC 的面积为1,把它的各边延长一倍得到111C B A ∆;再把111C B A ∆的各边延长两倍得到222C B A ∆;再把222C B A ∆的各边延长三倍得到333C B A ∆,则333C B A ∆的面积为 .二、解答题(每小题10分,共30分)26、(5+5=10分)(1)已知△ABC 三边长是a 、b 、c ,化简代数式:c a b a c b b a c c b a --+---+---+ (2)已知0132=-+x x ,求:20155523+++x x x 的值.27、(3+3+4=10分)先阅读理解下面的例题,再按要求解答下列问题: 例题:求代数式842++y y 的最小值.[来源:学科网] 解:()4244484222++=+++=++y y y y y∵()022≥+y ∴()4422≥++y ∴842++y y 的最小值是4.(1)求代数式42++m m 的最小值;(2)求代数式x x 242+-的最大值;(3)某居民小区要在一块一边靠墙(墙长15m )的空地上建一个长方形花园ABCD ,花园一边靠墙,另三边用总长为20m 的栅栏围成.如图,设AB=x (m ),请问:当x 取何值时,花园的面积最大?最大面积是多少2m ?(第25题图)(第27题图)28、(3+3+4=10分)如图(1),在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D .AF 平分∠CAB ,交CD 于点E ,交CB 于点F .(1)求证:∠CEF=∠CFE ;(2)若,AB AD 41=,CB CF 31=,△ABC 、△CEF 、△ADE 的面积分别为ABC S ∆、CEF S ∆、ADE S ∆,且24=∆ABC S ,则=-∆∆AD E CEF S S ;(3)将图(1)中的△ADE 沿AB 向右平移到△A ′D ′E ′的位置,使点E ′落在BC 边上,其它条件不变,如图(2)所示,试猜想:BE ′与CF 有怎样的数量关系?并证明你的结论.成都七中实验学校初2015级七年级(下)数学期中考试参考答案 A 卷1-10 B C D A B D B D A C11、4624z y x 12、74 13、090 14、16 15、16、2116131282+-x x y x y x -+-2323 842-=+-y x 17、21-=x 18、()122=+b a 24622=+-b ab a19、CDF ABE ∆≅∆ CDA ABC ∆≅∆20、(1)D B BPD ∠+∠=∠ (2)BQD D B BPD ∠+∠+∠=∠(3)∠A+∠B+∠C+∠D+∠E=0180B 卷21、52422、2,4 23、7 24、30或60 25、4921 26、c a 22- 2017 27、42++m m 的最小值为415,x x 242+-的最大值为5,x 为5时,最大为502m28、(2)=-∆∆ADE CEF S S 2初2015级七年级(下)数学期中考试双向细目表考试内容目标达成(能力要求)题型出处[来源:学科网ZXXK]难度分值[来源:学科网ZXXK]题号内容(考点)了解理解运用A卷1 幂的运算√选择题教材内0.90 3 2三角形三边关系√选择题教材内0.853 3科学计数法√选择题教材内0.903 4多项式乘法√选择题教材外0.903 5平行线的判定√选择题教材内0.853 6平方差公式√选择题教材内0.653 7等腰三角形√选择题教材外0.70 3 8全等Δ判定√选择题教材外0.90 39 概念判断√选择题教材外0.75 310 找规律√√选择题教材外0.65 311 幂的运算√填空教材外0.80 312 相交线√填空教材外0.65 313 平行线√填空教材外0.50 314完全平方式√√填空教材外0.50 3 15角平分线与平行√填空教材内0.85 316计算与求值√√解答教材内0.70 1017 解方程√√解答教材外0.65 1218 乘法公式√解答教材外0.90 719全等Δ证明√解答教材外0.80 9 20 角度综合√解答教材外0.70 10B卷1 幂的运算√填空教材外0.60 42 整式含参√√填空教材外0.70 4 3完全平方公式运用√填空教材外0.80 4 4 等腰Δ√填空教材外0.65 4 5Δ面积问题√填空教材外0.85 4 6整式化简及求值√解答教材外0.70 8 7 配方法√解答教材外0.60 10 8全等Δ综合√解答教材外0.50 12统计0.70-0.75150。

成都七中育才学校2015届九年级上期中模拟考试数学试题

成都七中育才学校2015届九年级上期中模拟考试数学试题

△ABC 的面积为

14.如图 5,是二次函数 y1 ax2 bx c 和一次函数 y2 mx n 的图象,观察图象,写出
y1 y2 时 x 的取值范围:

