东华大学2014电力电子技术 实验指导书
《电力电子技术》实验指导书_图文
电力电子技术实验指导书适用专业:卓越自动化李建华编写江苏科技大学电子信息学院2014 年 9月前言《电力电子技术》课程是电气工程及其自动化专业和自动化专业的一门学科基础课,测控技术与仪器专业的专业选修课。
本课程的目的和任务是使学生了解电力电子技术的发展概况、技术动向和新的应用领域。
熟悉各种电力电子器件的特性和选用方法;掌握各种电力电子电路的结构、工作原理、控制方法、设计的基本计算方法及基本实验技能;熟悉各种常用电力电子装置的应用范围及技术经济指标。
同时为《电力传动自动控制系统》等课程打好基础。
实验环节是这门课程的重要组成部份,通过实验可以加深对理论的理解,培养和提高学生独立动手能力和分析、解决问题的能力。
根据教学大纲要求,本课程实验共开出三相全控桥式整流电路、交流单相调压、直流降压斩波电路三个实验,均为综合性实验。
学生通过实验能掌握电力电子变流装置主电路、触发电路和驱动电路等的构成及调试方法及应用;熟悉并掌握基本实验设备、测试仪器的性能及使用方法;能够运用理论知识对实验现象、结果进行分析和处理,解决实验中遇到的问题;能够综合实验数据,解释实验现象,编写实验报告。
实验一:三相桥式全控整流电路的性能研究实验学时:2实验类型:(设计研究实验要求:(必做一、实验目的1、加深对三相桥式整流电路电阻性负载,电阻、电感性负载时工作情况的理解。
2、对实验出现的问题进行分析并排除。
二、实验内容1、三相桥式全控整流电路接电阻性负载。
2、三相桥式全控整流电路接电阻、电感性负载。
三、实验原理、方法和手段三相桥式全控整流电路实验原理框图如图1-1所示。
控制电路直流电源单元提供+15V、-15V电源给正给定单元、三相脉冲移向电路单元(LY105。
正给定单元输出1作为LY105单元移向控制电压(Uct。
Ub1f接地,输出正桥触发脉冲。
LY121-1主电源输出(A2、B2、C2作为正组桥晶闸管主电路输入电源。
图1-1 三相桥式全控整流电路实验原理框图四、实验组织运行根据本实验的特点、要求和具体条件,采用集中授课形式。
电力电子技术实验指导书16K版_图文
目录第一章MCL-Ⅱ型教学实验台简介 (2§1-1 概述 (2§1-2 《电力电子技术》课程实验所用设备 (4第二章实验内容 (15§2-1 实验一锯齿波同步移相触发电路的研究 (15§2-2 实验二三相桥式全控整流电路的研究 (18§2-3 实验三直流斩波电路的研究 (21§2-4 实验四单相交流调压电路的研究 (25第一章MCL-Ⅱ型教学实验台简介§1-1 概述MCL-Ⅱ型教学实验台是自动化系针对《电机及拖动基础》、《电力电子技术》、《电力拖动自动控制系统》等课程实验购置的实验设备,其外观如图1所示。
图1 MCL-Ⅱ型教学实验台一.MCL-Ⅱ型教学实验台的特点:1.采用组件式结构,可根据不同内容进行组合,故结构紧凑,使用方便灵活,并且可随着功能的扩展只需增加组件即可,能在一套装置上完成《电力电子技术》,《电力拖动自动控制系统》等课程的主要实验。
2.装置布局合理,外形美观,面板示意图明确,直观,学生可通过面板的示意查寻故障,分析工作原理。
电机采用导轨式安装,更换机组简捷,方便,所采用的电机经过特殊设计,其参数特性能模拟3KW左右的通用实验机组,能给学生正确的感性认识。
除实验控制屏外,还设置有实验用台,内可放置机组,实验组件等,并有可活动的抽屉,内可放置导线,工具等,使实验更方便。
3.实验线路典型,配合教学内容,满足教学大纲要求。
控制电路全部采用模拟和数字集成芯片,可靠性高,维修,检测方便。
触发电路采用数字集成电路双窄脉冲。
4.装置具有较完善的过流、过压、RC吸收、熔断器等保护功能,提高了设备的运行可靠性和抗干扰能力。
5.面板上有多只发光二极管指示每一个脉冲的有无和熔断器的通断。
触发脉冲可外加,也可采用内部的脉冲触发晶闸管,并可模拟整流缺相和逆变颠覆等故障现象。
二.MCL-Ⅱ型教学实验台的技术参数1.输入电源:~380V±10%;50HZ±1HZ2.工作条件:环境温度:-5 ~400C;相对湿度:< 75%;海拔:< 1000 m3.装置容量:< 1KV A4.电机容量:< 200W5.外形尺寸:长1600mm ×宽700mm三.MCL-Ⅱ型教学实验台能开设的实验MCL-Ⅱ型教学实验台能开设《电机及拖动基础》、《电力电子技术》、《电力拖动自动控制系统》课程的主要实验。
电力电子技术实验指导书(修改)
《电力电子技术》实验指导书实验要求1.课前预习,复习相关理论知识。
2.注意安全,不乱触摸裸露的线路或器件。
3.装卸挂件时注意轻拿轻放。
4.每个小组做好分工,各司其职。
5.实验过程中,确保电源关闭方可接插导线或者更改线路,接完线后仔细检查无误后方可开启电源。
6.真实准确的记录好数据或波形。
7.实验完成后,整理好导线,归还其他工具,清理实验台,保证实验台的整洁。
8.认真撰写并按时交实验报告。
实验一单结晶体管识别实验一、实验目的(1)熟悉单结晶体管触发电路的工作原理及各元件的作用。
(2)掌握单结晶体管触发电路的调试步骤和方法。
(3)验证晶闸管的导通条件。
二、实验所需挂件及附件三、实验内容(1)单结晶体管触发电路的调试。
(2)单结晶体管触发电路各点电压波形的观察。
四、实验方法(1) 观测单结晶体管触发电路:将DZ01电源控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后用两根导线将220V交流电压接到DJK03的“外接220V”端,按下“启动”按钮,打开DJK03电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察单结晶体管触发电路(图1-3),经半波整流后“1”点的波形,经稳压管削波得到“2”点的波形,调节移相电位器RP1,观察“4”点锯齿波的周期变化及“5”点的触发脉冲波形;最后观测输出的“G、K”触发电压波形,其能否在30°~170°范围内移相。
图1-1 单结晶体管触发电路原理图(2) 记录单结晶体管触发电路各点波形:当α=30o时,单结晶体管触发电路的各观测点波形描绘如下,得到结论,与教科书中的各波形一致。
