第1课时三角形的三边关系
2022年人教版八年级数学上册第十一章三角形教案 三角形的边
第十一章三角形11.1 与三角形有关的线段11.1.1 三角形的边第1课时三角形的边一、教学目标【知识与技能】1.进一步认识三角形的概念及其基本要素;2.学会对三角形进行分类;3.理解并掌握三角形三条边之间的关系。
【过程与方法】经历度量三角形边长的实践活动,理解三角形三边不等的关系。
【情感态度与价值观】帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣。
二、课型新授课三、课时第1课时四、教学重难点【教学重点】理解三角形定义、证明三角形三边关系。
【教学难点】1.在具体的图形中不重复,且不遗漏地识别所有三角形.2.用三角形三边不等关系判定三条线段可否组成三角形.五、课前准备教师:课件、三角尺、屋顶架结构图等。
学生:三角尺、铅垂纸、小刀。
六、教学过程(一)导入新课(出示课件2)1. 你能从中找出4个不同的三角形吗?与同学交流各自找出的三角形.2. 这些三角形有什么共同特点?(二)探索新知1.观察三角形的构成,探索三角形的概念(出示课件4)教师问1:你能画出一个三角形吗?让学生画出三角形,直观感受三角形的构成.教师问2:结合你画的三角形,说明三角形是由什么组成的?学生回答:三角形是由三条线段组成的.教师问3:什么叫三角形?学生回答:由三条线段组成的图形叫做三角形.教师问4:如下图,是由三条线组成的图形,这样的图形是三角形吗?学生回答:这样的不是三角形.教师问5:你们讨论一下,如何给三角形下定义呢?学生讨论回答:需要满足以下条件:三角形的特征有:(1)三条线段;(2)不在同一直线上;(3)首尾顺次连接.教师画出图形:如图所示:教师归纳:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(出示课件5)2.自主学习三角形的表示方法及分类阅读教材第2页到第3页探究前内容,回答下列问题.教师问6:根据右图回答以下问题:(1)在三角形中,什么叫边?什么叫内角?什么叫顶点?学生回答:如图:线段AB、BC、CA是△ABC的三边;点A、B、C△ABC的三个顶点;∠A、∠B、∠C是△ABC的三个内角.教师总结(出示课件6):①边:组成三角形的每条线段叫做三角形的边. ②顶点:每两条线段的交点叫做三角形的顶点. ③内角:相邻两边组成的角.(2)如何用小写字母表示三角形ABC的三条边?学生回答:△ABC的边AB为∠C所对的边,可以用顶点C的小写字母c表示,同样,边AC可用b表示,边BC可用a表示.教师出示下图边讲解:(3)如何用符号表示三角形ABC?(出示课件7)学生回答:三角形用符号“△”表示. 记作“△ABC”读作“三角形ABC”.例 1: 说出图中有多少个三角形,用符号“△”表示,并指出每一个三角形的三条边,三个顶点,三个内角. (出示课件8)师生共同讨论解答如下:解:图中有3个三角形,分别是△EHG,△EHF,△EFG.△EHG 的三边是EH 、HG 、GE ,三内角是∠G、∠GHE、∠HEG,三个顶点是G 、H 、E;△EHF 的三边是EH 、HF 、FE ,三内角是∠EHF、∠HFE、∠HEF,三个顶点是F 、H 、E;△EFG 的三边是EF 、FG 、GE ,三内角是∠G、∠GFE、∠FEG,三个顶点是G 、F 、E.Q F E P GH 1 2总结点拨:(出示课件9)在查三角形的个数时,先给单个三角形编号,查单个的三角形,再查两个三角形组成的较大三角形,然后再查三个,四个三角形组成的三角形.出示课件10,找学生读出三角形。
2022秋八年级数学上册第十一章三角形11.1与三角形有关的线段1三角形的边授课课件新版新人教版
分类
按“边”分
按“角”分
两边之和大于第三 边,两边之差小于 第三边
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月12日星期六2022/3/122022/3/122022/3/12 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/122022/3/122022/3/123/12/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/122022/3/12March 12, 2022
A.5 B.6 C.12 D.16
3. (南通)下列长度的三条线段能组成三角形的是( A )
A.5,6,10 B.5,6,11
C.3,4,8
D.4a,4a,8a(a>0)
课堂小结
三角形的边
通过本课时的学习需要我们掌握
概念
三角形
△ABC
表示方法
1.三条线段 2.不在同一直线上 3.首尾顺次相接
三边关系
第十一章 三角形
11.1
与三角形有关的线段
第1课时 三角形的边
学习目标
1 课时讲解 2 课时流程
三角形及其有关概念 三角形的分类 三角形的三边关系
逐点 导讲练
课堂 小结
作业 提升
课时导入
复习提问 引出问题
下面请同学们仔细观察一组图片,找出你熟悉 的几何图形.
