化工原理-第10章气液传质设备(1)

合集下载

化工原理第四版陈敏恒答案

化工原理第四版陈敏恒答案

化工原理陈敏恒第三版上册答案【篇一:化工原理答案第三版思考题陈敏恒】lass=txt>传质是体系中由于物质浓度不均匀而发生的质量转移过程。

3.在传质理论中有代表性的三个模型分别为双膜理论、溶质渗透理论、表面更新理论。

5. 根据双膜理论两相间的传质阻力主要集中在相界面两侧的液膜和气膜中,增加气液两相主体的湍流程度,传质速率将增大。

8、操作中精馏塔,保持f,q,xf,d不变,(1)若采用回流比r小于最小回流比rmin,则xd减小,xw增大(2)若r增大,则xd增大, xw减小 ,l/v增大。

9、连续精馏塔操作时,增大塔釜蒸汽用量,而回流量及进料状态f,xf,q不变,则l/v变小,xd变小,xw变小。

10、精馏塔设计时采用的参数f,q,xf,d,xd,r均为定值,若降低塔顶回流液的温度,则塔内实际下降液体量增大,塔内实际上升蒸汽量增大,精馏段液汽比增大,所需理论板数减小。

11、某精馏塔的设计任务:原料为f,xf,要求塔顶为xd,塔底为xw,设计时若已定的塔釜上升蒸汽量v’不变,加料热状况由原来的饱和蒸汽改为饱和液体加料,则所需理论板数nt 增加,精馏段上升蒸汽量v 减少,精馏段下降液体量l 减少,提馏段下降液体量l’ 不变。

(增加、不变、减少)不变,增大xf,,则:d 12、操作中的精馏塔,保持f,q,xd,xw,v’,变大,r变小,l/v变小(变大、变小、不变、不确定)1.何种情况下一般选择萃取分离而不选用蒸馏分离?萃取原理: 原理利用某溶质在互不相溶的溶剂中的溶解度利用某溶质在互不相溶的溶剂中的溶解度互不相溶的溶剂中的不同,用一种溶剂(溶解度大的)不同,用一种溶剂(溶解度大的)把溶质从另一种溶剂(溶解度小的)中提取出来,从另一种溶剂(溶解度小的)中提取出来,再用分液将它们分离开来。

分液将它们分离开来再用分液将它们分离开来。

萃取适用于微溶的物质跟溶剂分离,蒸馏原理:利用互溶的液体混合物中各组分的沸点不同,利用互溶的液体混合物中各组分的沸点不同,给液体混合物加热,使其中的某一组分变成蒸气再给液体混合物加热,冷凝成液体,从而达到分离提纯的目的。

化工原理实验课后思考题

化工原理实验课后思考题

5流体流动阻力的测定实验着的,又在什么情况下它应该关闭的?答:平衡阀是用来改变流经阀门的流动阻力以达到调节流量的目的,其作用对象是系统的阻力,平衡阀能够将新的水量按照设计计算的比例平衡分配,各支路同时按比例增减,仍然满足当前气候需要下的部份负荷的流量需求,起到平衡的作用。

平衡阀在投运时是打开的,正常运行时是关闭的。

(2)为什么本实验数据须在对数坐标纸上进行标绘?答:因为对数可以把乘、除变成加、减,用对数坐标既可以把大数变成小数,又可以把小数扩大取值范围,使坐标点更为集中清晰,作出来的图一目了然。

(3)涡轮流量计的测量原理时是什么,在安装时应注意哪些问题?答:涡轮流量计通过流动带动涡轮转动,涡轮的转动通过电磁感应转换成电信号,涡轮转速和流量有正比关系,通过测量感应电流大小即可得到流量大小。

涡轮流量计在安装时必须保证前后有足够的直管稳定段和水平度。

(4)如何检验系统内的空气已经被排除干净?答:可通过观察离心泵进口处的真空表和出口处压力表的读数,在开机前若真空表和压力表的读数均为零,表明系统内的空气已排干净;(5)结合本实验,思考一下量纲分析方法在处理工程问题时的优点和局限性(1)在U形压差计上装设“平衡阀”有何作用?在什么情况下它是开答:优点:通过将变量组合成无量纲群,从而减少实验自变量的个数,大幅地减少实验次数,避免大量实验工作量。

具有由小及大由此及彼的功效。

局限性:并不能普遍适用。

6离心泵特性曲线的测定实验(1)离心泵在启动前为什么要引水灌泵?如果已经引水灌泵了,离心泵还是不能正常启动,你认为是什么原因?答:(1)防止气缚现象的发生(2)水管中还有空气没有排除开阀门时,扬程极小,电机功率极大,可能会烧坏电机(2)为什么离心泵在启动前要关闭出口阀和仪表电源开关?答:防止电机过载。

因为电动机的输出功率等于泵的轴功率N。

根据离心泵特性曲线,当Q=0时N最小,电动机输出功率也最小,不易被烧坏。

而停泵时,使泵体中的水不被抽空,另外也起到保护泵进口处底阀的作用。

化工原理下册PPT课件

化工原理下册PPT课件

xe
y m
0.1 0.94
0.106
即 x < xe,表明液相未饱和 发生吸收 致使气相被吸收为液相。
第14页/共50页
反之,若 y = 0.05 的含氨混合气 与液相 x = 0.1 的氨水接触,
则 y<ye , 或 x>xe ,
发生解
此时液相中部分氨将转入气相 吸过程
注意点:要搞清实际浓度与平衡浓度,二者不能混淆
第2页/共50页
第一节 概述
一、吸收过程
目的:气体混合物分离 依据:溶解度差异 应用: (1)制取液体产品 如三酸制备
(2)回收有价值的物质 如煤气中取苯 (3)除去有害成分以净化气体 环保中废气治理
二、过程实施与经济性
1、过程实施——吸收与解吸流程: 煤气脱苯
第3页/共50页
①一个完整的吸收分离过程一般包括吸收和解吸两个部分
吸收操作费用 溶剂损失——溶剂的挥发和变质 溶剂再生费用—是吸收操作经济性的体现
第7页/共50页
三、本章讨论要点 1、 单组分物理吸收 2、 微分接触设备——填料塔 3、填料吸收塔的设计与操作
本章重点:填料吸收塔的塔高计算 难点:传质过程有关概念
第8页/共50页
比较:
第二节 气液相平
衡传热
吸收
冷热流体间的热量传递、 气液两相间的物质传递 推动力是两流体间的温度差 两相间的浓度差?
推动力为实际浓度与平衡浓度的偏离程度
实际浓度
气相浓度 y
塔内某一截面处
液相浓度 x
平衡浓度
ye = mx y
xe m
(y,x) y-ye
xe-x
由图可见吸收推动力并非(y-x) 而是 y-ye 或 xe-x 即实际浓度与平衡浓度的偏离程度