(3)晶闸管导通条件的测试:在不加门极触发电压,加正向阳极电压(交流15V)的情况下,观察晶闸管是否导通;在加阳极反向电压(交流15V),加正向门极触发电压(由单结晶体管触发电路提供)的情况下,观察晶闸管是否导通;加正向门极触发电压,加正向阳极电压(交流15V)的情况下,观察晶闸管是否导通,并将结果记录到下表。
(整理)电力电子技术实验指导书
电力电子技术实验指导书中国矿业大学信电学院2009年4月学生实验守则一、学生进入实验室必须服从管理,遵守实验室的规章制度。
保持实验室的安静和整洁,爱护实验室的一切设施,不做与实验无关的事情。
二、实验课前要按照教师要求认真预习实验指导书,复习教材中于实验有关的内容,熟悉与本次实验相关的在理论知识,同时写出实验预习报告,并经教师批阅后方可进行实验。
三、实验课上要遵守操作规程,线路连接好后,先自行检查,后须经指导教师检查后,才可接通电源进行实验。
如果需更改线路,也要经过教师检查后才能接通电源继续实验。
四、学生实验前对实验所用仪器设备要了解其操作规程和使用方法,实验过程中按照要求记录实验数据。
实验中有仪器损坏情况,应立即报告指导教师检查处理。
凡因不预习或不按照使用方法误操作而造成设备损坏后,除书面检查外,还要按照规定进行赔偿。
五、注意实验安全,不要带电连接、更改或拆除线路。
实验中遇到事故应立即关断电源并报告教师处理。
六、实验完成后,实验数据必须经教师签阅后,方可拆除实验线路。
并将仪器、设备、凳子等按照规定放好,经教师同意后方可离开实验室。
七、实验室仪器设备不能擅自搬动、调换,更不能擅自带出实验室。
八、因故缺课的同学可以向实验室申请一次补做机会。
无故缺课、无故迟到十五分钟以上或者早退的不予补做,该实验无成绩。
实验一 整流电路仿真实验1、 单相半波可控整流电路(输出端有续流二极管)要求电源电压t u ωsin 1002=,频率50Hz ,控制角︒=30α,负载为阻感负载,Ω=3.0R 。
试通过仿真分析0=L H ,5.0=L mH ,1.0=L H 对电路输出的影响 附:该电路仿真所用模块:电源模块AC Voltage Source1:位于SimPowerSystems/Electrical Sources中;器件模块g m akr:位于SimPowerSystems/PowerElectronics 中,器件参数设置如图1所示:图1脉冲发生器Generator:位于Simulink/Sources 中;阻感负载:位于SimPowerSystems/Elements 中,其中电容参数设置为:inf ;电压/电流测量模块:v +-V o l e M e a i +-C u r t M e:位于SimPowerSystems/Measurements 中;示波器:位于Simulink/Sinks 中。
电力电子实验指导书完全
电力电子技术实验指导书目录实验一单相半波可控整流电路实验 (1)实验二三相桥式全控整流电路实验 (4)实验三单相交流调压电路实验 (7)实验四三相交流调压电路实验 (9)实验装置及控制组件介绍 (11)实验一单相半波可控整流电路实验一、实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用;2.对单相半波可控整流电路在电阻负载及电阻电感负载时的工作做全面分析;3.了解续流二极管的作用;二、实验线路及原理熟悉单结晶体管触发电路的工作原理及线路图,了解各点波形形状。
将单结晶体管触发电路的输出端“G”和“K”端接至晶闸管的门极和阴极,即构成如图1-1所示的实验线路。
图1-1 单结晶体管触发的单相半波可控整流电路三、实验内容1.单结晶体管触发电路的调试;2.单结晶体管触发电路各点电压波形的观察;=f(α)特性的测定;3.单相半波整流电路带电阻性负载时Ud/U24.单相半波整流电路带电阻电感性负载时续流二极管作用的观察;四、实验设备1.电力电子实验台2.RTDL09实验箱3.RTDL08实验箱4.RTDL11实验箱5.RTDJ37实验箱6.示波器;7.万用表;五、预习要求1.了解单结晶体管触发电路的工作原理,熟悉RTDL09实验箱;2.复习单相半波可控整流电路的有关内容,掌握在接纯阻性负载和阻感性负载时,电路各部分的电压和电流波形;3.掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。
六、思考题1.单相桥式半波可控整流电路接阻感性负载时会出现什么现象?如何解决?七、实验方法1.单相半波可控整流电路接纯阻性负载调试触发电路正常后,合上电源,用示波器观察负载电压Ud、晶闸管VT两端电压波形UVT ,调节电位器RP1,观察α=30o、60o、90o、120o、150o、180o时的Ud、UVT波形,并测定直流输出电压Ud和电源电压U2,记录于下表1-1中。
2.单结晶体管触发电路的调试RTDL09的电源由电源电压提供(下同),打开实验箱电源开关,按图1-1电路图接线,负载为RTDJ37实验箱,选择最大的电阻值,调节移相可变电位器RP1,用示波器观察单结晶体管触发电路的输出电压波形(即用于单相半波可控整流的触发脉冲)。
电力电子技术课程实验指导书
《电力电子技术》课程实验指导书一、课程的目的、任务本课程是电子科学、测控技术专业学生在学习电力电子技术课程中的一门实践性技术基础课程,其目的在于通过实验使学生能更好地理解和掌握电力电子基本理论,培养学生理论联系实际的学风和科学态度,提高学生的电工实验技能和分析处理实际问题的能力。
为后续课程的学习打下基础。
二、课程的教学内容与要求包括三个子实验:1、单相交流调压电路实验通过该实验加深理解单相交流调压电路的工作原理和单相交流调压电路带电感性负载对脉冲及移相范围的要求。
2、功率场效应晶体管(MOSFET)特性与驱动电路研究掌握MOSFET对驱动电路的要求并且熟悉MOSFET主要参数的测量方法。
3、绝缘栅双极型晶体管(IGBT)特性与驱动电路研究掌握混合集成驱动电路EXB840的工作原理与调试方法。
三、各实验具体要求见P2四、实验流程介绍学生用户登陆进入实验系统的用户名为:D+学号(D205003200XX),密码:netlab五、实验报告请各指导老师登陆该实验系统了解具体实验方法,并指导学生完成实验。
学生结束实验后应完成相应的实验报告并交给指导老师。