复习提问 引出问题
课时导入
复习提问 引出问题
感悟新知
总结
知3-讲
注意: 1.一个三角形的三边关系可以归纳成如下一句话:三
1勾股定理(第1课时)(教学PPT课件(华师大版))28张
1955年希腊发行的一枚纪念邮票.
讲授新课
知识点一 直角三角形三边的关系
视察正方形瓷砖铺成的地面.
(1)正方形P的面积是
1
(2)正方形Q的面积是
1
平方厘米;
(3)正方形R的面积是
2
平方厘米.
平方厘米;
上面三个正方形的面积之间有什么关系?
等腰直角三角形ABC三边长度之间存在什么关系吗?
程.
b
a
b
a
c
c
b
c
c
a
a
b
讲授新课
证明:大正方形的面积=(a+b)2.
四个个全等的直角三角形和小正方形的面积
1
2
2
之和= 4 ab c 2ab c .
2
b
由题可知(a+b)2=2ab+c2,
a
c
化简可得a2+b2=c2.
我们利用拼图的方法,将形的问题
与数的问题结合起来,再进行整式
A的面积
B的面积
C的面积
左图
4
9
13
右图
16
9
25
结论:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
SA+SB=SC
讲授新课
猜想:两直角边a、b与斜边 c 之间的关系?
A
a
B b
c
a2+b2=c2
C
讲授新课
概念总结
由上面的探索可以发现:对于任意的直角三角形,如果它的两
数学(华东师大版)
八年级 上册
第14章 勾股定理
三角形三边的关系数学教学设计
三角形三边的关系数学教学设计角形边的关系教案篇一一、教学内容与学情分析;本课的教学内容是人教版四年级下册第五单元第一课时《三角形的认识》。
学生通过第一学段和四年级上册的学习,对三角形已经有了直观的认识,能够从平面图形中分辨出三角形,认识了线段,学习了垂直,能从直线外一点画出这条直线的垂线。
在此基础上,本课时安排了三角形各部分名称,定义,高和底等教学内容。
为学习三角形的面积算法和各种图形打下基础。
二、教学目标(一)知识与技能在操作活动中,概括三角形的特征,认识各部分名称以及底和高的含义,会在三角形内画高,用字母表示三角形。
(二)过程和方法在操作活动、概括中,积累认识图形的经验和方法。
(三)情感态度和价值观培养学生学习数学的兴趣。
三、教学重难点教学重点:理解三角形的概念,认识三角形各部分的名称,知道三角形的底和高教学难点:会画三角形的高四、教学准备课件、实物投影五、过程设计一、欣赏图片,导入新课师:同学们,老师今天带来了很多美丽的建筑图片,我们一起来欣赏一下。
师:谁能说说这些图片中都有哪种平面图形?揭题:是的,每张图片中都含有三角形。
三角形的奥秘非常多,那么它在我们的生活中究竟有什么作用呢?今天这节课我们就一起走进三角形,揭开三角形神秘的面纱。
(板书课题:三角形的`认识)[设计意图:通过建筑图片,增强学生对数学源于生活的认识,激发学生学习的兴趣]二、自主探究,学习新知1、三角形的定义(1)请同学们翻开书本第60页,自学有关三角形的内容。
(2)师:自学完了,如果现在让你画一个三角形,你会画么?指名学生到黑板上画三角形,并介绍一下画的三角形有什么特点。
在学生说的时候板书:3个角,3条边,3个顶点并提问:对他的发言你还有什么需要补充的吗?(4)师:这些是同学们刚才通过自学知道的知识,那你觉得到底什么样的图形才能叫做三角形呢?指名不同的学生说。
刚才有同学说到:三条线段围成的图形叫三角形。
(课件出示)师:这句话里哪个词是关键?师:三条线段围成是怎么样的?(出示:每相邻两条线段的端点相连。
七下数学课件:认识三角形(第1课时三角形的三边关系)
七年级 下册
第七章 平面图形的认识(二)
7.4 认识三角形
第一课时 三角形的三边关系
学习目标
学习目标
1、理解三角形及其边、角、顶点的概念。
2、三角形的两种分类方法。
3、理解三角形的三边关系,并会利用这个不等量关系判断已知的三条线段
能否组成三角形,及已知三角形的两边会求第三边的取值范围。
D、2cm +4cm<7cm,不能组成三角形.