《化工原理》课程教学大纲

《化工原理》课程教学大纲
《化工原理》课程教学大纲
课程名称:化工原理
课程类型:专业基础课
总 学 时:108讲课学时:108
学 分:6
适用对象:化学工程与工艺专业、制药工程专业
先修课程:高等教学、物理学、物理化学
一、课程性质、目的和任务
化工原理课程是化学工程、化工工艺、生物化工、环境工程等类专业的一门主干课,为学生在具备了必要的高等教学、物理学、物理化学、计算机技术(包括算法语言及其应用)等基础知识后必修的技术基础课。
10.气液传质设备
板式塔和填实塔的典型结构、分类和特点;流体力学性能与传质性能。
了解板式塔和填料塔的典型结构、分类和特点; 熟练掌握板式塔流体力学性能计算及操作极限校验方法,塔板操作负荷性能图的绘制;熟练掌握板式塔流体力学性能定性分析及计算。
11萃取
液液萃取概述;三角形相图及其在单级萃取中的应用;单级萃取计算;最少溶剂的计算;萃取剂的选择;单级萃取、多级错流和多级逆流萃取的流程和计算;萃取设备简介。
四、课程的重点和难点
绪论
重点是单元操作的物料衡算和热量衡算及工程观点的建立。
第一章流体流动
重点:流体静力学基本方程及其应用;;牛顿粘性定律;流体流动连续性方程和机械能衡算方程;管路计算。
难点:管内流动的阻力损失的计算;管路计算。
第二章流体输送机械
重点:离心泵操作原理;离心泵的工作点和流量调节;离心泵安装高度的确定;离心泵的选用。
第十章气液传质设备
重点:流体力学性能与传质性能;塔板操作负荷性能图的绘制。
难点:板式塔流体力学性能定性分析及计算。
第十一章萃取
重点:三角形相图及其在单级萃取中的应用;单级萃取计算。
难点:三角形相图及应用。
第十二章干燥

复习资料化工原理下试卷答案2

复习资料化工原理下试卷答案2

第七章质量传递基础掌握一些基本概念:1、什么叫分子扩散?什么叫对流扩散?答:由于分子的无规则热运动而造成的物质传递现象称为分子扩散,简称为扩散。

对流扩散即湍流主体与相界面之间的分子扩散与涡流扩散两种传质作用的总称。

2、什么是菲克扩散定律?写出表达式3、简述双膜理论的基本论点?答:其基本论点如下:1)相互接触的气,液流体间存在着定态的相界面,界面两侧分别存在气膜和液膜,吸收质以分子扩散方式通过此两膜层。

2)在相界面处,气液两相处于平衡。

(3)膜内流体呈滞流流动,膜外流体呈湍流流动,全部组成变化集中在两个有效膜层内。

4、双膜理论是将整个相际传质过程简化为__________。

经由气、液两膜层的分子扩散过程5、掌握相组成的表示方法:试题某吸收塔的操作压强为110 KPa,温度为25 ℃,处理焦炉气1800 m3/h。

焦炉气中含苯156 kg/h,其他为惰性组分。

求焦炉气中苯的摩尔分数和物质的量之比(即摩尔比)。

第八章气体吸收一、填空题1、吸收因数S可表示为Mv/L,它是_平衡线斜率m_与_操作线斜率L/V_的比值。

2、用水吸收氨-空气混合气体中的氨,它是属于_气膜_控制的吸收过程,对于该过程来说,要提高吸收速率,则应该设法减小_气膜阻力_。

3、在吸收过程中,由于吸收质不断进入液相,所以混合气体量由塔底至塔顶逐渐减少。

在计算塔径时一般应以_塔底_的气量为依据。

4、吸收操作的依据是_各组分在同一种溶剂中溶解度的差异_,以达到分离气体混合物的目的。

混合气体中,能够溶解于溶剂中的组分称为_吸收质_或_溶质_。

5、若某气体在水中的亨利系数E值很大,说明该气体为_难溶_气体。

在吸收操作中_增加_压力和_降低_温度可提高气体的溶解度,有利于吸收。

6、用气相浓度△y为推动力的传质速率方程有两种,以传质分系数表达的速率方程为__ __N A =k y(y-y i)__,以传质总系数表达的速率方程为__N A =K y(y-y*)___。

各章问答题

各章问答题

化工原理各章问答题第1章流体流动1. 什么是流体稳定流动,什么是流体流动的连续性方程,它是如何得到的,能够解决什么问题?2. 什么叫化工单元操作?常用的化工单元操作有哪些?3. 在相同管径的两条园形管道中,同时分别流动着油和清水(μ油>μ水),若雷诺数相同,且密度相近,试判断油速大还是水速大?为什么?4. 何谓层流流动?何谓湍流流动?用什么量来区分它们?5. 输送相同体积的水和油,哪一种能耗较大,为什么?6. 何为等压面,构成等压面的条件是什么?7. 流体流动阻力有几种表现形式,产生阻力的主要原因是什么?应分别如何计算?8. 一定量的液体在园形直管内作稳定连续滞流流动。

若管长及液体的物性不变,而管径减至原来的一半,问因流动阻力而产生的能量损失为原来的若干倍?9. 何为绝对压力、表压力、真空度,它们的关系为何?10.何为流体静力学基本方程,其适用的条件是什么,由流体静力学基本方程可以得到什么结论?11.何为机械能衡算方程,应用时应注意什么?12.何为牛顿粘性定律,何为粘度,其意义为何,温度对粘度如何影响?13.试根据莫狄磨擦系数图的4个区域,讨论各个区域影响磨擦系数的因素14.根据流体力学原理(柏努利方程)制作的几种流量计有哪几种?第2章流体输送机械1. 离心泵起动时,为什么要把出口阀关闭?2. 离心泵为什么会出现气蚀现象?3. 何谓离心泵的“气缚”和“气蚀”现象,它们对泵的操作有何危害?应如何防止?4. 原用以输送水的离心泵,现改用来输送相对密度为1.2的水溶液(而其粘度与水相近)。

若管路布局不变,泵的前后两个开口容器液面间的垂直距离不变,试说明泵的流量、扬程、出口处压力表的读数和轴功率有何变化?5. 何为离心泵的性能曲线,它们是在什么条件下绘制得到的?6. 现想测定某一离心泵的性能曲线,将此泵装在不同的管路上进行测试时,所得性能曲线是否一样?为什么?7. 当离心泵启动后不吸液,其原因主要有哪些?8. 按图写出离心泵开泵及停泵操作程序。

