固体物理第五章_晶体的能带理论
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
e 1 iN1k1 a1
N1k1 a1 2l1 b1 a1 2
取
k1
l1 N1
b1
满足上式,得到
Байду номын сангаас(
a1
)
i
e
l1 N1
b1
a1
同理可以得到
k2
l2 N2
b2
( a2
)
ei
l2 N2
b2
a2
k3
l3 N3
b3
(
a3
)
i l3
e N3
b3 a3
11
具有波矢的意义
17
简约布里渊区
为了使本征函数与本征值一一对应,即使电子 的波矢k与本征值E(k)一一对应,必须把波矢的 取值限制在一个倒格原胞区间内
bi 2
ki
bi 2
i 1,2,3
这个区间为简约布里渊区或第一布里渊区。
18
b3 O b2
b1 简约布里渊区
19
简约布里渊区内,电子的波矢数目等于晶体的 原胞数目
第五章 晶体中电子能带理论
1.孤立原子中电子受原子束缚,处于分立能级; 晶体中的电子不再束缚于个别原子,而是在一 个周期性势场中作共有化运动。在晶体中该类 电子的能级形成一个带。 2. 晶体中电子的能带在波矢空间具有反演对 称性,且是倒格子的周期函数。 3. 能带理论成功的解释了固体的许多物理特 性,是研究固体性质的重要理论基础。
本征值
13
(3) 电子波函数是按晶格周期调幅的平面波
( r Rn ) eikRn ( r )
!构造波函数
平面波 ( r ) eikr 满足
当波矢k增加一个倒格矢 Kh h1b1 h2b2 h3b3
平面波
( r ) ei( kKh )r 也满足
证明: ( r ) ei( kKh )r 左 ( r Rn ) ei( kKh )( rRn )
此时电子的能量主部是ћ2k2/2m,电子行为与
自由电子近似。
设晶体在a1、 a2、a3三个方向各有个N1、N2、N3 个原胞,利用周期性边界条件有
(r) (r N1a1)
Tˆ(N1a1) (r) [(a1)] N1 (r) (r N1a1) (r)
[(a1)]N1 1
( a1 ) ei
10
为了将与a1对应起来,令=k1·a1,代l入1为整(数a1) ei
V
Vnei
2 a
nx
0 k
(
x
)
n
1 eikx L
V
V( x ) V0
V0
L
0
0 k
*
(
x
)V
(
x
)
0 k
(
x
)dx
E( 1)(
k
)
H
kk
L
0
0 k
*
(
x
)V
0 k
(
x
)dx
0
二级微扰能量
E(2) (k)
k
H
kk
2
E0 (k) E0 (k)
2 Rnx )2
(x
2 Rny )2
(x
2 Rnz )2
] V (r
Rn )
2 2m
2
(r
Rn
)
V
(r
Rn
)
Hˆ
(r
Rn
)
哈密顿函数具有晶格的平移对称性
7
2.3 电子波函数的特点
(1)波函数(r)是哈密顿算符和平移对
称操作算符的共同本征函数。
任意一个函数f(r)经过平移算符作用后变为
eikr a(k Kl )eiKl r k (r)
l
16
本征函数与本征值 同一个电子态对应同一能量
E(k) E(k Kn)
即 Hˆ (r)k (r) E(k) k (r)
Hˆ (r) kKn (r) E(k) kKn (r)
同一个本征值E(k),有无数个本征函数k+Kn(r) 。
Hˆ 0
0 k
(
x
)
E0
(
k
)
0 k
(
x
)
Hˆ 0
2 2m
d2 dx2
E0(k) 2k2 2m
0 k
(
x)
1 eikx L
一维晶格长度 L=Na
自由电子和平面波
25
微扰计算 电子的能量可写成
E(k) E0 (k) E(1) (k) E(2) (k)
一级微扰能量
将
k
l1 N1
b1
l1 N2
b2