故选:A.
判断三角形三边关系
长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木
棒允许连接,但不允许折断),得到的三角形的最长边长为()
A.4
B.5
C.6
D.7
【详解】
①长度分别为5、3、4,能构成三角形,且最长边为5;
②长度分别为2、6、4,不能构成三角形;
以下列各组线段的长为边,能组成三角形的是( )
A.3cm,6cm,8cm
B.3cm,2cm,6cm
C.5cm,6cm,12cm D.2cm,7cm,4cm
【详解】
解:根据三角形的三边关系,得,
A、3cm +6cm>8cm,能组成三角形;
B、3cm +2cm<6cm,不能组成三角形;
C、5cm +6cm <12cm ,不能组成三角形;
等边三角形
(5)等腰直角三角形不是等腰三角形.( ×)
等腰直角三角形的两直角边相等
观察与思考
任意画一个△ABC,从A点出发,沿三角形的边到点B,有几条
线路可以选择?各线路的长有什么关系?能证明你的结论吗?
对任意一个△ABC,若把其中两个顶点看成顶点(点A,点
B),由两点之间线段最短,可得:
第一课时 三角形的边
C11.1.1 三角形的边教学目标:1、三角形的三边关系。
2、用三边关系判断三条线段能否组成三角形。
学习重点:三角形的三边关系。
学习难点:用三边关系判断三条线段能否组成三角形。
学习过程:(一)学案自学认真阅读课本的内容,完成以下练习。
(二)对学群学完成下面练习,并体验知识点的形成过程。
研读一、认真阅读课本(P63至P64“探究”前,时间:5分钟)要求:知道三角形的定义;会用符号表示三角形,了解按边角关系对三角形进行分类。
一边阅读一边完成检测一。
检测练习一、1、 的图形叫三角形。
2、如图线段AB ,BC ,CA 是三角形的 ,点A ,B ,C 是三角形的 ,∠ A 、∠ B 、 ∠ C是 ,叫做 ,简称 。
3、用符号语言表示上图的三角形。
顶点是 的三角形,记作 ,读作: 。
4、按照三个内角的大小,可以将三角形分为5、三角形按边可分为研读二、认真阅读课本(P64“探究”,时间:3分钟)要求:思考“探究”中的问题,理解三角形两边的和大于第三边;游戏:用棍子摆三角形。
检测练习二、6、在三角形ABC 中,AB+BC AC AC+BC AB AB+AC BC7、假设一只小虫从点B 出发,沿三角形的边爬到点C ,有 路线。
路线 最近,根据是: ,于是有:(得出的结论) 。
8、下列下列长度的三条线段能否构成三角形,为什么?(1)3、4、8 (2)5、6、11 (3)5、6、10研读三、认真阅读课本认真看课本( P64例题,时间:5分钟)要求:(1)、注意例题的格式和步骤,思考(2)中为什么要分情况讨论。
(2)、对这例题的解法你还有哪些不理解的?(3)、一边阅读例题一边完成检测练习三。
检测练习三、9、一个等腰三角形的周长为28cm.①已知腰长是底边长的3倍,求各边的长;②已知其中一边的长为6cm,求其它两边的长.(要有完整的过程啊!)解:三、成果展示板书例题四、回归目标(一)课堂小结这节课我们学到了什么?(二)你认为应该注意什么问题?(二)达标测评练习册【A】组1、下列说法正确的是(1)等边三角形是等腰三角形(2)三角形按边分类课分为等腰三角形、等边三角形、不等边三角形(3)三角形的两边之差大于第三边(4)三角形按角分类应分锐角三角形、直角三角形、钝角三角形其中正确的是()A、1个B、2个C、3个D、4个2、一个不等边三角形有两边分别是3、5另一边可能是()A、1B、2C、3D、43、下列长度的各边能组成三角形的是()A、3cm、12cm、8cmB、6cm、8cm、15cm 、3cm、5cm D、6.3cm、6.3cm、12cm【B】组4、已知等腰三角形的一边长等于4,另一边长等于9,求这个三角形的周长。
浙教版 数学八年级上册第1章 三角形的初步认识《三角形及其三角、三边关系》
12.【2017·邢台月考】如图,在△BCD中,BC=4,BD =5. (1)求CD的取值范围;
解:∵在△BCD中,BC=4,BD=5,∴1<DC<9.