气液传质设备概述

气液传质设备概述

气液传质设备概述
气液传质设备是一种用于将气体和液体之间进行物质传递的装置。

在工业生产过程中,气液传质设备广泛应用于化工、环保、食品等领域,用于进行气体吸收、液体萃取、分离和精馏等操作。

气液传质设备通常包括吸收塔、萃取塔、循环组件和分离装置等部分。

其工作原理是利用气体和液体之间的接触与反应,通过物质的扩散、吸附和溶解,实现气体和液体中物质的传递和分离。

在气液传质设备中,液体一般是以流化床或填料形式存在,以增加表面积和接触效率;气体则通过喷嘴或分布装置的方式,与液体充分接触并进行传质操作。

气液传质设备具有高效、节能、环保等特点,对环境污染的处理有着重要的作用。

在化工生产中,石油化工、氯碱化工、化工废水处理等过程中,气液传质设备能够有效去除有害气体和重金属离子,净化废气和废水,保护环境和人体健康。

随着气液传质技术的不断发展,气液传质设备的类型和规格也在不断丰富和完善,越来越多的新型气液传质设备正在不断涌现。

未来,气液传质设备将继续发挥重要作用,为工业生产和环保事业做出更大的贡献。

化工原理各章节知识点总结

化工原理各章节知识点总结

第一章流体流动质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多.连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质.拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数如位移、速度等与时间的关系.欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化.定态流动流场中各点流体的速度u、压强p不随时间而变化.轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果.流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果.系统与控制体系统是采用拉格朗日法考察流体的.控制体是采用欧拉法考察流体的.理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零. 粘性的物理本质分子间的引力和分子的热运动.通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主.气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主.总势能流体的压强能与位能之和.可压缩流体与不可压缩流体的区别流体的密度是否与压强有关.有关的称为可压缩流体,无关的称为不可压缩流体.伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变. 平均流速流体的平均流速是以体积流量相同为原则的.动能校正因子实际动能之平均值与平均速度之动能的比值.均匀分布同一横截面上流体速度相同.均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度,故沿该截面势能分布应服从静力学原理.层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性.稳定性与定态性稳定性是指系统对外界扰动的反应.定态性是指有关运动参数随时间的变化情况.边界层流动流体受固体壁面阻滞而造成速度梯度的区域.边界层分离现象在逆压强梯度下,因外层流体的动量来不及传给边界层,而形成边界层脱体的现象.雷诺数的物理意义雷诺数是惯性力与粘性力之比.量纲分析实验研究方法的主要步骤:①经初步实验列出影响过程的主要因素;②无量纲化减少变量数并规划实验;③通过实验数据回归确定参数及变量适用范围,确定函数形式.摩擦系数层流区,λ与Re成反比,λ与相对粗糙度无关;一般湍流区,λ随Re增加而递减,同时λ随相对粗糙度增大而增大;充分湍流区,λ与Re无关,λ随相对粗糙度增大而增大.完全湍流粗糙管当壁面凸出物低于层流内层厚度,体现不出粗糙度过对阻力损失的影响时,称为水力光滑管.Re很大,λ与Re无关的区域,称为完全湍流粗糙管.同一根实际管子在不同的Re下,既可以是水力光滑管,又可以是完全湍流粗糙管.局部阻力当量长度把局部阻力损失看作相当于某个长度的直管,该长度即为局部阻力当量长度.毕托管特点毕托管测量的是流速,通过换算才能获得流量.驻点压强在驻点处,动能转化成压强称为动压强,所以驻点压强是静压强与动压强之和.孔板流量计的特点恒截面,变压差.结构简单,使用方便,阻力损失较大.转子流量计的特点恒流速,恒压差,变截面.非牛顿流体的特性塑性:只有当施加的剪应力大于屈服应力之后流体才开始流动.假塑性与涨塑性:随剪切率增高,表观粘度下降的为假塑性.随剪切率增高,表观粘度上升的为涨塑性.触变性与震凝性:随剪应力t作用时间的延续,流体表观粘度变小,当一定的剪应力t所作用的时间足够长后,粘度达到定态的平衡值,这一行为称为触变性.反之,粘度随剪切力作用时间延长而增大的行为则称为震凝性.粘弹性:不但有粘性,而且表现出明显的弹性.具体表现如:爬杆效应、挤出胀大、无管虹吸.第二章流体输送机械管路特性方程管路对能量的需求,管路所需压头随流量的增加而增加.输送机械的压头或扬程流体输送机械向单位重量流体所提供的能量J/N. 离心泵主要构件叶轮和蜗壳.离心泵理论压头的影响因素离心泵的压头与流量,转速,叶片形状及直径大小有关.叶片后弯原因使泵的效率高.气缚现象因泵内流体密度小而产生的压差小,无法吸上液体的现象.离心泵特性曲线离心泵的特性曲线指He~qV,η~qV, Pa~qV.离心泵工作点管路特性方程和泵的特性方程的交点.离心泵的调节手段调节出口阀,改变泵的转速.汽蚀现象液体在泵的最低压强处叶轮入口汽化形成气泡,又在叶轮中因压强升高而溃灭,造成液体对泵设备的冲击,引起振动和侵蚀的现象.必需汽蚀余量NPSHr泵入口处液体具有的动能和压强能之和必须超过饱和蒸汽压强能多少离心泵的选型类型、型号①根据泵的工作条件,确定泵的类型;②根据管路所需的流量、压头,确定泵的型号.正位移特性流量由泵决定,与管路特性无关.往复泵的调节手段旁路阀、改变泵的转速、冲程.离心泵与往复泵的比较流量、压头前者流量均匀,随管路特性而变,后者流量不均匀,不随管路特性而变.前者不易达到高压头,后者可达高压头.前者流量调节用泵出口阀,无自吸作用,启动时关出口阀;后者流量调节用旁路阀,有自吸作用,启动时开足管路阀门.通风机的全压、动风压通风机给每立方米气体加入的能量为全压Pa=J/m3,其中动能部分为动风压.真空泵的主要性能参数①极限真空;②抽气速率.第三章液体的搅拌搅拌目的均相液体的混合,多相物体液液,气液,液固的分散和接触,强化传热.搅拌器按工作原理分类搅拌器按工作原理可分为旋桨式,涡轮式两大类.旋桨式大流量,低压头;涡轮式小流量,高压头.混合效果搅拌器的混合效果可以用调匀度、分隔尺度来度量.宏观混合总体流动是大尺度的宏观混合;强烈的湍动或强剪切力场是小尺度的宏观混合.微观混合只有分子扩散才能达到微观混合.总体流动和强剪切力场虽然本身不是微观混合,但是可以促进微观混合,缩短分子扩散的时间.搅拌器的两个功能产生总体流动;同时形成湍动或强剪切力场.改善搅拌效果的工程措施改善搅拌效果可采取增加搅拌转速、加挡板、偏心安装搅拌器、装导流筒等措施.第四章流体通过颗粒层的流动非球形颗粒的当量直径球形颗粒与实际非球形颗粒在某一方面相等,该球形的直径为非球形颗粒的当量直径,如体积当量直径、面积当量直径、比表面积当量直径等.形状系数等体积球形的表面积与非球形颗粒的表面积之比.分布函数小于某一直径的颗粒占总量的分率.频率函数某一粒径范围内的颗粒占总量的分率与粒径范围之比.颗粒群平均直径的基准颗粒群的平均直径以比表面积相等为基准.因为颗粒层内流体为爬流流动,流动阻力主要与颗粒表面积的大小有关.床层比表面单位床层体积内的颗粒表面积.床层空隙率单位床层体积内的空隙体积.数学模型法的主要步骤数学模型法的主要步骤有①简化物理模型②建立数学模型③模型检验,实验确定模型参数.架桥现象尽管颗粒比网孔小,因相互拥挤而通不过网孔的现象.过滤常数及影响因素过滤常数是指 K、qe.K与压差、悬浮液浓度、滤饼比阻、滤液粘度有关;qe与过滤介质阻力有关.它们在恒压下才为常数.过滤机的生产能力滤液量与总时间过滤时间和辅助时间之比.最优过滤时间使生产能力达到最大的过滤时间.加快过滤速率的途径①改变滤饼结构;②改变颗粒聚集状态;③动态过滤.第五章颗粒的沉降和流态化曳力表面曳力、形体曳力曳力是流体对固体的作用力,而阻力是固体壁对流体的力,两者为作用力与反作用力的关系.表面曳力由作用在颗粒表面上的剪切力引起,形体曳力由作用在颗粒表面上的压强力扣除浮力的部分引起.自由沉降速度颗粒自由沉降过程中,曳力、重力、浮力三者达到平衡时的相对运动速度.离心分离因数离心力与重力之比.旋风分离器主要评价指标分离效率、压降.总效率进入分离器后,除去的颗粒所占比例.粒级效率某一直径的颗粒的去除效率.分割直径粒级效率为50%的颗粒直径.流化床的特点混合均匀、传热传质快;压降恒定、与气速无关.两种流化现象散式流化和聚式流化.聚式流化的两种极端情况腾涌和沟流.起始流化速度随着操作气速逐渐增大,颗粒床层从固定床向流化床转变的空床速度.带出速度随着操作气速逐渐增大,流化床内颗粒全被带出的空床速度.气力输送利用气体在管内的流动来输送粉粒状固体的方法.第六章传热传热过程的三种基本方式直接接触式、间壁式、蓄热式.载热体为将冷工艺物料加热或热工艺物料冷却,必须用另一种流体供给或取走热量,此流体称为载热体.用于加热的称为加热剂;用于冷却的称为冷却剂.三种传热机理的物理本质传导的物理本质是分子热运动、分子碰撞及自由电子迁移;对流的物理本质是流动流体载热;热辐射的物理本质是电磁波. 间壁换热传热过程的三个步骤热量从热流体对流至壁面,经壁内热传导至另一侧,由壁面对流至冷流体.导热系数物质的导热系数与物质的种类、物态、温度、压力有关.热阻将传热速率表达成温差推动力除以阻力的形式,该阻力即为热阻.推动力高温物体向低温传热,两者的温度差就是推动力.流动对传热的贡献流动流体载热.强制对流传热在人为造成强制流动条件下的对流传热.