PCR扩增的基本原理与江苏高考生物33题答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCR扩增的基本原理与2011年江苏高考生物33题答案解析PCR是聚合酶链式反应的简称,指在引物指导下由酶化的对特定模板(克隆或基因
组DNA)的扩增反应,是模拟体内DNA复制过程,在体外特异性扩增DNA片段的一种
技术,在分子生物学中有广泛的应用,包括用于DNA作图、DNA测序、分子系统遗传学等。
PCR基本原理是以单链DNA为模板,4种dNTP为底物,在模板3’末端有引物存在的情况下,用酶进行互补链的延伸,多次反复的循环能使微量的模板DNA得到极大程度的扩增。
在微量离心管中,加入与待扩增的DNA片段两端已知序列分别互补的两个引物、适量的
缓冲液、微量的DNA膜板、四种dNTP溶液、耐热Taq DNA聚合酶、Mg2+等。
反应时先将上述溶液加热,使模板DNA在高温下变性,双链解开为单链状态;然后降低溶液温度,使合成引物在低温下与其靶序列配对,形成部分双链,称为退火;再将温度升至合适温度,在Taq DNA聚合酶的催化下,以dNTP为原料,引物沿5’→3’方向延伸,形成新的DNA 片段,该片段又可作为下一轮反应的模板,如此重复改变温度,由高温变性、低温复性和适温延伸组成一个周期,反复循环,使目的基因得以迅速扩增。
因此PCR循环过程为三部分构成:模板变性、引物退火、热稳定DNA聚合酶在适当温度下催化DNA链延伸合成(见图)。
图PCR的反应历程
1.模板DNA的变性
模板DNA加热到90~95℃时,双螺旋结构的氢键断裂,双链解开成为单链,称为DNA的变性,以便它与引物结合,为下轮反应作准备。
变性温度与DNA中G-C含量有关,G-C 间由三个氢键连接,而A-T间只有两个氢键相连,所以G-C含量较高的模板,其解链温度相对要高些。
故PCR中DNA变性需要的温度和时间与模板DNA的二级结构的复杂性、G-C含量高低等均有关。
对于高G-C含量的模板DNA在实验中需添加一定量二甲基亚砜(DMSO),并且在PCR循环中起始阶段热变性温度可以采用97℃,时间适当延长,即所谓的热启动。
2.模板DNA与引物的退火
将反应混合物温度降低至37~65℃时,寡核苷酸引物与单链模板杂交,形成DNA模板-引物复合物。
退火所需要的温度和时间取决于引物与靶序列的同源性程度及寡核苷酸的碱基组成。
一般要求引物的浓度大大高于模板DNA的浓度,并由于引物的长度显著短于模板的长度,因此在退火时,引物与模板中的互补序列的配对速度比模板之间重新配对成双链的速度要快得多,退火时间一般为1~2min。
3.引物的延伸
DNA模板-引物复合物在Taq DNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条与模板DNA链互补的新链。
重复循环变性-退火-延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。
延伸所需要的时间取决于模板DNA的长度。
在72℃条件下,Taq DNA聚合酶催化的合成速度大约为40~60个碱基/秒。
经过一轮“变性-退火-延伸”循环,模板拷贝数增加了一倍。
在以后的循环中,新合成的DNA都可以起模板作用,因此每一轮循环以后,DNA拷贝数就增加一倍。
每完成一个循环需2~4min,一次PCR经过30~40次循环,约2~3h。
扩增初期,扩增的量呈直线上升,但是当引物、模板、聚合酶达到一定比值时,酶的催化反应趋于饱和,便出现所谓的“平台效应”,即靶DNA产物的浓度不再增加。
PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。
反应最终的DNA扩增量可用Y=(1+X)n计算。
Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。
平均扩增效率的理论值为100%,但在实际反应中平均效率达不到理论值。
反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进入线性增长期或静止期,即出现“停滞效应”,这种
效应称平台期数、PCR扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竟争等因素。
大多数情况下,平台期的到来是不可避免的。
PCR扩增产物可分为长产物片段和短产物片段两部分。
短产物片段的长度严格地限定在两个引物链5'端之间,是需要扩增的特定片段。