(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C 的度数. 解:∵AE∥BD,∠BDE=125°, ∴∠AEC=180°-∠BDE=55°, 又∵∠A=55°, ∴∠C=180°-55°-55°=70°.
11.若 a,b,c 是△ABC 的三边长,请化简|a-b-c|+ (b-c-a)2+|c-a-b|.
【点拨】本题先由“形”可得“数”,a-b-c<0,b-c- a<0,c-a-b<0,然后根据绝对值的性质进行化简,体 现了数形结合思想.
解:∵a,b,c是△ABC的三边长, ∴a<b+c,b<c+a,c<a+b, 即a-b-c<0,b-c-a<0,c-a-b<0. ∴原式=|a-b-c|+|b-c-a|+|c-a-b| =-(a-b-c)-(b-c-a)-(c-a-b)=a+b+c.
由题意知,把15 cm长的木棒分成两根, 可把15 cm分成5 cm和10 cm,6 cm和9 cm,7 cm和8 cm, 共三种不同的截法.
18.如图,P是△ABC内部的一点. (1)度量AB,AC,PB,PC的长,根据度量结果比较 AB+AC与PB+PC的大小.
解:度量结果略.AB+AC>PB+PC.
②当x=2时,y=8,则三边长分别为4 cm,6 cm,8 cm, ∵4+6>8,∴能组成三角形.
③当x=3时,y=3,则三边长分别为6 cm,9 cm,3 cm, ∵3+6=9,∴不能组成三角形. 因此各边的长分别为4 cm,6 cm,8 cm.
15.已知△ABC的两边长分别为3和7,第三边的长是关 于x的方程 x+2 a=x+1的解,求a的取值范围.
《三角形》教案1
《三角形》教案第一课时认识三角形教学内容:苏教版《义务教育课程标准实验教科书数学》四年级(下册)第22~23页。
教学目标:1、知识目标:通过观察、操作、交流等活动,进一步认识三角形;让学生经历合作探究的过程,自主发现三角形的三边关系,并能利用关系解决简单实际问题。
2、能力目标:引导学生经历探索、发现、创造、交流等有趣的数学活动过程,培养学生的观察理解能力、动手操作能力、合作交流能力、分析概括能力,进一步发展空间观念,提高学生运用知识解决问题的能力,增强学生的创新意识。
3、情感目标:激发学生对数学的好奇心,增强学生学习数学的兴趣,培养学生用数学的眼光去判断、解决生活中的问题,使其产生对生活的理性思维的数学习惯。
教学重点:认识三角形的特征。
教学难点:探究三角形三条边之间的关系。
教学过程:一、认识三角形的特征1、(由课前“考眼力”游戏中,不见了三角形导入)三角形躲到哪儿去了?哦!它到我们的生活中来了,你找到了吗?(斜拉索和桥面形成三角形,桥柱和桥面形成三角形)2、你还在什么地方看到过三角形?(举例)3、请同学们自己想办法利用老师准备的材料做一个三角形。
4、展示作品,说说你是怎样做的。
在汇报摆三角形时,说明每条线段都必须首尾相接,才能围成三角形。
5、老师把它画到黑板上来,教学三角形的边、角、顶点,请一位同学上来指一指三角形的边、角、顶点,下面的同学数一数三角形有几条边、几个角、几个顶点呢?请你们结合刚才做的三角形,同桌相互指一指、说一说。
二、认识三角形三边的关系1、用三根小棒围三角形。
2、汇报。
3、实践操作,探索发现。
(1)(出示4种小棒)老师准备了这样4根小棒,请你任选3根小棒,看能否围成三角形。
(2)边操作边由小组长负责将实验结果记录在实验表中。
(3)小组讨论,能围成三角形的三条线段成怎样的关系?先由小组讨论汇报后得出结论。
(出示结论)4、验证结论。
三、实践应用1、完成教材P24第2题。
2、判断如果有两根长度分别为2cm和5cm的木棒。
湘教版八年级数学上册 2.1 第1课时 三角形的有关概念及三边关系
5个,它们分别是△ABE,△ABC, △BEC,△BCD,△ECD.