自然对流传热因温差引起密度差,造成宏观流动条件下的对流传热.自然对流传热时,加热、冷却面的位置应该是加热面在下,制冷面在上,这样有利于形成充分的对流流动.努塞尔数、普朗特数的物理意义努塞尔数的物理意义是对流传热速率与导热传热速率之比.普朗特数的物理意义是动量扩散系数与热量扩散系数之比,在α关联式中表示了物性对传热的贡献.α关联式的定性尺寸、定性温度用于确定关联式中的雷诺数等准数的长度变量、物性数据的温度.比如,圆管内的强制对流传热,定性尺寸为管径d、定性温度为进出口平均温度.大容积自然对流的自动模化区自然对流α与高度h无关的区域.液体沸腾的两个必要条件过热度tw-ts、汽化核心.核状沸腾汽泡依次产生和脱离加热面,对液体剧烈搅动,使α随Δt急剧上升.第七章蒸发蒸发操作及其目的蒸发过程的特点二次蒸汽溶液沸点升高疏水器气液两相流的环状流动区域加热蒸汽的经济性蒸发器的生产强度提高生产强度的途径提高液体循环速度的意义节能措施杜林法则多效蒸发的效数在技术经济上的限制第八章气体吸收吸收的目的和基本依据吸收的目的是分离气体混合物,吸收的基本依据是混合物中各组份在溶剂中的溶解度不同.主要操作费溶剂再生费用,溶剂损失费用.解吸方法升温、减压、吹气.选择吸收溶剂的主要依据溶解度大,选择性高,再生方便,蒸汽压低损失小.相平衡常数及影响因素m、E、H均随温度上升而增大,E、H与总压无关,m 反比于总压.漂流因子P/PBm表示了主体流动对传质的贡献.气、液扩散系数的影响因素气体扩散系数与温度、压力有关;液体扩散系数与温度、粘度有关.传质机理分子扩散、对流传质.气液相际物质传递步骤气相对流,相界面溶解,液相对流.有效膜理论与溶质渗透理论的结果差别有效膜理论获得的结为k∝D,溶质渗透理论考虑到微元传质的非定态性,获得的结果为k∝.传质速率方程式传质速率为浓度差推动力与传质系数的乘积.因工程上浓度有多种表达,推动力也就有多种形式,传质系数也有多种形式,使用时注意一一对应.传质阻力控制传质总阻力可分为两部分,气相阻力和液相阻力.当mky<<kx 时,为气相阻力控制;当mky>>kx时,为液相阻力控制.低浓度气体吸收特点①G、L为常量,②等温过程,③传质系数沿塔高不变. 建立操作线方程的依据塔段的物料衡算.返混少量流体自身由下游返回至上游的现象.最小液气比完成指定分离任务所需塔高为无穷大时的液气比.NOG的计算方法对数平均推动力法,吸收因数法,数值积分法.HOG的含义塔段为一个传质单元高,气体流经一个传质单元的浓度变化等于该单元内的平均推动力.常用设备的HOG值~m.吸收剂三要素及对吸收结果的影响吸收剂三要素是指t、x2、L.t↓,x2↓,L↑均有利于吸收.化学吸收与物理吸收的区别溶质是否与液相组分发生化学反应.增强因子化学吸收速率与物理吸收速率之比.容积过程慢反应使吸收成容积过程.表面过程快反应使吸收成表面过程.第九章液体精馏蒸馏的目的及基本依据蒸馏的目的是分离液体混合物,它的基本依据原理是液体中各组分挥发度的不同.主要操作费用塔釜的加热和塔顶的冷却.双组份汽液平衡自由度自由度为2P一定,t~x或y;t一定,P~x或y;P 一定后,自由度为1.泡点泡点指液相混合物加热至出现第一个汽泡时的温度.露点露点指气相混合物冷却至出现第一个液滴时的温度.非理想物系汽液相平衡关系偏离拉乌尔定律的成为非理想物系.总压对相对挥发度的影响压力降低,相对挥发度增加.平衡蒸馏连续过程且一级平衡.简单蒸馏间歇过程且瞬时一级平衡.连续精馏连续过程且多级平衡.间歇精馏时变过程且多级平衡.特殊精馏恒沸精馏、萃取精馏等加第三组分改变α.实现精馏的必要条件回流液的逐板下降和蒸汽逐板上升,实现汽液传质、高度分离.理论板离开该板的汽液两相达到相平衡的理想化塔板.板效率经过一块塔板之后的实际增浓与理想增浓之比.恒摩尔流假设及主要条件在没有加料、出料的情况下,塔段内的汽相或液相摩尔流率各自不变.组分摩尔汽化热相近,热损失不计,显热差不计.加料热状态参数q值的含义及取值范围一摩尔加料加热至饱和汽体所需热量与摩尔汽化潜热之比,表明加料热状态.取值范围:q<0过热蒸汽,q=0饱和蒸汽,0<q<1汽液混和物,q=1饱和液体,q>1冷液.建立操作线的依据塔段物料衡算.操作线为直线的条件液汽比为常数恒摩尔流.最优加料位置在该位置加料,使每一块理论板的提浓度达到最大.挟点恒浓区的特征汽液两相浓度在恒浓区几乎不变.芬斯克方程求取全回流条件下,塔顶塔低浓度达到要求时的最少理论板数.最小回流比达到指定分离要求所需理论板数为无穷多时的回流比,是设计型计算特有的问题.最适宜回流比使设备费、操作费之和最小的回流比.灵敏板塔板温度对外界干扰反映最灵敏的塔板,用于预示塔顶产品浓度变化.间歇精馏的特点操作灵活、适用于小批量物料分离.恒沸精馏与萃取精馏的主要异同点相同点:都加入第三组份改变相对挥发度;区别:①前者生成新的最低恒沸物,加入组分从塔顶出;后者不形成新恒沸物,加入组分从塔底出.②操作方式前者可间歇,较方便.③前者消耗热量在汽化潜热,后者在显热.多组分精馏流程方案选择选择多组分精馏的流程方案需考虑①经济上优化;②物性;③产品纯度.关键组分对分离起控制作用的两个组分为关键组分,挥发度大的为轻关键组分;挥发度小的为重关键组分.清晰分割法清晰分割法假定轻组分在塔底的浓度为零,重组分在塔顶的浓度为零.全回流近似法全回流近似法假定塔顶、塔底的浓度分布与全回流时相近第十章气液传质设备板式塔的设计意图①气液两相在塔板上充分接触,②总体上气液逆流,提供最大推动力.对传质过程最有利的理想流动条件总体两相逆流,每块板上均匀错流.三种气液接触状态鼓泡状态:气量低,气泡数量少,液层清晰.泡沫状态:气量较大,液体大部分以液膜形式存在于气泡之间,但仍为连续相.喷射状态:气量很大,液体以液滴形式存在,气相为连续相.转相点由泡沫状态转为喷射状态的临界点.板式塔内主要的非理想流动液沫夹带、气泡夹带、气体的不均匀流动、液体的不均匀流动.板式塔的不正常操作现象夹带液泛、溢流液泛、漏液.筛板塔负荷性能图将筛板塔的可操作范围在汽、液流量图上表示出来. 湿板效率考虑了液沫夹带影响的塔板效率.全塔效率全塔的理论板数与实际板数之比.操作弹性上、下操作极限的气体流量之比.常用塔板类型筛孔塔板、泡罩塔板、浮阀塔板、舌形塔板、网孔塔板等. 填料的主要特性参数①比表面积a,②空隙率ε,③填料的几何形状.常用填料类型拉西环,鲍尔环,弧鞍形填料,矩鞍形填料,阶梯形填料,网体填料等.载点填料塔内随着气速逐渐由小到大,气液两相流动的交互影响开始变得比较显着时的操作状态为载点.泛点气速增大至出现每米填料压降陡增的转折点即为泛点.最小喷淋密度保证填料表面润湿、保持一定的传质效果所需的液体速度. 等板高度HETP分离效果相当于一块理论板的填料层高度.填料塔与板式塔的比较填料塔操作范围小,宜处理不易聚合的清洁物料,不易中间换热,处理量较小,造价便宜,较宜处理易起泡、腐蚀性、热敏性物料,能适应真空操作.板式塔适合于要求操作范围大,易聚合或含固体悬浮物,处理量较大,设计要求比较准确的场合.第十一章液液萃取萃取的目的及原理目的是分离液液混合物.原理是混合物各组分溶解度的不同.溶剂的必要条件①与物料中的B组份不完全互溶,②对A组份具有选择性的溶解度.临界混溶点相平衡的两相无限趋近变成一相时的组成所对应的点.和点两股流量的平均浓度在相图所对应的点.差点和点的流量减去一股流量后剩余的浓度在相图所对应的点.分配曲线相平衡的yA ~ xA曲线.最小溶剂比当萃取相达到指定浓度所需理论级为无穷多时,相应的S/F为最小溶剂比.选择性系数β=yA/yB/xA/xB.操作温度对萃取的影响温度低,B、S互溶度小,相平衡有利些,但粘度大等对操作不利,所以要适当选择.第十二章其他传质分离方法溶液结晶操作的基本原理溶液的过饱和.造成过饱和度方法冷却,蒸发浓缩.晶习各晶面速率生长不同,形成不同晶体外形的习性.溶解度曲线结晶体与溶液达到相平衡时,溶液浓度随温度的变化曲线. 超溶解度曲线溶液开始析出结晶的浓度大于溶解度,溶液浓度随温度的变化曲线为超溶解度曲线,超溶解度曲线在溶解度曲线之上.溶液结晶的两个阶段晶核生成,晶体成长.晶核的生成方式初级均相成核,初级非均相成核,二次成核.再结晶现象小晶体溶解与大晶体成长同时发生的现象.过饱和度对结晶速率的影响过饱和度ΔC大,有利于成核;过饱和度ΔC 小,有利于晶体成长.吸附现象流体中的吸附质借助于范德华力而富集于吸附剂固体表面的现象.物理吸附与化学吸附的区别物理吸附靠吸附剂与吸附质之间的范德华力,吸附热较小;化学吸附靠吸附剂与吸附质之间的化学键合,吸附热较大. 吸附分离的基本原理吸附剂对流体中各组分选择性的吸附.常用的吸附解吸循环变温吸附,变压吸附,变浓度吸附,置换吸附.常用吸附剂活性炭,硅胶,活性氧化铝,活性土,沸石分子筛,吸附树脂等. 吸附等温线在一定的温度下,吸附相平衡浓度随流体相浓度变化的曲线. 传质内扩散的四种类型分子扩散,努森扩散,表面扩散,固体晶体扩散. 负荷曲线固定床吸附器中,固体相浓度随距离的变化曲线称为负荷曲线. 浓度波固定床吸附器中,流体相浓度随距离的变化曲线称为浓度波.透过曲线吸附器出口流体相浓度随时间的变化称为透过曲线.透过点透过曲线中,出口浓度达到5%进口浓度时,对应的点称为透过点.饱和点透过曲线中,出口浓度达到95%进口浓度时,对应的点称为饱和点. 膜分离基本原理利用固体膜对流体混合物各组分的选择性渗透,实现分离.分离过程对膜的基本要求截留率,透过速率,截留分子量.膜分离推动力压力差,电位差.浓差极化溶质在膜表面被截留,形成高浓度区的现象.阴膜阴膜电离后固定基团带正电,只让阴离子通过.阳膜阳膜电离后固定基团带负电,只让阳离子通过.气体混合物膜分离机理努森流的分离作用;均质膜的溶解、扩散、解吸.第十四章固体干燥物料去湿的常用方法机械去湿、吸附或抽真空去湿、供热干燥等.对流干燥过程的特点热质同时传递.主要操作费用空气预热、中间加热. tas与tW在物理含义上的差别 tas由热量衡算导出,属于静力学问题;tW 是传热传质速率均衡的结果,属于动力学问题.改变湿空气温度、湿度的工程措施加热、冷却可以改变湿空气温度;喷水可以增加湿空气的湿度,也可以降低湿空气的湿度,比如喷的是冷水,使湿空气中的水分析出.平衡蒸汽压曲线物料平衡含水量与空气相对湿度的关系曲线.结合水与非结合水平衡水蒸汽压开始小于饱和蒸汽压的含水量为结合水,超出部分为非结合水.。