其中实验报告的主要内容包括:实验目的,实验内容,实验结果和实验心得等。
实验一单相交流调压电路实验一.实验目的:1.加深理解单相交流调压电路的工作原理;2.加深理解单相交流调压电路带电感性负载对脉冲及移相范围的要求。
二.实验内容:1.单相调压电路带电阻性负载实验;2.单相交流调压电路带电阻电感性负载实验。
三.实验步骤:在客户端实验界面中的实验列表框中选择“电力电子实验”下的“单相交流调压实验”子实验,出现“单相交流调压实验”的实验界面。
点击工具栏的开始实验按钮,开始“单相交流调压实验”。
点击图中电阻和电感边上的红点选择电阻和电感,进行电路连接。
然后在“晶闸管脉冲触发角度”框中输入“0—360”之间的任意角度,然后点击“开始”按钮,开始实验。
右边界面将出现三路波形,其中蓝色为电源电压波形,黄色为负载电压波形,红色为负载电流波形。
电力电子技术实验指导书V10.docx
电力电子技术实验装置简介................................................. -2 -电力电子技术实验的基本要求和安全操作说明 (6)第一章晶闸管部分 (8)实验一正弦波同步移相触发电路实验 (8)实验二锯齿波同步移相触发电路实验 (10)实验三单相半波整流电路实验 ............................................ -12 -实验四单相桥式半控整流电路实验 (75)实验五单相桥式全控整流及有源逆变电路实验 ........................... -18 -实验六三相半波可控整流电路实验 ...................................... -22 -实验七三相桥式半控整流电路实验 ...................................... -25 -实验八三相桥式全控整流及有源逆变电路实验 . (28)实验九单相并联逆变电路实验 (33)实验十单相交流调压电路的性能研究 (36)实验^一三相交流调压电路实验 (39)第二章全控型器件特性部分 (42)实验十二SCR、GTO、MOSFET、GTR、IGBT特性实验 (42)实验十三GTO、MOSFET、GTR、IGBT驱动与保护电路实验 (45)第三章控型器件典型线路部分 (48)实验十四单相交直交变频电路原理 (48)(单相正眩波脉宽调制(SPWM)逆变实验) (48)实验十五半桥型开关稳压电源的性能研究 (51)实验十八单相交流调功电路的性能研究 (65)电力电子技术实验装置简介一、概述:1、特点:1)实验装置采用挂件式结构,可根据不同的实验内容进行自由组合,故结构紧凑、使用方便灵活,并且可随着功能的扩展只需增加挂件即可.2)装置布局合理,外型美观,面板示意图明确、、清晰、直观,学生可通过面板的示意查寻故障,分析工作原理。
电力电子技术实验指导书88451
实验一正弦波同步移相触发电路实验一、实验目的(1)熟悉正弦波同步移相触发电路的工作原理和各元件的作用。
(2)掌握正弦波同步移相触发电路的调试步骤和方法。
三、实验线路及原理正弦波同步移相触发电路包括脉冲形成、同步移相、脉冲放大等几个环节,具体工作原理可参见电力电子技术教材的有关内容。
四、实验内容(1)正弦波同步移相触发电路的调试。
(2)正弦波同步移相触发电路中各点波形的观察。
五、预习要求(1)阅读电力电子技术教材中有关正弦波同步移相触发电路的内容,弄清正弦波同步移相触发电路的工作原理。
(2)掌握脉冲初始相位的调整方法。
六、思考题(1)正弦波同步移相触发电路由哪些主要环节组成?(2)正弦波同步移相触发电路的移相范围能否达到180°?七、实验方法(1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V10%,而“交流调速”侧输出的线电压为240V。
如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。
在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察正弦波触发电路各观察点的电压波形。
(2)确定脉冲的初始相位当U ct=0时(将RP1电位器逆时针旋到底),调节U b(调RP2),使U4波形与图1-1中的TP4波形相同,使得触发脉冲的后沿接近90°。
(3)保持RP2电位器不变,顺时针旋转RP1(即逐渐增大U ct),用示波器观察同步电压信号及输出脉冲“5”点的波形,注意U ct增加时脉冲的移动情况,并估计移相范围。
电力电子技术及运动控制实验指导书
DJDK —1型电力电子技术及电机控制实验装置面板介绍DJK01电源控制屏1、三相电网电压指示1. 三相电网电压指示主要用于检测输入的电网电压是否有缺相的情况,操作交流电压表下面的切换开关,可以观测三相电网各线间电压是否平衡。
为防止电源开关频繁动作对交流电压表的冲击,平时请将波段开关置于空挡以切除电压表。
2、定时器兼报警记录仪图1-1 电源控制屏DJK01真有效值交流电压表、电流表日光灯开关调速电源选择开关 三相主电路输出直流 电流表直流 电压表 励磁电源 定时器兼报警记录仪 电源控制部分 三相电网电压指示 三相隔离变压器 电流互感器平时作为时钟使用,具有设定实验时间、定时报警和切断电源等功能,它还可以自动记录由于接线操作错误所导致的告警次数。
(具体操作方法详见DJDK-1型电力电子技术及电机控制实验装置使用说明书)3、电源控制部分它的主要功能是控制电源控制屏的各项功能,它由电源总开关、启动按钮及停止按钮组成。
当打开电源钥匙总开关时,停止按钮的红灯亮;当按下启动按钮后,红灯灭,启动按钮的绿灯亮,此时控制屏的三相主电路及励磁电源都有电压输出。
4、三相主电路输出三相主电路输出可提供三相交流200V/3A或240V/3A电源。
输出电压的大小由“调速电源选择开关”控制,当开关置于“直流调速”侧时,A1、B1、C1输出的线电压为200V,可完成电力电子实验以及直流调速实验;当开关置于“交流调速”侧时,A1、B1、C1输出的线电压为240V,可完成交流电机调压调速及串级调速等实验。
在主电源输出回路中装有测定输出电流值的电流互感器,供电流反馈和过流保护使用,面板上TA1、TA2、TA3的三处观测点用于观测三路电流互感器输出电压信号。