(2)以AB为边的三角形有哪些?
△ABC、△ABE.
D
(3)以E为顶点的三角形有哪些? A
△ ABE 、△BCE、 △CDE.
(4)以∠D为角的三角形有哪些?
E
△ BCD、 △DEC.
B
C
(5)说出△BCD的三个角和三个顶点所对的边.
2×4+x=18. 解得 x=10.
因为4+4<10,不符合三角形两边的和大于第三边,
所以不能围成腰长是4cm的等腰三角形.
由以上讨论可知,可以围成底边长是4cm的等腰三角形.
例3 如图,D是△ABC 的边AC上一点,AD=BD, 试判断AC 与BC 的大小.
解:在△BDC 中, 有 BD+DC >BC(三角形的 任意两边之和大于第三边). 又因为 AD = BD, 则BD+DC = AD+DC = AC, 所以 AC >BC.
不符合
不符合
不符合
要点提醒
三角形应满足以下两个条件: ①位置关系:不在同一直线上; ②联接方式:首尾顺次.
表示方法: 三角形用符号“△”表示;记作“△ABC”,读作 “三角形ABC”,除此△ABC还可记作△BCA, △ CAB, △ ACB等.
找一找:(1)图中有几个三角形?用符号表示出这些三角形?
△BCD的三个角是∠BCD、∠BDC、∠CBD.顶点B所对应的 边为DC,顶点C所对应的边为BD,顶点D所对应的边为BC.
二 三角形的分类
问题:如果以三角形边的元素的不同,三角形该如何 分类呢?观察图形回答下面各小题.
(1)等腰三角形和等边三角形的区别是什么? 等腰三角形两边相等,等边三角形三边相等.
直角三角形的三边关系1
14.1.1直角三角形三边的关系说课稿尊敬的各位评委:大家好!我是()号说课者,今天我说课的题目是直角三角形三边的关系。
下面我将从教材分析、教学目标、教学重难点、教法与学法、教学过程、板书设计六个方面展开说课.一、教材分析本节所选用的教材为华东师大版,是初中数学八年级上册第十四章第一节第一课的内容,它揭示的是直角三角形中三边的数量关系。
学生通过对勾股定理的学习,可以解决直角三角形中边的计算问题,为今后学习解直角三角形打下基础。
二、教学目标根据新课标的要求和八年级学生认知水平我制定了如下教学目标:1.知识目标:体验勾股定理的探索过程,掌握勾股定理,会运用勾股定解决相关问题。
2.能力目标:经历由情境引出的问题,探索掌握有关的数学知识,再运用于实践的过程,培养学生学数学、用数学的意识与能力、体验数形结合的思想。
3.情感目标:感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情。
三、教学重难点重点:体验勾股定理的探索过程,掌握勾股定理。
难点:运用勾股定理解决实际问题。
教学课时1课时四、教法与学法针对八年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。
引导学生自主探索,合作交流,激发学生的积极性,提高学生的思维能力。
借此培养学生“动手”、“动脑”、“动口”的习惯,使学生真正成为学习的主人。
【下面,我重点说一下本课题的教学过程】五、教学过程根据教学内容的特点,我将本节课分为以下几个环节:(一)创设情境,引入新课这节课我是这样导入的(用多媒体出示问题1、问题2):1、同学们,你可能去过森林公园,看到过许多千姿百态的植物,可是你是否看见过下面的勾股树呢?你知道它是怎么画出来的吗?2、如图所示:有一棵树,受台风的影响而折断,量得其断口离地4米,树梢及地面离根3米,求树未折断前有多高?你想知道吗?今天就让我们一起来研究从结绳记数起到现在已经有几千年历史的伟大发现----勾股定理。
13.1 三角形中的边角关系 第1课时 三角形的三边关系教案沪科版数学 八年级上册
13.1 三角形中的边角关系第1课时三角形的边关系教材分析:本节首先严格定义三角形的概念,强调“首尾顺次相接”。
为了加深理解这个条件,教学时可用图形说明定义中增加这几个字的必要性。