陈敏恒《化工原理》(第3版)(下册)章节题库-气液传质设备(圣才出品)

陈敏恒《化工原理》(第3版)(下册)章节题库-气液传质设备(圣才出品)

第10章气液传质设备一、选择题1.以下参数中,属于板式塔结构参数的是();属于操作参数的是()。

A.板间距B.孔数C.孔速D.板上清液层高度【答案】AB;CD2.设计筛板塔时,若改变某一结构参数,会引起负荷性能图的变化。

下面叙述中正确的一组是()。

A.板间距降低,使雾沫夹带线上移B.板间距降低,使液泛线下移C.塔径增大,使液泛线下移D.降液管面积增加,使雾沫夹带线下移【答案】D3.塔板上设置入口安定区的目的是(),设置出口安定区的目的是()。

A.防止气体进入降液管B.避免严重的液沫夹带C.防止越堰液体的气体夹带量过大D.避免板上液流不均匀【答案】A;C4.填料的静持液量与()有关,动持液量与()有关。

A.填料特性B.液体特性C.气相负荷D.液相负荷【答案】AB;ABCD5.用填料吸收塔分离某气体混合物,以下说法正确的是()。

A.气液两相流动参数相同,填料因子增大,液泛气速减小B.气液两相流动参数相同,填料因子减小,液泛气速减小C.填料因子相同,气液两相流动参数增大,液泛气速减小D.填料因子相同,气液两相流动参数减小,液泛气速减小【答案】AC6.以下说法正确的是()。

A.等板高度是指分离效果相当于1m填料的塔板数B.填料塔操作时出现液泛对传质无影响C.填料层内气体的流动一般处于层流状态D.液泛条件下单位高度填料层的压降只取决于填料种类和物系性质二、填空题1.在传质设备中,塔板上的气液两相之间可能的接触状态有:______、______和______。

板式塔操作的转相点是指______。

【答案】鼓泡;泡沫;喷射;由泡沫状态转为喷射状态的临界点2.在设计或研制新型气液传质设备时,要求设备具有______ 、______、______。

【答案】传质效率高;生产能力大;操作弹性宽;塔板压降小;结构简单(以上答案中任选三个)3.对逆流操作的填料塔,液体自塔______部进入,在填料表面呈______状流下。

化工原理-第10章 气液传质设备 (1)

化工原理-第10章 气液传质设备 (1)