5、励磁电源在按下启动按钮后将励磁电源开关拨向“开”侧,励磁电源输出220V的直流电压,励磁电源由0.5A熔丝做短路保护,由于励磁电源的容量有限,仅作为直流电机提供励磁电流,故一般不能作为大电流的直流电源使用。
电力电子技术实验指导书 (2)
电力电子实验指导书俞佳目录电力电子实验指导书 (1)实验注意事项: (4)实验一功率场效应晶体管(MOSFET)参数测定和锯齿波触发电路的研究 (5)一.实验目的 (5)二.实验内容 (5)三.实验设备和仪器 (5)四、实验线路 (5)五.实验方法 (5)六.实验报告 (7)实验二功率场效应晶体管(MOSFET)驱动电路的研究 (7)一.实验目的: (7)二.实验内容 (7)三.实验设备和仪器 (7)四、实验线路及步骤 (8)五.实验报告 (9)六.思考题 (9)实验三单相桥式全控整流电路和三相桥式半控整流电路实验 (9)一.实验目的 (9)二.实验线路及原理 (10)三.实验内容 (12)四.实验设备及仪器 (12)五.注意事项 (12)六.实验方法 (12)实验四三相桥式全控整流及有源逆变电路实验 (13)一.实验目的 (13)二.实验内容 (13)三.实验线路及原理 (13)四.实验设备及仪器 (13)五.实验方法 (13)实验五直流斩波电路(设计性)的性能研究 (16)一.实验目的 (16)二.实验内容 (16)三.实验设备及仪器 (16)四.实验方法 (16)实验六单相交流调压电路实验(改) (17)一.实验目的 (17)二.实验内容 (17)三.实验线路及原理 (17)四.实验设备及仪器 (18)五.注意事项 (18)六.实验方法 (19)七.实验报告 (19)实验七采用自关断器件的单相交流调压电路研究 (20)一.实验目的 (20)二.实验内容 (20)三.实验系统组成及工作原理 (20)四.实验设备和仪器 (21)五.实验方法 (21)六.思考题 (22)实验注意事项:1. G(给定):原理图如图0-1。
它的作用是得到下列几个阶跃的给定信号:(1)0V突跳到正电压,正电压突跳到0V;(2)0V突跳到负电压,负电压突跳到0V;(3)正电压突跳到负电压,负电压突跳到正电压。
正负电压可分别由RP1、RP2两多圈电位器调节大小(调节范围为0 13V左右)。
电力电子实验指导书(东华大学)
东华大学信息学院电力电子技术实验指导书2014年4月目录实验一晶闸管触发电路研究实验二单相桥式半控整流电路实验三三相桥式整流电路实验四三相有源逆变电路附录一固纬GRS-6032A示波器使用简介附录二固纬GRS-6032A示波器面板图片《电力电子实验》一般注意事项:1.每次合、分主回路电源前要将各高、低压调压器(如:三相交流调压器、G给定Ug电位器)旋至最小位置,电阻器置最大值。
2.晶闸管控制极内部已连线至触发电路,面板上插孔禁止连接导线。
3. 使用双踪示波器时两个探头的接地线要共点,以免因电压差造成过流。
测量Ud时示波器探头的正极(红线)置晶闸管共阴极,负极(黑线)置晶闸管共阳极;UVT是晶闸管阳极对阴极的电压,测量时探头红线置阳极,黑线置阴极。
4. 交直流表要分清,选择量程要符合要求。
5.“主电源送电”的含义是:按下交流电源“闭合“的绿色按钮。
6. 数字表计的读数显示滞后于调节进程,因此相应的操作宜缓。
固纬GRS-6032A示波器的使用1.示波器调节的主要目标显示为:屏幕上方显示信息:“ smpl ”屏幕下方显示信息:“DC 2V(或5V) 2 mS (或5mS) LINEf AC”2.测量前扫描线居中校准:对“CH1”/ “CH2”通道选择“GND”方式后,调节“POSITION”使扫描线居中。
3. TIME/DIV一般选择5mS,正弦波一个周期在水平方向占4格(90°/格)4.测试过程LEVEL、POSITION、TIME/DIV、X1/MAG等功能键钮均不能随意操作,以免引起波形在水平、垂直方向的移动,影响测量结果。
实验一锯齿波同步移相触发电路实验一.实验目的1.锯齿波同步移相触发电路的工作原理。
2.掌握锯齿波同步触发电路的调试方法。
3.测试锯齿波同步触发电路各点波形及移相特性。
二.实验内容1.锯齿波同步触发电路的调试。
2.锯齿波同步触发电路各点波形观察,分析。
三.实验线路及原理锯齿波同步移相触发电路主要由同步电源、同步信号、锯齿波形成、脉冲移相、脉冲形成、脉冲放大、脉冲输出七个环节。
电力电子技术实验指导书
合肥经济技术职业学院《电力电子技术》实验指导书电子信息系唐家运编实验一单结管触发器与单相桥式半控整流电路实验一、实验目的(1)熟悉单结管触发器电路中各元件的作用(2)加深对单相桥式半控整流电路带电阻性、电阻电感性负载时各工作情况的理解。
(3)了解续流二极管在单相桥式半控整流电路中的作用,学会对实验中问题加以分析和解决。
二、实验所需挂件及附件序号型号备注1 DJK01 电源控制屏该控制屏包含“三相电源输出”,“励磁电源”等几个模块。
2 DJK02 晶闸管主电路该挂件包含“晶闸管”以及“电感”等几个模块。
3 DJK03-1 晶闸管触发电路该挂件包含“锯齿波同步触发电路”模块。
4 DJK06 给定及实验器件该挂件包含“二极管”等几个模块。
5 D42 三相可调电阻6 双踪示波器自备7 万用表自备三、实验线路及原理如图1所示,为单结管触发器电路图。
是分析各部分的作用及工作原理。
图1 单结管触发器电路图单相桥式半控整流电路实验线路图2所示,两组锯齿波同步移相触发电路均在DJK03-1挂件上,它们由同一个同步变压器保持与输入的电压同步,触发信号加到共阴极的两个晶闸管,图中的R用D42三相可调电阻,将两个 900Ω接成并联形式,二极管VD1、VD2、VD3及开关S1均在DJK06挂件上,电感L d在DJK02面板上,有100mH、200mH、700mH三档可供选择,本实验用700mH,直流电压表、电流表从DJK02挂件获得。
图2 单相桥式半控整流电路实验线路图四、实验内容(1)锯齿波同步触发电路的调试。
(2)单相桥式半控整流电路带电阻性负载。
(3)单相桥式半控整流电路带电阻电感性负载。
(4)单相桥式半控整流电路带反电势负载(选做)。
五、预习要求(1)阅读电力电子技术教材中有关单相桥式半控整流电路的有关内容。