l1 N3
b3
代入, b2i得 ki
bi 2
Ni 2
li
Ni 2
i=1,2,3
在简约布里渊区内,电子的波矢数目等于晶体 的原胞数目:N=N1N2N3。
20
电子的波矢密度
在波矢空间内,N的数目很大,波矢点的分布准 连续。一个波矢对应的体积为
b1
(
[
2 2m
d2 dx2
V (x)] k (x)
E(x) k (x)
晶格的周期势
Ψk(x)=eikxuk(x)
将零级哈密顿量分离出来
其中
Hˆ Hˆ 0 Hˆ 0'
Hˆ 0
2 2m
d2 dx2
V0
2 2m
d2 dx2
Hˆ
Vnei
2 a
nx
V
n
24
零级近似解
(2)假定电子间相互作用可用某种平均作用来代替, 作用在每个电子上的势场只与该电子的位置有关,与 其它原子的位置和状态无关。V(r)
4
等效势场V(r)的性质 由于晶格周期性,晶体中等效势场V(r)具有晶格 的周期性:
V (r) V (r Rn)
5
2.2 哈密顿算符具有平移对称性 Hˆ (r) 2 2(r) V (r) 2m
a
Vn
,
0,
当k k 2 n; 当k k 2a n
a
27
若只考虑到电子能量的二级微扰
E(k) 2k 2
2m
n
2mVn 2
2k 2 2 (k 2 n)2
a
电子的波函数
当k k 2 n,
a
H
kk
Vn
0 k
(
x
)
在直角坐标系中
r xi yj zk
r Rn (x Rnx )i ( y Rny ) j (z Rnz )k
2 (r)
2 x2
2 y 2
2 z 2
6
哈密顿算符
Hˆ (r) 2 2 (r) V (r) 2m
2 [
2m (x
3
2、布洛赫定理的证明 2.1 单电子近似 Hˆ (r) 2 2(r) V (r)
2m
固体中存在大量电子,它们的运动是相互关联的,是 个多体问题; 可将多体问题简化为单电子问题,把每个电子运动看 成是独立地在一个等效势场V(r)中运动;
单电子近似的步骤:
(1)假定晶体中原子实固定不动,电子运动和晶格振 动分开;(Born-Oppenheimer approximation)
h
h
a( k Kh )eiKhr uk ( r )
h
uk (r Rn) uk (r)
k( r ) eikruk ( r )
电子波函数是按晶格周期调幅的平面波
15
二、简约布里渊区
布洛赫函数k(r)与k+Kn(r)描述同一电子态
uk ( r ) a( k Kh )eiKhr
h
k ( r ) eikruk ( r )
ukKn ( r ) a( k Kn Kh )eiKhr
h
a( k Kl )ei( Kl Kn )r
l
k态和k+Kn态
实际是同一 电子态
kKn ( r ) ei( kKn )rukKn ( r )
k
k1
k2
k3
l1 N1
b1
l2 N2
b2
l3 N3
b3
简约波矢,对应平移操作算符本征值量子数,
物理意义是原胞之间电子波函数的位相变化。
a3 a2
O a1 O
Tˆ ( a1 ) ( r ) ( r a1 ) eik1 a1 ( r )
O 波函数
O波函数
12
(Rn ) [(a1)]n1 [(a2 )]n2 [(a3)]n3
26
微扰矩阵元
V
Vnei
2 a
nx
0 k
(
x
)
n
1 eikx L
k 2 l, k 2 l l和l'都是整数
Na
Na
sin( k k 2 n)Na
H
kk
L
0
0 k
*
(
x)V
0 k
(
x)dx
n
Vn
a
(k k 2 n)Na
本征值(Rn)必须满足等式
(r Rn) (Rn) (r)
根据平移特点
Rn=2a1+2a2+2a3 O Tˆ ( Rn ) Tˆ ( n1a1 n2a2 n3a3 )
Tˆ(n1a1)Tˆ(n2a2 )Tˆ(n3a3)
a3 a2
O
a1