Ea 考虑了液沫夹带的影响即 eV 。一般据修正平衡线的概念,实验经常考(设各板 EmV 均相等为 0.6,
全回流求实际塔板数)。 (4)全塔效率(设计时最常用)
ET
=
NT N
式中 NT ——理论板数;
N ——实际板数。
P164 精馏与吸收 ET 关联图,已出现许多关联式
10.1.6 提高板效率的措施
10.1.2 筛板上的气液接触状态
塔板上气液两相的接触状态是决定板上两相流流体力学及传质和传热规律的重要因素。如图片 3-8 所示,当液体流量一定时,随着气速的增加,可以出现四种不同的接触状态。
(1)鼓泡接触状态 当气速较低时,气体以鼓泡形式通过液层。由于气泡的数量不多,形成的气液混合物基本上以液体为 主,气液两相接触的表面积不大,传质效率很低。 (2)蜂窝状接触状态 随着气速的增加,气泡的数量不断增加。当气泡的形成速度大于气泡的浮升速度时,气泡在液层中累 积。气泡之间相互碰撞,形成各种多面体的大气泡,板上为以气体为主的气液混合物。由于气泡不易破裂, 表面得不到更新,所以此种状态不利于传热和传质。 (3)泡沫接触状态 当气速继续增加,气泡数量急剧增加,气泡不断发生碰撞和破裂,此时板上液体大部分以液膜的形式 存在于气泡之间,形成一些直径较小,扰动十分剧烈的动态泡沫,在板上只能看到较薄的一层液体。由于 泡沫接触状态的表面积大,并不断更新,为两相传热与传质提供了良好的条件,是一种较好的接触状态。 (4)喷射接触状态 当气速继续增加,由于气体动能很大,把板上的液体向上喷成大小不等的液滴,直径较大的液滴受重 力作用又落回到板上,直径较小的液滴被气体带走,形成液沫夹带。此时塔板上的气体为连续相,液体为 分散相,两相传质的面积是液滴的外表面。由于液滴回到塔板上又被分散,这种液滴的反复形成和聚集, 使传质面积大大增加,而且表面不断更新,有利于传质与传热进行,也是一种较好的接触状态。 如上所述,泡沫接触状态和喷射状态均是优良的塔板接触状态。因喷射接触状态的气速高于泡沫接触 状态,故喷射接触状态有较大的生产能力,但喷射状态液沫夹带较多,若控制不好,会破坏传质过程,所 以多数塔均控制在泡沫接触状态下工作。

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(气液传质设备 复习笔记)

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(气液传质设备 复习笔记)

10.1 复习笔记一、板式塔1.概述(1)板式塔的功能①在每块塔板上气液两相必须保持密切而充分的接触,为传质过程提供足够大而且不断更新的相际接触表面,减小传质阻力;②在塔内应尽量使气液两相呈逆流流动,以提供最大的传质推动力。

板式塔的设计意图是,在塔内造成一个对传质过程最有利的理想流动条件,即在总体上使两相呈逆流流动,而在每一块塔板上两相呈均匀的错流接触。

(2)筛孔塔板的构造①塔板上的气体通道——筛孔为保证气液两相在塔板上能够充分接触并在总体上实现两相逆流。

塔板上均匀地开有一定数量的供气体自下而上流动的通道。

图10-1 板式塔结构简图筛孔塔板的气体通道最为简单,它是在塔板上均匀地冲出或钻出许多圆形小孔供气体上升之用。

这些圆形小孔称为筛孔。

上升的气体经筛孔分散后穿过板上液层,造成两相间的密切接触与传质。

筛孔的直径通常是3~8mm,但直径为12~25mm的大孔径筛板也应用得相当普遍。

②溢流堰为保证气液两相在塔板上有足够的接触表面,塔板上必须贮有一定量的液体。

为此,在塔板的出口端设有溢流堰。

③降液管作为液体自上层塔板流至下层塔板的通道,每块塔板通常附有一个降液管。

图10-2 筛板塔的构造在塔板上的流动更为均匀,当采用圆形溢流管时,仍需设置平直溢流堰。

同理,在圆形降液管的出口附近也应设置堰板,称为入口堰。

2.筛板上的气液接触状态实验观察发现,气体通过筛孔的速度不同,两相在塔板上的接触状态亦不同。

如图10-3所示,气液两相在塔板上的接触情况可大致分为三种状态。

图10-3 塔板上的气液接触状态(1)鼓泡接触状态当孔速很低时,通过筛孔的气流断裂成气泡在板上液层中浮升,塔板上两相呈鼓泡接触状态。

(2)泡沫接触状态随着孔速的增加,气泡数量急剧增加,气泡表面连成一片并且不断发生合并与破裂。

此时,板上液体大部分是以液膜的形式存在于气泡之间,仅在靠近塔板表面处才能看到少许清液。

这种接触状况称为泡沫接触状态。

在泡沫接触状态,液体仍为连续相,而气体仍为分散相。

陈敏恒《化工原理》(第3版)(下册)名校考研真题-气液传质设备(圣才出品)

陈敏恒《化工原理》(第3版)(下册)名校考研真题-气液传质设备(圣才出品)

第10章气液传质设备一、选择题1.浮阀塔、泡罩塔及筛板塔三种板式塔的板效率比较()。

[华南理工大学2012年研]A.浮阀塔>泡罩塔>筛板塔B.浮阀塔=泡罩塔=筛板塔C.浮阀塔>泡罩塔=筛板塔D.浮阀塔>筛板塔>泡罩塔【答案】D【解析】泡罩塔应用最早,效率是最低的,浮阀塔应用最广泛,兼有泡罩塔和筛板塔的优点,效率是最高的。

2.浮阀塔与泡罩塔比较,其最主要的改进是()。

[中南大学2012年研]A.简化塔板结构B.形成可变气道,扩宽高效操作区域C.提高塔板效率D.增大气液负荷【答案】B【解析】浮阀塔具有较大的操作弹性,由于阀片可以自由升降以适应气量的变化,故维持正常操作所允许的负荷波动范围比泡罩塔宽。

二、填空题1.当填料塔操作气速达到泛点气速时,______充满全塔空隙,并在塔顶形成液体层,因而______急剧升高。

[北京化工大学2012年研]【答案】液相;压降【解析】当气速过大时,使降液管内的液体不能顺利下流,管内液体必然积累。

气体穿过板上液层时造成的两板间的压降增大。

2.通常填料塔的泛速是依据______经验关联图算出的,其中体现不同尺寸的各种填料操作特性的参量是______。

[南京理工大学2010年研]【答案】埃克特泛点;填料因子φ【解析】埃克特通用关联图适用各种散装填料,如拉西环,鲍尔环等,但需确知填料的φ值。

填料因子φ代表实际操作时填料的流体力学性能,填料的流体力学性能也集中体现在填料因子上。

3.试写出浮阀塔的三种不正常操作情况:(1)______;(2)______;(3)______。

[四川大学2009年研]【答案】严重漏液;严重气泡夹带;降液管液泛;严重雾沫夹带;液相不足(任选三)【解析】浮阀塔属于板式塔,板式塔的异常操作现象包括:漏液、雾沫夹带、液泛等。