(2)了解续流二极管在单相桥式半控整流电路中的作用。
六、思考题(1)单相桥式半控整流电路在什么情况下会发生失控现象?(2)在加续流二极管前后,单相桥式半控整流电路中晶闸管两端的电压波形如何?七、实验方法(1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用双踪示波器观察“锯齿波同步触发电路”各观察孔的波形。
电力电子技术实验指导书
实验一单相桥式全控整流电路实验一.实验目的1.了解单相桥式全控整流电路的工作原理。
2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电势负载时的工作。
3.熟悉MCL—05锯齿波触发电路的工作。
二.实验线路及原理参见图4-7。
三.实验内容1.单相桥式全控整流电路供电给电阻负载。
2.单相桥式全控整流电路供电给电阻—电感性负载。
3.单相桥式全控整流电路供电给反电势负载。
四.实验设备及仪器1.MCL系列教学实验台主控制屏。
2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。
3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)4.MCL—05组件或MCL—05A组件5.MEL—03三相可调电阻器或自配滑线变阻器。
6.MEL—02三相芯式变压器。
7.双踪示波器8.万用表五.注意事项1.本实验中触发可控硅的脉冲来自MCL-05挂箱,故MCL-33(或MCL-53,以下同)的内部脉冲需断X1插座相连的扁平带需拆除,以免造成误触发。
2.电阻RP的调节需注意。
若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。
3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。
4.MCL-05面板的锯齿波触发脉冲需导线连到MCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。
同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。
5.逆变变压器采用MEL-02三相芯式变压器,原边为220V,中压绕组为110V,低压绕组不用。
6.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。
7.带反电势负载时,需要注意直流电动机必须先加励磁。
六.实验方法1.将MCL—05(或MCL—05A,以下均同)面板左上角的同步电压输入接MCL—18的U、V输出端(如您选购的产品为MCL—Ⅲ、Ⅴ,则同步电压输入直接与主控制屏的U、V输出端相连),“触发电路选择”拨向“锯齿波”。
电力电子技术实验指导书
注意事项目录目录 (1)电力电子技术实验注意事项 (1)实验一SCR(单向和双向)特性与触发实验 (3)实验二、单相桥式全控整流电路 (6)实验三、三相桥式全控整流电路 (9)实验四、Buck变换电路研究 (12)实验五、Boost变换电路研究 (14)实验六、单相SPWM电压型逆变电路研究 (16)实验七、单相交流调压电路 (18)附录 (20)附图1 锯齿波移相触发的单相桥式全控整流电路 (21)附图2 锯齿波移相触发的三相桥式全控整流电路 (22)附图3Buck变换电路实验研究 (23)附图4Boost变换电路实验研究 (24)附图5单相SPWM逆变电路实验研究 (25)附图6 单相交流调压电路 (26)电力电子技术实验注意事项(一)“综合实验台”及其挂箱初次使用或较长时间未用时,实验前应首先对“实验台”及其相关挂箱进行全面检查和单元环节调试,确保主电源、保护电路和相关触发电路单元工作正常。
(二)每次实验前,务必设置“状态”开关,并检查其它开关和旋钮的位置。
实验接线,必须经教师审核无误后方可开始实验。
(三)负载和电源的选用要严格参考有关挂件的使用说明,电力电子实验除需要电动机作负载的综合实验项目外,一律采用“DP01”单元提供的低压电源和“DSM08”单元提供的小功率负载。
(四)除非特定的实验操作要求(必要的实验方法),任何需要改接线时,必须先切除系统工作电源:首先使系统的给定为零,然后依次断开主电路总电·1·注意事项源、断开控制电路电源。
(五)双踪示波器的两个探头,其地线已通过示波器机壳短接。
使用时务必使两个探头的地线等电位(或只用一根地线即可),以免测试时系统经示波器机壳短路。
(六)每个挂箱都有独立电源,使用时要打开上面的电源开关才能工作,同时在不同挂件上的单元电路配合使用时需要共信号地。
(七)本实验注意事项,适用于电力电子所有典型实验,敬请注意。
·2·实验三·3·实验一 SCR (单向和双向)特性与触发实验一、实验目的1、了解晶闸管的基本特性。
电力电子技术作业指导书
电力电子技术作业指导书一、简介电力电子技术是研究电能的转换、控制和调节的一门学科,主要应用于电力系统、电力传输、电力供应以及各种工业领域。
本作业指导书旨在帮助学生掌握电力电子技术的基本理论、原理和应用。
二、作业要求1. 了解电力电子技术的基本概念和分类;2. 理解电力电子元件的工作原理和特性;3. 掌握常见的电力电子电路拓扑结构及其应用;4. 学习电力电子器件的选型和应用;5. 熟悉电力电子系统的设计和调试方法;6. 运用所学知识解决相关问题。
三、作业内容1. 电力电子技术的基本概念和分类1.1 电力电子技术的定义1.2 电力电子技术的发展历程1.3 电力电子技术的分类2. 电力电子元件的工作原理和特性2.1 二极管和整流电路2.2 三极管和逆变电路2.3 功率场效应晶体管和开关电路2.4 继电器和保护电路2.5 晶闸管和斩波电路3. 常见的电力电子电路拓扑结构及其应用3.1 交流稳压电源3.2 直流稳压电源3.3 变换器和逆变器3.4 交流电机调速装置4. 电力电子器件的选型和应用4.1 选择二极管和整流器的注意事项4.2 选择三极管和逆变器的注意事项4.3 选择场效应晶体管和开关电路的注意事项 4.4 选择继电器和保护电路的注意事项4.5 选择晶闸管和斩波电路的注意事项5. 电力电子系统的设计和调试方法5.1 确定系统要求和设计指标5.2 选择电力电子元件和电路拓扑结构5.3 进行系统仿真和优化设计5.4 进行电力电子系统的调试和验证5.5 提出改进建议和优化方案6. 应用案例分析6.1 电力电子在电力系统中的应用6.2 电力电子在电力传输中的应用6.3 电力电子在电力供应中的应用6.4 电力电子在工业领域中的应用四、作业提交要求1. 按照指导书的要求完成作业内容;2. 作业采用电子版形式,提交纸质或电子文档;3. 作业提交截止时间为XX月XX日。