2 1
[Tˆ(a1)]n1[Tˆ(a2 )]n2 [Tˆ(a3)]n3
9
可以得到 Tˆ ( Rn ) [Tˆ ( a1 )] n1 [Tˆ ( a2 )] n2 [Tˆ ( a3 )] n3
Tˆ(Rn ) (r) (Rn ) (r) [(a1)]n1[(a2 )]n2 [(a3)]n3 (r)
即 (Rn ) [(a1)]n1 [(a2 )]n2 [(a3)]n3
( a1 ) eik1a1 ,( a2 ) eik2 a2 ,( a3 ) eik3a3 Rn n1a1 n2a2 n3a3
( Rn ) eikRn
晶体中电子波函数满足方程 Tˆ ( Rn ) ( r ) ( r Rn ) eikRn ( r )
2
§5.1 布洛赫波函数
一、布洛赫定理(Bloch)
1、布洛赫定理
晶体中电子波函数是按晶格周期调幅的平面波, 电子波函数具有以下形式
k ( r ) eikruk ( r ) uk (r) uk r Rn
k 电子的波矢 Rn 格矢
其中 Rn n1a1 n2a2 n3a3
1 eikx L
k
(
x)
0 k
(
x)
k
E
0
(k
Hk )
k
E
0
(k
) i
0 k
(
x)
2 nx
1 eikx[1
L
n
2mVn *e 2k2 2(k
a
2
n)2
]
eikxuk ( x)
a
28
i 2 nx
讨论: k( x )
1 eikx [ 1 L
1
本章主要内容
§5.1 布洛赫波函数 §5.2 一维晶格中的近自由电子 §5.3 一维晶格中电子的布喇格反射 §5.4 平面波法 §5.5 布里渊区 §5.6 紧束缚法 §5.7 正交化平面波 赝势 §5.8 电子的平均速度 平均加速度和有效质量 §5.9 等能面 能态密度 §5.10 磁场作用下的电子能态 §5.11 导体 半导体和绝缘体
n
2mVn * e 2k2 2( k
a
2
n )2
]
a
1. 调幅因子是晶格的周期函数。
2. 右端第一部分代表波矢为k的前进平面波。
3. 第二部分是电子在行进中遭受到起伏势场的 散射作用所产生的散射波。
4. 前进波波矢k远离n/a时,Vn*是小量,第二
部分贡献很小,波函数主要由前进平面波决定,
平均势,取为0
V0
1 a
a
2 a
V
(
x
)dx
2
V( x ) V0 V V0
Vn
i
e
2 a
nx
n
其中
1 Vn a
a
2 a
V
(
x
)[
i
e
2 a
nx
]*
dx
2
微扰项
Vn*
1 a
a
2 a
V
(
x
)[
i
e
2 a
(
n
)x
]*
dx
Vn
2
23
一维晶格中电子的薛定谔方程为
Tˆ ( Rn ) f ( r ) f ( r Rn )
平移对称操作算符作用在薛定谔方程左边
Tˆ(Rn)Hˆ (r) (r) Hˆ (r R) (r Rn) Hˆ (r)Tˆ(Rn) (r)
平移对称算符与哈密顿算符是对易的。
8
(2)Tˆ(Rn ) 本征值 由 Tˆ ( Rn ) ( r ) ( r Rn ) ( Rn ) ( r )
b2
b3
* ( 2 )3
)
( 2 )3
N1 N2 N3
N
N
Vc
电子的波矢密度为
Vc
(2 )3
21
§5.2 一维晶格中的近自由电子
在金属晶体中,原子实对价电子的束缚较弱, 价电子的行为与自由电子相似。
模型和零级近似
E0 一维周期场
E E0
22
周期场V(x)展成付里叶级数
V( x)V( xa)
右
e e e e ikRn i( k Kh )r
ikRn iK h Rn i( k K h )r
ei( k Kh )( r Rn )
14
( r ) ei( kKh )r
电子的波函数可取为这些平面波的线性叠加
k ( r ) a( k Kh )ei( kKh )r eikr a( k Kh )eiKhr