化工原理 陈敏恒 第四版 第10章习题与思考题

化工原理 陈敏恒 第四版 第10章习题与思考题

第十章习题板式塔1.某筛板塔在常压下以苯―甲苯为试验物系,在全回流下操作以测定板效率。

今测得由第九、第十两块板(自上向下数)下降的液相组成分别为0.652与0.489(均为苯的摩尔分率)。

试求第十块板的默弗里湿板效率。

2.甲醇-水精馏塔在设计时规定原料组成x f=0.40,塔顶产品组成0.90,塔釜残液组成0.05(均为甲醇的摩尔分率),常压操作。

试用O’connell关联图估计精馏塔的总塔效率。

3.一板式吸收塔用NaOH水溶液吸收氯气。

氯气的浓度为2%(mol),要求出塔浓度低于0.002%。

各块塔板的默弗里板效率均为50%,不计液沫夹带,求此塔应有多少块实际板。

NaOH溶液与氯气发生不可逆化学反应,可设相平衡常数m=0。

4.某厂常压操作下的甲苯-邻二甲苯精馏塔拟采用筛板塔。

经工艺计算知某塔板的气相流量为2900m3/h,液相流量为9.2m3/h。

有关物性数据如下:气相密度为3.85kg/m3,液相密度为770kg/m3,液体的表面张力为17.5mN/m。

根据经验选取板间距为450mm,泛点百分率为80%,单流型塔板,溢流堰长度为75%塔径。

试用弗尔的泛点关联图以估计塔径。

填料塔5.某填料精馏塔用以分离氯仿-1,1-二氯乙烷,在全回流下测得回流液组成x D = 8.05×10-3,残液组成x W=8.65×10-4(均为1,1-二氯乙烷的摩尔分率)。

该塔的填充高度8m,物系的相对挥发度为α=1.10,问该种填料的理论板当量高度(HETP)是多少?6.在装填(乱堆)25×25×2mm瓷质拉西环之填料塔内,拟用水吸收空气与丙酮混合气中的丙酮,混合气的体积流量为800m3/h,内含丙酮5%(体积)。

如吸收是在101.3kPa、30℃下操作,且知液体质量流量与气体质量流量之比是2.34。

试估算填料塔直径为多少米?(每米填料层的压降是多少?)设计气速可取泛点气速的60%。

化工原理气液传质设备

化工原理气液传质设备

化工原理气液传质设备气液传质设备在化工领域中具有重要的作用。

它们能够实现气体和液体之间的传质过程,从而满足不同化工过程中的需要。

本文将介绍气液传质设备的基本原理以及它们在化工领域的应用。

一、气液传质设备的基本原理气液传质设备是利用不同相之间的质传扩散来实现物质传递的过程。

其中,气液传质设备主要包括吸收塔、吸附塔、萃取塔和蒸馏塔等。

这些设备通过充分接触气体和液体,利用相对浓度差异和溶解度差异来实现物质传递。

在气液传质设备中,气体和液体以不同的形式相互接触。

其中,气体一般以气泡、气液分散剂或气体流动的形式存在,而液体则以滴状、薄膜、湍流或静态的形式存在。

通过增加界面积和减少传质阻力,气液传质设备能够提高传质效率。

二、气液传质设备的应用1. 吸收塔吸收塔是一种常用的气液传质设备,主要用于气体中有害成分的去除。

在吸收塔中,废气与吸收剂通过充分接触,有害成分会被吸收剂吸收,从而净化废气。

2. 吸附塔吸附塔是利用吸附剂对气体中的有害物质进行去除的设备。

吸附剂通常具有很大的比表面积,通过与气体接触,吸附剂上的孔隙能够吸附气体中的有害成分,从而实现气体的净化。

3. 萃取塔萃取塔主要用于分离液体混合物中的组分。

在萃取塔中,液体混合物与萃取剂接触,通过溶质在两相之间的传输来实现组分的分离。

4. 蒸馏塔蒸馏塔是一种常见的气液传质设备,用于将液体混合物分离成为较纯的组分。

蒸馏塔通过液体的汽化和冷凝过程,将液体混合物中的组分按照其沸点的差异进行分离。

三、气液传质设备的优化与发展随着化工行业的发展,气液传质设备也在不断优化和发展。

目前,一些新型的气液传质设备如微滴反应器、微通道装置等开始得到应用。

这些新型设备能够提高传质效率、降低能耗,并满足高效、精细化生产的需求。

此外,化工原理气液传质设备的设计和运行也越来越注重安全性和环保性。

在设计上,需要考虑到设备的稳定性、材料的选择以及操作的方便性。

在运行过程中,需要确保气体和液体的流动平稳,避免泄漏和废液的排放。

化工原理下册复习提纲(修改)

化工原理下册复习提纲(修改)

αx y= 1 + (α − 1) x
相平衡方程
α的大小可作为用蒸馏分离某一物系的难易程度标志。 的大小可作为用蒸馏分离某一物系的难易程度标志。
P ↓, α ↑ ,两相区扩大,有利于分离
液相组成x对应的y值愈大, α愈大则同一 液相组成x对应的y值愈大, α=1时 y=x,则汽液两相组成相同即y α=1时,y=x,则汽液两相组成相同即yA=xA,yB=xB, 这时用一般精馏方法无法分离。 这时用一般精馏方法无法分离。

气液相平衡
1、溶解度曲线 •吸收剂、温度T、p 一定时,不同物质的溶解度不同。 温度、溶液的浓度一定时,溶液上方分压越大的物质越难溶。 •对于同一种气体,分压一定时,温度T越高,溶解度越小。 •对于同一种气体,温度T一定时,分压pA越大,溶解度越大。 •加压和降温对吸收操作有利,而减压和升温则有利于解吸操作 加压和降温对吸收操作有利, 加压和降温对吸收操作有利 溶解度仅取决于溶质分压。
三、四线及最小回流比
L D R 1 y n +1 = xn + xD = xn + xD V V R +1 R +1 L W RD + qF F −D yn +1 = xn − xw = xn − xw ( R + 1) D − (1 − q ) F ( R + 1) D − (1 − q ) F V V
2、亨利定律 相平衡关系数学描述 (1) y e = mx (2) pe = HC (3)
pe = Ex
(1)三种表达形式
E、m、H的数值越小,溶质的溶解度越大 E≈ Hρ s Ms E m= P m除与温度有关外,还与总压有关
E = f(t) H = f(t) t↓ ↓

化工原理-第10章-气液传质设备分析

化工原理-第10章-气液传质设备分析

化工原理-第10章-气液传质设备知识要点用于蒸馏和吸收塔的塔器分别称为蒸馏塔和吸收(解吸)塔。

通称气液传质设备。

本章应重点掌握板式塔和填料塔的基本结构、流体力学与传质特性(包括板式塔的负荷性能图)。

1. 概述高径比很大的设备叫塔器。

蒸馏与吸收作为分离过程,基于不同的物理化学原理,但其均属于气液两相间的传质过程,有共同的特点可在同样的设备中进行操作。

(1) 塔设备设计的基本原则① 使气液两相充分接触,以提供尽可能大的传质面积和传质系数,接触后两相又能及时完善分离。

② 在塔内气液两相最大限度地接近逆流,以提供最大的传质推动力。

(2) 气液传质设备的分类① 按结构分为板式塔和填料塔② 按气液接触情况分为逐级式与微分式通常板式塔为逐级接触式塔器,填料塔为微分接触式塔器。

2. 板式塔(1) 板式塔的设计意图:总体上使两相呈逆流流动,每一块塔板上呈均匀的错流接触。

(2) 筛孔塔板的构造① 筛孔——塔板上的气体通道,筛孔直径通常为3~8mm 。

② 溢流堰——为保证塔板上有液体。

③ 降液管——液体自上层塔板流至下层塔板的通道。

(3) 筛板上的气液接触状态筛板上的气液接触状态有鼓泡接触、泡沫接触、喷射接触,比较见表10-1。

表10-1 气液接触状态比较项 目 鼓泡接触状态 泡沫接触状态 喷射接触状态 孔速很低 较高 高两相接触面 气泡表面 液膜 液滴外表面 两相接触量 少 多 多 传质阻力 较大 小 小 传质效率 低 高 高 连续相 液体 液体 气体 分散相 气体 气体液体适用物系重轻σσ<(正系统)重轻σσ>(负系统)工业上经常采用的两种接触状态是泡沫接触与喷射接触。