五、作业评分标准1. 完成作业内容的全面性;2. 作业表达的准确性和清晰性;3. 作业的组织结构和布局美观;4. 作业中所使用的数据和图表准确可靠。
电力电子实验指导书(XXXX1011)
电力电子实验室规范1.确保人身安全。
注意通电前人体避免和电路相关裸线接触。
不得在实验室内开玩笑,以免发生意外。
严禁穿拖鞋进入实验室。
2.确保设备安全。
详细阅读设备的使用说明,方可上机操作设备。
一般情况下,不随意调整设备运行参数,以免给设备带来损坏。
3.确保接线安全。
(1)弱电的线不能插在强点线的插孔上;(2)线不够长时, 不能相接,以确保人身和设备安全。
4 .实验指导:同学们在实验过程中遇到问题时,首先要通过查阅相关资料。
如果问题仍无法解决,可以找本班同学交流探讨。
若问题依然存在,再找相关的指导老师。
5.工位“三包”实验过程中最好将示波器摆放到实验桌的顶部以方便使用并保持实验工位附近的整洁。
各工位的同学离开实验室前(或实验结束后),必须整理好工位。
具体包括:切断各自工位设备的电源,整理导线、摆放桌椅,处理垃圾等等。
6.实验班级注意事项:1)每次实验前各班必须指定一个同学作为当日的值日生,该同学协助实验室老师组织和管理好本次实验,值日生必须提前联系相关实验室老师以便师生都做好相应的准备。
2)值日生必须在该次实验完毕后在相应的实验项目管理卡上签名确认3)值日生必须督导全体同学做好工位三包。
4)值日生离开实验室的时候之前应切断总电源(含动力电源和照明电源以及风扇、空调等),并将实验室门反锁。
5)值日生必须最后走。
电子信息与电气工程系电力电子技术实验室电力电子与伺服控制系统实验装置部分挂箱说明一.NMCL — 31A 挂箱NMCL — 31A 由G (给定),零速封锁器(DZS ),它的作用是得到下列几个阶跃的给定信号:(1) 0V 突跳到正电压,正电压突跳到 0V ; (2) 0V 突跳到负电压,负电压突跳到 0V ; (3,正电压突跳到负电压,负电压突跳到正电压。
正负电压可分别由RP1、RP2两多圈电位器调节大小(调节范围为 0 数值由面板右边的数显窗读出。
只要依次扳动S1、S2的不同位置即能达到上述要求。
《电力电子技术》试验指导书
2.研究三相半波可控整流电路供电给电阻性负载时的工作 合上主电源,接上电阻性负载,调节主控制屏输出电压 Uuv、Uvw、Uwv,从 0V 调至 110V: (a)改变控制电压 Uct,观察在不同触发移相角α时,可控整流电路的输出电压 Ud=f
(t)与输出电流波形 id=f(t),并记录相应的 Ud、Id、Uct 值。
硅时断时续。 3.NMCL-05 面板的锯齿波触发脉冲需导线连到 NMCL-33 面板,应注意连线不可接 错,否则易造成损坏可控硅。同时,需要注意同步电压的相位,若出现可控硅移相范围太 小(正常范围约 30°~180°),可尝试改变同步电压极性。 4.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。
八.思考
1. 能否用双踪示波器同时观察触发电路与整流电路的波形?
实验三
单相桥式全控整流电路
一.实验目的
1.了解单相桥式全控整流电路的工作原理。 2.研究单相桥式全控整流电路在电阻负载时的工作。 3.熟悉 NMCL—05 组件。
二.实验线路及原理
参见图 1-3。
三.实验内容
1.单相桥式全控整流电路供电给电阻负载。
确,确定其输出脉冲可调的移相范围。并调节偏移电阻 RP2,使 Uct=0 时,α=150°。 2.单相桥式晶闸管半控整流电路供电给电阻性负载: 按图 1-2 接线。调节电阻负载 RD(可选择 900Ω电阻并联,最大电流为 0.8A)至最大。 (a)NMCL-31A 的给定电位器 RP1 逆时针调到底,使 Uct=0。 三相调压器逆时针调到底,合上主电路电源,调节主控制屏输出 Uuv=220V。 调节 NMCL-31A 的给定电位器 RP1, 使α=90°, 测取此时整流电路的输出电压 Ud=f (t) 以及晶闸管端电压 UVT=f(t)波形,并测定交流输入电压 U2、整流输出电压 Ud,验证
电力电子技术及自动控制系统实验指导书:电流环及电流截止负反馈环节调试、转速环调试
实验九 电流环及电流截止负反馈环节调试、转速环调试一、实验目的l.理解双闭环直流调速系统的结构特点、工作原理和保护环节的作用。
2.掌握双闭环直流调速系统各单元的联接。
3.学会双闭环直流调速系统的调试、性能分析和故障排除。
二、实验设备高自EAD —I 型电力电子与自控系统实验装置万用表双踪示波器直流电动机组三、实验电路1.主电路见图9-l 。
2.整流变压器及同步变压器电路见图9-2。
3.S3B 三相集成触发电路见图9-3。
4.电流调节器与速度调节器见图9-1所示。
四、实验电路的工作原理主电路、整流变压器及同步变压器电路。
S3B 三相集成触发电路工作原理见实验七。
1.双闭环直流调速系统原理双闭环直流调速系统的示意图如图9-2所示。
由图9-2可见,速度和电流双闭环调速系统是由速度调节器ASR 和电流调节器ACR 串接后分成两级去进行控制的,即由ASR 去“驱动”ACR ,再由ACR 去“驱动”触发器。
电流环为内环,速度环为外环。
ASR 和ACR 在调节过程中起着各自不同的作用:电流调节器 ACR 的作用:1)稳定电流,使电流保持在β*i d U I 的数值上,式中β为电流反馈系数。
从而依靠 ACR 的调节作用,可限制最大电流,*im U 为电流调节器给定电压的最大值,调节RP4,即可调节*im U 的大小,亦即调节最大电流dm I 的数值。
2)当电网波动时,ACR 维持电流不变的特性,使电网电压的波动,几乎不对转速产生影响。