15.如图 6,已知二次函数 y x2 2x ,当 1 x a 时, y 随 x 的增大而增大,则实数 a
成都七中育才学校 2015 届初三(上)期中模拟考试数学试卷
第1页共8页
成都七中育才学校 2015 届初三(上)期中模拟考试
数学试卷
命题人:叶强 审题人:焦锐 陈英
姓名:
班级:
学号:
一、选择题:(每小题 3 分,共 30 分)
1.
已知函数 y

1 2
x2
x 4 ,当函数值 y 随 x 的增大而减小时, 的取值范围为( x

2
),则
k
的值为(

A. 2
B.2
C.3
D.4
10.二次函数 y mx2 2mx (3 m) 的图象如图 3 所示,则 m 的取值范围是( )
A. m 3
B. m 3
C. m 0
D. 0 m 3
y
y
-1
O 1 2x
y B
O
C x
-1 O
x
A
D
图1
图2
图3
成都七中育才学校 2015 届初三(上)期中模拟考试数学试卷
图7
18.(10 分)放风筝是大家喜爱的一种运动。星期天的上午小明在大洲广场上放风筝。如图 8 他
在 A 处时不小心让风筝挂在了一棵树的树梢上,风筝固定在了 D 处。此时风筝线 AD 与水平
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都七中育才学校初2015届初三下期数学第十周周练习
姓名 班级 学号
A 卷(满分100分)
一、选择题:(每小题3分,共30分) 1.3-的绝对值是( )
A .3
B .3-
C .13
D .13-
2.下列运算中,正确的是( )
A .3
3
6
x x
x ? B .2
3
2
325x x x += C .235()x x = D .2224()x y x y +=+ 3.在下列图形中,既是轴对称图形又是中心对称图形的是 ( )
A .
B .
C .
D .
4.反比例函数6
y x
=-,下列判断错误的是( )
A .它的图象是双曲线
B .当x <0时,图象在第二象限内
C .y 随x 增大而增大
D .当x >0时,y 随x 增大而增大
5
.函数y
=x 的取值范围是( )
A .28°
B .30°
C .31°
D . 62°
7.为了了解某县3万名学生参加高中入学考试的情况,有关部门从中抽取了600名学生的成绩进行统计分析,在这个问题中表达正确的是( )
A .样本容量是600
B .每个考生是个体
C .3
万考生是总体 D .600名考是总体的一个样本 致表示水的最大深度h 与时间t 之间的关系的图象是( )
10.如图,边长为2正方形ABCD 绕点A 逆时针旋转45度后得到正方形D C
B A ''',
边C B '
' 与DC 交于点O ,则四边形OD B A '的周长..是( ) A .24
B .6
C .22
D .2+2
2
A B C D A B
(第6题图)
二、填空题:(每小题4分,共16分) 11.将二次函数213
522
y x x =-
++改写成2()y a x h k =-+的形式,为。

12.某城建部门计划在城市道路两旁栽1500棵树,原计划每天栽x 棵,考虑到季节、人员安排等因素,决定每天比原计划多栽50棵,
最后提前5天完成任务,则可以列出的分式方程是 。