由泡沫状态转为喷射状态的临界点称为转相点。

(4) 气体通过塔板的压降 包括塔板本身的干板阻力(即板上各部件所造成的局部阻力)、气体克服板上充气液层的静压力所产生的压力降、气体克服液体表面张力所产生的压力降(一般较小,可忽略不计)。

化工原理思考题22

化工原理思考题22
20. 是否在任何管路中, 流量增大阻力损失就增大; 流量减小阻力Байду номын сангаас失就减小? 为什么?答20.不一定,具体要看管路状况是否变化。
第二章 流体输送机械
1. 什么是液体输送机械的压头或扬程?答1.流体输送机械向单位重量流体所提供的能量(J/N)。
2. 离心泵的压头受哪些因素影响?答2.离心泵的压头与流量,转速,叶片形状及直径大小有关。
7. 一离心泵将江水送至敞口高位槽, 若管路条件不变, 随着江面的上升,泵的压头He, 管路总阻力损失Hf, 泵入口处真空表读数、泵出口处压力表读数将分别作何变化?答7.随着江面的上升,管路特性曲线下移,工作点右移,流量变大,泵的压头下降,阻力损失增加;随着江面的上升,管路压力均上升,所以真空表读数减小,压力表读数增加。
3. 后弯叶片有什么优点? 有什么缺点?答3.后弯叶片的叶轮使流体势能提高大于动能提高,动能在蜗壳中转换成势能时损失小,泵的效率高。这是它的优点。它的缺点是产生同样理论压头所需泵体体积比前弯叶片的大。 4. 何谓"气缚"现象? 产生此现象的原因是什么? 如何防止"气缚"?答4.因泵内流体密度小而产生的压差小,无法吸上液体的现象。原因是离心泵产生的压差与密度成正比,密度小,压差小,吸不上液体。灌泵、排气。 5. 影响离心泵特性曲线的主要因素有哪些?答5.离心泵的特性曲线指He~qV,η~qV,Pa~qV。影响这些曲线的主要因素有液体密度,粘度,转速,叶轮形状及直径大小。 6. 离心泵的工作点是由如何确定的? 有哪些调节流量的方法?答6.离心泵的工作点是由管路特性方程和泵的特性方程共同决定的。 调节出口阀,改变泵的转速。
10. 如图所示,水从小管流至大管,当流量V、管径D、d及指示剂均相同时,试问水平放置时压差计读数R与垂直放置时读数R’的大小关系如何?为什么?答10.R=R’,因为U形管指示的是总势能差,与水平放还是垂直放没有关系。 12. 层流与湍流的本质区别是什么?答12.是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。 13. 雷诺数的物理意义是什么?答13.惯性力与粘性力之比。

化工原理-第10章-气液传质设备

化工原理-第10章-气液传质设备

化工原理-第10章-气液传质设备知识要点用于蒸馏和吸收塔的塔器分别称为蒸馏塔和吸收(解吸)塔。

通称气液传质设备。

本章应重点掌握板式塔和填料塔的基本结构、流体力学与传质特性(包括板式塔的负荷性能图)。

1. 概述高径比很大的设备叫塔器。

蒸馏与吸收作为分离过程,基于不同的物理化学原理,但其均属于气液两相间的传质过程,有共同的特点可在同样的设备中进行操作。

(1) 塔设备设计的基本原则① 使气液两相充分接触,以提供尽可能大的传质面积和传质系数,接触后两相又能及时完善分离。

② 在塔内气液两相最大限度地接近逆流,以提供最大的传质推动力。

(2) 气液传质设备的分类① 按结构分为板式塔和填料塔② 按气液接触情况分为逐级式与微分式通常板式塔为逐级接触式塔器,填料塔为微分接触式塔器。

2. 板式塔(1) 板式塔的设计意图:总体上使两相呈逆流流动,每一块塔板上呈均匀的错流接触。

(2) 筛孔塔板的构造① 筛孔——塔板上的气体通道,筛孔直径通常为3~8mm 。

② 溢流堰——为保证塔板上有液体。

③ 降液管——液体自上层塔板流至下层塔板的通道。

(3) 筛板上的气液接触状态筛板上的气液接触状态有鼓泡接触、泡沫接触、喷射接触,比较见表10-1。

表10-1 气液接触状态比较项 目 鼓泡接触状态 泡沫接触状态 喷射接触状态 孔速很低 较高 高两相接触面 气泡表面 液膜 液滴外表面 两相接触量 少 多 多 传质阻力 较大 小 小 传质效率 低 高 高 连续相 液体 液体 气体 分散相 气体 气体液体适用物系重轻σσ<(正系统)重轻σσ>(负系统)工业上经常采用的两种接触状态是泡沫接触与喷射接触。

由泡沫状态转为喷射状态的临界点称为转相点。

(4) 气体通过塔板的压降 包括塔板本身的干板阻力(即板上各部件所造成的局部阻力)、气体克服板上充气液层的静压力所产生的压力降、气体克服液体表面张力所产生的压力降(一般较小,可忽略不计)。

化工原理各章问答题-新

化工原理各章问答题-新

第9章吸收1.吸收分离的依据是什么?如何分类?吸收操作在生产中有哪些应用?依据:组分在溶剂中的溶解度差异。

分类:a.按过程有无化学反应:分为物理吸收、化学吸收b.按被吸收组分数:分为单组分吸收、多组分吸收c.按过程有无温度变化:分为等温吸收、非等温吸收d.按溶质组成高低:分为低组成吸收、高组成吸收应用:分离混合气体以回收所需组分,如用洗油处理焦炉气以回收其中的芳炷等。

净化或精制气体,如用水或碱液脱除合成氨原料气中的二氧化碳等。

制备液相产品,如用水吸收氯化氢以制备盐酸等。

工业废气的治理,如工业生产中排放废气中含有NO SO等有毒气体,则需用吸收法除去,以保护大气环境2.如何表达吸收中的气液平衡关系?相平衡关系是与体系的温度、压力以及本身物性相关的,较准确描述平衡关系是较复杂的,但对采用稀溶液吸收混合气中低浓度溶质组分时,其溶解度曲线通过原点,并为一直线。

这样相平衡关系除用溶解度曲线表示外,多用亨利定律描述。

3.何谓分子扩散?何谓Fick定律?借助分子微观运动,使组分从浓度高处向浓度低处传递。

分子扩散发生在静止流或作层流流动的流体中。

扩散通量(单位时间通过垂直于扩散方向的单位截面积的扩散物质流量)与浓度梯度成正比o J=—D (dc/dz)扩散通量方向与浓度梯度方向相反,J:扩散通量;D:扩散系数;(dc/dz):浓度梯度4.吸收传质中的双膜理论的基本点是什么?a.气液相间有稳定的相界面b.相界面两侧各有一停滞膜,膜内的传质以分子扩散方式进行(虚拟膜或者有效膜)c.传质阻力全部集中在虚拟膜内,膜外的主体中高度湍流传质阻力为05.吸收推动力是什么?有哪些表示方法?吸收推动力就是组分在气相主体的分压与组分在液相的分压之差。

表示方法有:分压差浓度差,还有气相和液相比摩尔分率差,气相和液相摩尔分率差,6.物理吸收与化学吸收的主要区别在哪里?气相侧的传递过程与物理吸收完全相同,液相侧-溶质在液相中以部分物理溶解态和部分化学态存在;化学态的存在增大溶解度,增加容量,降低了气相的平衡分压,增加气相传质推动力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档