三角形的边、顶点、内角等概念,学生在小学已接触过,容易理解,只要学生理解它们的意义就可以了,不要求学生背它们的定义。
三角形任意两边的和大于第三边由两点之间,线段最短得到,可根据学生的实际情况,适当引导学生回忆七年级上册第四章中学过的这个基本事实。
本节的例题为巩固“三角形两边的和大于第三边”而设。
学生在前面学过线段、角以及相交线、平行线等知识,他们的空间观念得到了进一步的发展,现在继续学习三角形的有关知识,就有了更为充实的基础和准备。
通过本节的学习,可以丰富和加深学生对三角形的认识,同时为学习其他图形知识打好基础。
教学目标【知识与技能】1、认识三角形,理解三角形的边关系。
2、理解等腰三角形及其相关概念。
【过程与方法】1、经历三角形边长的数量关系的探索过程,理解三角形的三边关系。
2、掌握判断三条线段能否构成一个三角形的方法,并运用此方法解决有关问题。
【情感、态度与价值观】1、带领学生探究三角形的边角关系问题,引起学生的好奇心,激发学生的求知欲。
2、帮助学生树立几何知识源于生活并服务于生活的意识。
重点难点【教学重点】理解并掌握三角形的三边关系。
【教学难点】三角形三边关系的应用教学方法讲授与探究结合法教学准备直尺、三角板、小木棍、课件教学过程一、创设情境,导入新知教师活动:通过播放图片,引导学生认识三角形师:在我们的生活中几乎随处可见三角形。
它简单,有趣,也十分有用。
三角形可以帮助我们更好认识周围世界,解决很多的实际问题。
那什么样的图形是三角形呢?教师多媒体出示:通过播放图片,引导学生认识三角形学生讨论,教师归纳得出三角形定义,由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。
教师板书:1、三角形定义:由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形二、探究新知,了解三角形师:请同学们认真阅读课本第67页内容,完成下列学习任务:1、会用几何符号表示一个三角形2、知道三角形的顶点、角、边等概念3、会把三角形按边进行分类,知道每类三角形的特征4、知道等腰三角形的腰、底边、底角、顶角等概念教师多媒体出示:师:给出一个三角形,如图,并标上字母,引导学生体会用符号来表示一个三角形的方法,认识三角形的基本元素:边、角、顶点等。
湘教版八年级数学上册第2章 2.1 三角形 第1课时 三角形的概念及三边关系
17. 一个等腰三角形的周长为 28 cm,其中一边长为 8 cm,则这个三角形其余两边的长是多少?
李明是这样解的:底边长为 8 cm,设腰长为 x cm, 则 2x+8=28,解得 x=10. 所以这个三角形其余两边的长均为 10 cm. 你认为李明的解法对吗?如果不对,正确的解法应 是什么?
解:李明的解法不全面,漏掉了当腰长是 8 cm 时的 情况.正确的解法如下:当底边长是 8 cm 时,设腰长为 x cm,则 2x+8=28,解得 x=10,符合三角形的三边关 系.所以此时其余两边的长均为 10 cm.当腰长为 8 cm 时, 设底边长为 y cm,则 8×2+y=28,解得 y=12,符合三 角形的三边关系.所以此时其余两边的长分别为 8 cm, 12 cm.
解:设第三边为 a,则 2<a<12,当 a 为整数时,a =3,4,5,6,7,8,9,10,11 九个整数,所以满足 条件的三角形有 9 个,其中等腰三角形有 2 个.
15. 在△ABC 中,AC=2,BC=5,AB 的长是奇数. (1)求△ABC 的周长; (2)判断△ABC 的形状.
解:(1)AB=5,周长为 12; (2)△ABC 是等腰三角形.
10. (2018·泰州)已知三角形两边的长分别为 1,5,第 三边长为整数,则第三边的长为_____5____.
11. △ABC 的三边长分别为 a,b,c,则|a+b-c| +|a-b+c|-|a-b-c|=__3_a_-__b_-__c___.