短产物片段和长产物片段是由于引物所结合
的模板不一样而形成的,以一个原始模板为例,在第一个反应周期中,以两条互补的DNA 为模板,引物是从3'端开始延伸,其5'端是固定的,3'端则没有固定的止点,长短不一,这就是“长产物片段”。
进入第二周期后,引物除与原始模板结合外,还要同新合成的链(即“长产物片段”)结合。
引物在与新链结合时,由于新链模板的5'端序列是固定的,这就等
于这次延伸的片段3'端被固定了止点,保证了新片段的起点和止点都限定于引物扩增序列
以内、形成长短一致的“短产物片段”。
不难看出“短产物片段”是按指数倍数增加,而“长产物片段”则以算术倍数增加,几乎可以忽略不计,这使得PCR的反应产物不需要再纯化,
就能保证足够纯DNA片段供分析与检测用。
2011年江苏省高考生物33题.(8分)请回答基因工程方面的有关问题:
(1)利用PCR技术扩增目的基因,其原理与细胞内DNA复制类似(如下图所示)。
图中引
物为单链DNA片段,它是子链合成延伸的基础。
①从理论上推测,第四轮循环产物中含有引物A的DNA片段所占的比例为▲。
②在第▲轮循环产物中开始出现两条脱氧核苷酸链等长的DNA片段。
(2)设计引物是PCR技术关键步骤之一。
某同学设计的两组引物(只标注了部分碱基序列)都不合理(如下图),请分别说明理由。
①第1组:▲;②第2组:▲。
(3) PCR反应体系中含有热稳定DNA聚合酶,下面的表达式不能正确反映DNA聚合酶的功能,这是因为▲。
(4)用限制酶EcoRV、Mbol单独或联合切割同一种质粒,得到的DNA片段长度如下图(1 kb 即1000个碱基对),请在答题卡的指定位置画出质粒上EcoRV、Mbol的切割位点。
【解析】:本人感觉这题很那个……2011版考试说明明确删除了PCR这一考点,但整个考题从头到尾都是考查PCR的,不知道高考命题组是否学习了考试说明?
①下图为人教版教材中的插图,查图可知,第二轮中含引物II(或考题中的引物A)比例为3/4,第三轮中占7/8,即所有DNA片段中,只有一个片段不含引物II,故推测在第四轮中,含引物II(或引物A)的比例为15/16。
②由于题图中的引物A和引物B均不在该片段的端点,因此第一轮循环后,得到的两DNA片段中两条脱氧核苷酸链都不等长,通过自行绘图可推知,第二轮中亦不会出现等长的,需到第三轮(试试看吧,这就不画出了)。
(2)这一问,对考生而言,完全不知从何说起,因为没有哪个版本的高中生物教材有关于引物选择方面的介绍,唯高校网络资源中有不多的介绍:引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度。
理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增。
设计引物应遵循以下原则:1、引物长度:15-30bp,常用为20bp左右。
2、引物扩增跨度:以200-500bp为宜,特定条件下可扩增长至10kb的片段。
3、引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带。
ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。
4、避免引物内部出现二级结构,避免两条引物间互补,特别是3'端的互补,否则会形成引物二聚体,产生非特异的扩增条带。
5、引物3'端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败。
6、引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处。
如果能了解上述信息,或许可以分析题图中的碱基组成,查出如下不合理之处:
①引物I和引物Ⅱ局部发生碱基互补配对而失效
②引物I’自身折叠后会出现局部碱基互补配对而失效
(3) 据人教版教材相关介绍,DNA聚合酶不能从头开始合成DNA,而只能将单个脱氧核苷酸连续结合到双链DNA片段的引物链上(但这一内容苏教版并非有只言片语)。
(4)据两种酶单独和联合切割的结果分析,EcoRV在质粒上有一个切点,Mbol在该质粒上有两个切点,以上三个切点不存在重叠现象,故可标注如下图:
答案:(1)①15/16②三(2)①引物I和引物Ⅱ局部发生碱基互补配对而失效②引物I’自身折叠后会出现局部碱基互补配对而失效
(3) DNA聚合酶只能将单个脱氧核苷酸连续结合到双链DNA片段的引物链上
(4)见右图。