3)起动时保证获得允许的最大电流。
4)在转速调节过程中,使电流跟随其给定电压*i U 变化。
图9-1 电流调节器与速度调节器图9-2 双闭环直流调速系统的示意图速度调节器 ASR 的作用:稳定转速,使转速保持在 α/sn U n ≈的数值上。
式中sn U 为速度调节器的给定电压,α为转速反馈系数,调节RP6,即可整定α的数值,因此在负载变化(或参数变化或各环节产生扰动)而使转速出现偏差时,则靠ASR 的调节作用来消除速度偏差,保持转速恒定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 1-1 锯齿波触发电路原理和接线图 注:G 给定的 Ug 孔连接到触发电路的 Uct 孔(Uct 为触发电路的控制电压)。
四.实验设备及仪器
1.教学实验台主控制屏 3.锯齿波触发电路 NMCL-36C 5. 二踪示波器 2.G 给定 NMCL-31A 4.三相触发电路和晶闸管主回路 NMCL-33F
注:回路电流不能超过所选电阻器的额定值。 表 2-1 单相桥式整流电路电阻负载时输入输出电压值 a=150 Ud(V) U2(V) a=120 a=90 a=60 a=30
图 2-3
单相半控桥整流电路电阻负载 u d、u VT 的波形
3.单相桥式半控整流电路电阻—电感性负载测试 保持前面接线不变, 只撤除平波电抗器上的短接线, 使回路保持 R、 L 串联形式的阻感性负载。 电感性负载的单相桥式半控整流电路初始相位角为=180°。前已满足,不必重设。 本实验直流主回路接线分两种情况:a.无续流二极管 b.有续流二极管。 (1)无续流二极管 (a)将 G 给定电位器 RP1 逆时针调到底,使 Ug=0,即 Uct=0。电阻负载 Rd 调节至最大。 (b)主电源送电,此时 α=180°(初始相位角)。 增大 Ug,观察 α=30°、60°、90°、120°、150° 时 u d、uVT 波形并记录 uVT 的波形于图 2-4 a)。 (c)在某一 α 值时突然关断触发电路电源(自身的电源开关),观察是否出现 ud 失控波形。 如不发生失控现象,重新使电路工作,然后通过减小控制角 α 或电阻 R 使电流增大后再试。 记录发生失控时的 U2 值,并记录失控时的 ud、uVT1、uVT3 波形于图 2-5。 (2)有续流二极管
1. 均以“0V”为参考点,利用示波器分别观察同步电压的波形和触发脉冲波形 a. 三相同步电压与三相交流电源的频率相同,且字母(u/v/w) 对应的相其相位相同,只是前者 幅值较小。观察同步电压三相波形是否依次滞后 120°。 b. 检查触发双脉冲的波形与相序:双脉冲波形周期与同步电压相同,一对双脉冲由两个幅值、 脉宽完全相同,相位相差 60°的单脉冲组成。6 个脉冲观察孔从左到右依次记为 1# ~ 6#触发 脉冲(分别控制 1 ~ 6#晶闸管),且从 1#至 6#其波形相位依次滞后 60°。 2. 估算触发角 α 移动范围 任选一脉冲观测孔(如 1#)。当 Ug =0 时,改变 NMCL-33F 的偏移电压“Ub”使 1#脉冲 波形向右移动,及至不能再移之时停止改变 Ub ,此处为 α 值增大的极限位置,读取 α 角位置 并保持“Ub”不变;再自零起增大 Ug,双脉冲波形将向左移动,不断增大 Ug 直至脉冲不再移动 时停止,此处为 α 值最小的位置。两个 α 值(最大和最小)之间的角度即为脉冲的移相范围。 3. 以同步电压正弦波为参考,记录 α = 60°时 UG1~UG6 的脉冲波形于图 1-4 中。 触发角读取方法举例见下图 1-3:
图 1-3 三相整流触发角读取方法 Uu: 交流输出电源 U 相电压 Usu: U 相同步电压 UG1:“1”的输出脉冲 Uu 与 Usu 波形频率、相位完全一致。 以上电压均以“0V”为参考点 注意:同步电压正半周 30°处(自然换相点处)定义为三相整流触发电路的 α = 0°
5
图 1—4
双脉冲触发电路波形
“主电源送电”的含义是:按下交流电源“闭合“的绿色按钮。
6. 数字表计的读数显示滞后于调节进程,因此相应的操作的宜缓。 固纬 GRS-6032A 示波器的使用 1. 示波器调节的主要目标显示为: 屏幕上方显示信息:“ smpl ” 屏幕下方显示信息:“DC 2V(或 5V) 2 mS (或 5mS) LINEf AC”
六.实验方法
1.触发电路控制回路调试: 将主电源控制屏的电源输出 U、V 端接入锯齿波触发电路同步电压的 u、v 端。主回路线不接。 a).主电源送电(按下交流电源绿色闭合按钮),用示波器检查各观察孔对 7#孔的电压波形。 b).调节脉冲移相范围:按图 2-2 所示α读取方法来设定单相整流电路初始相位角。 用示波器观察 G1/K1 相对于同步电压的位置,当“G”输出电压 Ug=0 时,调节偏移电压 Ub, 在脉冲波形刚好不再右移的瞬间, 立刻停止调节。 此时角应接近初始触发角 180°, 对应于 Ud=0。 此后 Ub 保持不变。 注意:在调节偏移电压 Ub 时,要注意捕捉脉冲波形刚刚不再右移的瞬间,此时应立刻停止 调节,以免调过头后形成控制死区,影响 Ug 给定电压对角的线性控制。 调节 Ug,即增加 Uct,脉冲将向左移动,继续增大直至脉冲刚刚消失为止,此时触发角 min≈30°。移相范围为=30°~180°。观察后 Ug 重新归零。
东华大学信息学院
电力电子技术
实验指导书
2014 年 4 月
目录
实验一 实验二 实验三 实验四
晶闸管触发电路研究 单相桥式半控整流电路 三相桥式整流电路 三相有源逆变电路
附录一 附录二
固纬 GRS-6032A 示波器使用简介 固纬 GRS-6032A 示波器面板图片
1
《电力电子实验》一般注意事项: 1. 每次合、分主回路电源前要将各高、低压调压器(如:三相交流调压 器、G 给定 Ug 电位器)旋至最小位置,电阻器置最大值。 2. 晶闸管控制极内部已连线至触发电路,面板上插孔禁止连接导线。 3. 使用双踪示波器时两个探头的接地线要共点,以免因电压差造成过流。 测量 Ud 时示波器探头的正极(红线)置晶闸管共阴极,负极(黑线) 置晶闸管共阳极; UVT 是晶闸管阳极对阴极的电压,测量时探头红线 置阳极,黑线置阴极。 4. 交直流表要分清,选择量程要符合要求。 5.