12. (1)将一根长为 15 cm 的铁丝围成一个三角形,其 三边长(单位:cm)分别为整数 a,b,c,且 a>b>c,请写 出一组符合上述条件的 a,b,c 的值:__7_,__6_,__2____;
华东师范大学出版社初中数学八年级上册 直角三角形三边的关系(全国一等奖)
勾股定理的教学设计(第一课时)一、教案背景(一)教材分析这节课是初中教材华师大版八年级上册第十四章第一节《勾股定理》第一课时:直角三角形三边的关系。
勾股定理是反映自然界基本规律的一条重要结论,它是直角三角形的一条重要性质,揭示了一个直角三角形三边之间的数量关系。
它把三角形有一个直角的“形”的特点,转化为三边之间的“数”的关系,它是数形结合的典范。
它可以解决许多直角三角形中的计算问题,勾股定理有着悠久的历史,在数学发展中起过重要的作用,在现实世界中有着广泛的作用。
是初中数学教学内容重点之一。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
也可了解我国古代在勾股定理研究方面的成就,激发热爱祖国,热爱祖国悠久文化的思想感情。
(二)学情分析1.通过初一一年的数学学习,初二学生能积极参与数学学习活动,对数学学习有较强的好奇心和求知欲,他们能探索具体问题中的数量关系和变化规律,也能较清楚地表达解决问题的过程及所获得的解题经验,他们愿意对数学问题进行讨论,并敢于对不懂的地方和不同的观点提出自己的疑问。
2.考虑到三角尺学生天天在用,较为熟悉,但真正仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。
3.以与勾股定理有关的人文历史知识为背景展开对勾股定理的认识,能激发学生的学习兴趣。
(三)教学设想1.课型:新授课2.设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。
3.教学思路:探索结论-得出结论-历史介绍-初步应用结论-应用结论解决简单的实际问题。
人教版数学八年级下册17.1《勾股定理(第1课时直角三角形三边的关系)》教学设计
(一)导入新课
1.教师通过展示生活中常见的直角三角形实物图片,如楼梯、房屋斜顶等,引导学生观察并思考:这些图形有什么共同特点?它们之间是否存在某种关系?
2.学生观察后,教师提出问题:直角三角形的两条直角边和斜边之间有什么关系?激发学生的好奇心,为新课的学习做好铺垫。
3.教师简要回顾已学的三角形知识,如三角形的性质、分类等,为新课勾股定理的学习打下基础。
3.讲解与演示:教师以生动的语言和形象的比喻,解释勾股定理的内涵,并通过多媒体演示勾股定理的推导过程,帮助学生理解。
4.实践环节:设计具有挑战性的数学问题,让学生运用勾股定理进行求解。同时,鼓励学生将实际问题转化为数学模型,培养他们解决实际问题的能力。
5.巩固环节:通过课堂练习、课后作业等形式,让学生反复练习勾股定理的应用,加深对定理的理解。
2.培养学生的逻辑思维能力,通过分析勾股定理的证明过程,理解其内涵。
3.培养学生的合作交流能力,通过小组讨论、分享心得,共同探讨勾股定理在实际问题中的应用。
4.培养学生的动手操作能力,通过制作直角三角形模型,验证勾股定理的正确性。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,认识到数学在生活中的重要作用。
c.对于作业中的疑问,鼓励同学们相互讨论,共同解决问题。
3.作业评价:
a.教师在批改作业时,关注学生的解题思路和方法,及时发现并纠正错误。
b.针对不同学生的作业完成情况,给予个性化的评价和指导,激发学生的学习积极性。
c.对优秀作业进行展示,鼓励同学们向榜样学习,共同提高。
4.作业反馈:
a.教师应及时向学生反馈作业情况,指出共性问题,进行针对性的讲解。
b.鼓励学生针对作业中的错误进行自我反思,查找原因,提高自主学习能力。
13.1三角形中的边角关系 第1课时 三角形中边的关系 课件2024-2025学年沪科版数学八上册
新知讲解
三角形的构成要素:
点 A,B,C 叫做这个三角形的顶点; 线段 AB,BC,CA 叫做这个三角形的边; ∠A,∠B,∠C 叫做这个三角形的内角,简称三角形角.
新知讲解
三角形的表示: 我们把这个三角形记作“△ABC”,读作“三角形ABC”.
新知讲解
三角形边的表示:
三角形的三边有时用它所对角的相应小写字母表示: 如边 BC 对着∠A,记作 A;边 CA 记作 B;边 AB 记作 C.
作业布置
【综合拓展类作业】 6.如图①,D为△ABC的边AC上任意一点,连接BD,E为BD上任 意一点,连接CE.
(1)用不等号“>”或“<”填空: AB十AC > DB十DC,DB十DC >
EB+ EC;
作业布置
【综合拓展类作业】 (2)如图②,M,N是△ABC内任意两点,试探索AB+AC与BM十 MN+NC之间的大小关系,并写出探究过程.