则该班学生年龄的中位数为 岁.14.如图,⊙O 的半径为1,圆心O 在正三角形的边AB 上沿图示方向移动,当⊙O 移动到与AC 边相切时,OA 的长为 .
三、解答题:
15.解答下列各题:(每小题6分) (1)计算:022sin 45(cos30)-?+ (2)解方程1113
3x x x
--=--
16.先化简,再求值:222
22111a a a a a a a -+⎛
⎫-÷- ⎪+-⎝
⎭,其中a 是方程22290x x --=的解.(6分)
A
B
C
D
O
C '
D '
B '
(第10题图)
A C
(第14题图)
17.如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ 与MN 平行,河岸MN 上有A 、B 两个相距50米的凉亭,小亮在河对岸D 处测得60ADP ∠=,然后沿河岸走了110米到达C 处,测得30BCP ∠=,求这条河的宽.(结果保留根号)(8分)
18.(8分)如图,在平面直角坐标系中,一次函数2y nx =+(0n ≠)的图象与反比例函数m
y x
=
(0m ≠)在第一象限内的图象交于点A ,与x 轴交于点B ,线段OA =5,C 为x 轴正半轴上一点,且si n 45
AOC ∠=
. (1)求一次函数和反比例函数的解析式; (2)求AOB △的面积.
N
Q
D (第17题图) (第18题图)
19.(10分)为了贯彻落实国家关于增强青少年体质的计划,重庆市全面实施了义务教育学段中小学学生“饮用奶计划”的营养工程.某牛奶供应商似提供A(原味)、B(草莓味)、C(核桃味)、D (菠萝味)、E(香橙味)等五种口味的学生奶供学生选择(所有学生奶盒形状、大小相同),为了了解对学生奶口味的喜好情况,某初级中学九年级(1)班张老师对全班同学进行了调查统计,制成了如下两幅不完整的统计图:
(1)该班五种口味的学生奶喜好人数组成一组统计数据,直接写出这组数据的平均数,并将折线统计图补充完整;
(2)在进行调查统计的第二天,张老师为班上每位同学发放一盒学生奶,喜好B味的小明和喜好C 味的小刚等四位同学最后领取,剩余的学生奶放在同一纸箱里,分别有B味2盒,C味和D味各1盒,张老师从该纸箱里随机取出两盒学生奶.请你用列表法或画树状图的方法,求出这两盒牛奶恰好同时是小明和小刚喜好的学生奶的概率.
20.(10分)已知,如图,矩形ABCD 中,AD =6,DC =7,菱形EFGH 的三个顶点E ,G ,H 分别在矩形ABCD 的边AB ,CD ,DA 上,AH =2,连接CF . (1)若DG =2,求证四边形EFGH 为正方形; (2)若DG =6,求△FCG 的面积;
(3)当DG 为何值时,△FCG 的面积最小.
B 卷(50分)
一、填空题:(每小题4分)(写出简要过程)
21.若0232
=--a a ,则=-+2
625a a 。

22.若y 关于x 的函数a x a x a y +---=)12()2(2的图像与坐标轴有两个交点,则a 的值为 。

23.如图,正方形ABCD ,点P 是对角线AC 上一点,连接BP ,过P 作PQ BP ⊥,PQ 交CD 与Q ,
若AP =CQ =5,则正方形ABCD 的面积为________。

A B C D F
H
G E (第20题图) A
B
C
D
Q
P
(第23题图)
24.如图,在函数8
y x
=
(0x >)的图象上有点1P 、2P 、3P 、…、n P 、1n P +,点1P 的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点1P 、2P 、3P 、…、n P 、1n P +分别作x 轴、y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为1S 、
2S 、3S 、…、n S ,则1S =_________ ,n S =_________ .(用含n 的代数式表示)
25.以半圆的一条弦BC (非直径)为对称轴将弧BC 折叠后与直径AB 交于点D ,若
3
2
=DB AD ,且10=AB ,则CB 的长为 。

二、解答题: 26.(8分)学校6名教师和234名学生集体外出活动,准备租用45座大客车或30座小客车,若租用1辆大车2辆小车供需租车费1000元;若租用2辆大车1辆小车供需租车费1100元. (1)求大、小车每辆的租车费各是多少元? (2)若每辆车上至少..要有一名教师,且总租车费用不超过...2300元,求最省钱的租车方案。

B
(第24题图)
27.(10分)如图1,正方形ABCD 的边长为2,点M 是BC 的中点,P 是线段MC 上的一个动点(不与M 、C 重合),以AB 为直径作⊙O ,过点P 作⊙O 的切线,交AD 于点F ,切点为E . (1)求证:OF ∥BE ;
(2)设BP =x ,AF =y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围; (3)延长DC 、FP 交于点G ,连接OE 并延长交直线DC 与H (图2),问是否存在点P ,使△EFO ∽△EHG (E 、F 、O 与E 、H 、G 为对应点)?如果存在,试求(2)中x 和y 的值;如果不存在,请说明理由.
B M F G (图1) (图2)
28. (12分)已知抛物线22y x x c =-+与x 轴交于A .B 两点,与y 轴交于C 点,抛物线的顶点为D 点,点A 的坐标为(1-,0). (1)求D 点的坐标;
(2)如图1,连接AC ,BD 并延长交于点E ,求∠E 的度数; (3)如图2,已知点P (4-,0),点Q 在x 轴下方的抛物线上,直线PQ 交线段AC 于点M ,当∠PMA =∠E 时,求点Q 的坐标.
(图1)
(图2)。

相关文档
最新文档