图 2-1 单相桥半空整流电路接线图
三.实验内容
1.单相桥式半控整流电路供电给电阻性负载。 2.单相桥式半控整流电路供电给电阻—电感性负载。
四.实验设备及仪器
1.教学实验台主控制屏 3.G 给定 NMCL-31A 5.续流二极管 NMCL-33F 7.直流电流表 NMCL-001/1 2. 触发电路和晶闸管主回路 NMCL-36C 4.平波电抗器 NMCL-3310 6.可调电阻 NMEL-03/4 5 8 二踪示波器
3
五.实验方法
(一)锯齿波移相触发电路调试及各点波形的观察 1. 将 NMCL-36C 锯齿波触发电路面板上左上角的同步电压 u、 v 对应接到交流电源输出的 U、 V 端。 2.合上 MEL-002T 操作电源绿色开关。用示波器观察触发电路各观察孔对 7#孔的电压波形。 1#孔为正弦波同步电压次级,2#为时间延伸的同步电压负半周,3#为锯齿波同步信号,4#为 脉冲转折波形,5#为脉冲形成波形,6#为脉冲放大波形,G1K1~G4K4 为脉冲输出波形。 分析、比较各波形相互的对应关系。 3. 调节脉冲移相范围 将低压单元的“G”输出电压调至 0V, 即将控制电压 Uct 调至零, 调节偏移电压 U(即调 RP) , b 使触发脉冲向右移动,直到不再移动时为止。此点为触发角 α 值最大处。读取 α 角位置并保持 “Ub”不变;再自零起增大 Ug,脉冲波形将向左移动,不断增大 Ug 直至脉冲即将消失时停止, 此点为 α 值最小处。两个 α 值(最大和最小)间隔的角度即为脉冲的移相范围。 4.调节 Uct,使=60°,观察并记录 U1~U6(对应 1#~6#孔的电压)及输出脉冲电压 UG1K1,UG2K2 的波形,记录在图 1—2 中。各波形在横坐标时间轴上要对应起来。用同样方法观测 UG3K3,UG4K4 的波形,比较与 UG1K1,UG2K2 之间的相位关系。
8
五.注意事项
1.实验前必须先了解晶闸管的电流额定值(本装置单相晶闸管为 1.7A,使用时要求主回路电流小于 1A),并根据额定值与整流电路形式计算出负载电阻的最小允许值。 2.为保护整流元件不受损坏,晶闸管整流电路的正确操作步骤 (1)在主电路不接通电源时,调试触发电路,使之正常工作。晶闸管门极不须连线。 (2)在控制电压 Uct=0 时,接通主电源。然后逐渐增大 Uct,使整流电路投入工作。 (3)断开整流电路时,应先把 Uct 降到零,使整流电路无输出,然后切断总电源。否则可能烧毁 熔丝。以后在三相整流及逆变电路负载实验中均按此原则操作,不再重申。
7
实验二
单相桥式半控整流电路实验
一.实验目的
1.研究单相桥式半控整流电路在电阻负载,电阻—电感性负载及反电势负载时的工作。 2.掌握锯齿波触发电路的原理和应用方法。 3.进一步掌握双踪示波器在电力电子线路实验中的使用特点与方法。
二.实验线路
单相桥式半控整流电路每一个导电回路只包含一个晶闸管,另外一个整流器件为二极管。见图 2-1。
2
实验一
锯齿波同步移相触发电路实验
一.实验目的
1.锯齿波同步移相触发电路的工作原理。 2.掌握锯齿波同步触发电路的调试方法。 3.测试锯齿波同步触发电路各点波形及移相特性。
二.实验内容
1.锯齿波同步触发电路的调试。 2.锯齿波同步触发电路各点波形观察,分析。
三.实验线路及原理
锯齿波同步移相触发电路主要由同步电源、同步信号、锯齿波形成、脉冲移相、脉冲形成、脉冲 放大、 脉冲输出七个环节。 分别对应 1#~6#及 G1/K1 七处检测孔。 其工作原理可参见“电力电子技术” 有关教材。
(二)双脉冲触发电路 使用面板:G 给定 NMCL-31A、触发电路和晶闸管主回路 NMCL-33F 双脉冲触发电路作为两组晶闸管变流桥的内置式触发电路,晶闸管控制部分连线已内部完成,无须 外部再连。
4
将 G 给定的“Ug ”接到 NMCL-33F 的“Uc t ”,NMCL-33F 的脉冲封锁控制端“Ub l f ”接参考 点“0V”(本线若不接不影响双脉冲测试),见下图,即可开始触发电路的调试。
图 2-2 单相整流电路触发角读取方法示意图 Uu:交流输出电源 U 相电压 以上电压均以“0V”为参考点
9
Usu:U 相同步电压
UG1:“1”的输出脉冲