解:(2)延长BM交AC于点D,延长CN交BD于点E. 由(1)可得AB+AC> DB+DC> EB+ EC. ∵EB+EC=EM+BM+EN+NC=(EM+EN)+BM+NC, EM+EN>MN, ∴EB+ EC>MN+BM+NC, ∴AB+AC>BM+MN+NC.
新知讲解
任务二:三角形的分类 三角形的分类:
三角形中,三条边互不相等的三角形叫做不等边三角形; 有两条边相等的三角形叫做等腰三角形; 三条边都相等的三角形叫做等边三角形, 又叫做正三角形.
新知讲解
等腰三角形:
三角形三边关系教案范文(通用7篇)
三角形三边关系教案三角形三边关系教案范文(通用7篇)作为一位无私奉献的人民教师,常常要根据教学需要编写教案,借助教案可以让教学工作更科学化。
那么什么样的教案才是好的呢?下面是小编帮大家整理的三角形三边关系教案范文(通用7篇),仅供参考,大家一起来看看吧。
三角形三边关系教案1课件简介:第二课时三角形的三边关系教学目标1、经历动手操作、探索发现、猜想验证,发现揭示并初步应用三角形三边关系即“三角形的任何两边之和大于第三边”的活动过程,发展空间观念,培养初步的逻辑思维能力、动手操作能力,体验“做数学”“用数学”的乐趣。
2、经历探索、发现、应用三角形的三边关系的过程,增强勇于探索的精神,体会数学的实用价值,感受数学的严谨和探究数学成功的喜悦,增强数学应用意识和交流合作精神,提高学生的数学素养。
创设情境,激发兴趣姚明是同学们熟悉而喜爱的篮球明星,他高大而帅气,有人说:“姚明特厉害,他一步就能迈3米”,对于这个说法,你信不信呢?(背景资料:姚明身高2、26米,体重140、6kg,腿长约1、30米)实验探究1、分组实验:每组准备四根木条或硬纸条,分别长为4cm、6cm、7cm、11cm尝试实验从其中任取三根首尾顺次相接来摆三角形,试试是否成功?做好实验记录、2、交流发现:问题1:是不是任意三条线段都能组成三角形呢?说说哪次试验是失败的,为什么?问题2:从实验中你能发现什么呢?三角形三边关系教案2教学内容:四年级下册第62面教学目标:1、学生能够理解两点之间线段最短及两点间距离的含义,并在操作、观察、归纳等活动中发现、理解三角形中任意两边之和大于第三边的特性。
2、培养学生动手实践和观察、归纳的能力。
3、能够运用知识解决实际问题。
教学过程:一、创设情境,理解两点间的距离。
1、出示三角形ABC:从上一节课的学习中我们知道三角形有哪些特性?2、三角形里藏着的知识还多着呢,今天这节课我们继续研究三角形。
3、从A点到C点,可以怎么走?相同速度时走哪条路更快到达C 点?4、如果增加一条从A点到C点的线,还是AC最短吗?5、你怎么证明?(可以测量)6、从比较中你能得出什么结论?(即两点间线段的长度最短,线段的长度就是两点间的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3cm、5cm、6cm
2cm、8cm、8cm
能围成 等腰三角形
不能围成 等腰三角形
4
8分
再拿一根几分米(取整分米)长的木条就可以钉成三角形? 根据三角形的三条边的长度关系:
ɑ + 8 ﹥ 12 8 + 12 ﹥ ɑ
所以,第三条边的长度要大于4,小于20。 答:再拿一根长大于4dm,小于20dm的木条就可以钉成三角形。
知识 方法
情感
三角形的三边关系
明明
丽丽
围成一个三角形骨架需要几根小棒?
研究一
任取3根小棒,动手围一围, 一定能围成三角形吗?
研究二
什么情况下3根小棒 围不成三角形?
1、从你的小棒中找出围不成三角形的3根小棒, 并记录它们的长度。 2、想一想,这3根小棒为什么围不成三角形呢? 在小组内交流交流。
研究三
在什么情况下,3根小棒 能围成三角形呢?
结
论:
三角形任意两边长度的和大于第三边。
你能用字母表示出三角形三边之间的关系吗?
2分
ɑ
c
ɑ+ b > c
b + c > ɑ
b
ɑ + c > b
5分
每组中的三根小棒能围成三角形吗?
想一想,怎样才能较快地判断出三条线段是否能围成三角形?
只要较短的两条边的和,大于第三条边就能围成三角形。
6分 3.哪组小棒能围成等腰三角形,连一连。