00-第0讲微积分的历史
微积分的发展
微积分的发展微积分的产生是数学上的伟大创造。
它从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。
如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。
从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。
公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。
作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。
比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。
三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。
”这些都是朴素的、也是很典型的极限概念。
到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。
归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。
第二类问题是求曲线的切线的问题。
第三类问题是求函数的最大值和最小值问题。
第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。
十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。
为微积分的创立做出了贡献。
十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。
他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。
1605 年 5 月20 日,在牛顿手写的一面文件中开始有“流数术”的记载,微积分的诞生不妨以这一天为标志。
微积分的发展历史
微积分的发展历史1. 古希腊时期:微积分的起源可以追溯到古希腊时期,早在公元前5世纪,数学家祖克里斯特斯(Zeno of Elea)就提出了诸如阿基里斯赛跑等著名的悖论,引发了对无穷小和无穷大的思考。
2. 阿基米德和群测强微积分:在古希腊和古罗马时期,一些数学家如阿基米德和群测强(Archimedes)开始探索几何学和代数学的基本概念,在解决实际问题的过程中也涉及到了微积分的雏形。
3.牛顿和莱布尼兹的发现:17世纪,英国科学家牛顿和德国数学家莱布尼兹几乎同时独立发现了微积分的基本原理。
牛顿将微积分用于机械学和物理学的研究,而莱布尼兹则用它来解决代数和几何方程。
这两位伟大的数学家将微积分作为一门独立的学科加以发展并系统化。
4. 微积分的形式化建立:18世纪,欧拉(Leonhard Euler)将微积分的概念进一步抽象化和形式化,构建了函数和级数的理论,为微积分的应用奠定了坚实的基础。
5. 国际象棋问题的解决:19世纪初,法国数学家拉格朗日(Joseph-Louis Lagrange)研究国际象棋中的一个问题,首次利用微积分的方法进行了解决。
这个问题不仅使微积分在数学界引起了重视,也增强了人们对微积分的研究兴趣。
6. 分析学的发展:19世纪,数学分析学迎来了一个又一个的里程碑。
来自法国的布尔巴基(Augustin-Louis Cauchy)和庞加莱(Henri Poincaré)等人对极限、连续性和导数等概念进行了严格的定义和证明,进一步完善了微积分的理论。
7.微积分的应用:20世纪初期,微积分得到了广泛应用,特别是在物理学、工程学和经济学等领域。
爱因斯坦的相对论理论、量子力学的发展以及现代金融学等都离不开微积分的支持。
8.持续发展和改进:自20世纪起,微积分一直在不断发展和改进。
函数论、复分析及它们与微积分的关系等新理论的出现,使微积分的应用更加广泛,对更加复杂的问题提供了更加深入的分析。
微积分发展简史
微积分发展简史一.微积分思想萌芽微积分的思想萌芽,部分可以追溯到古代。
在古代希腊、中国和印度数学家的著作中,已不乏用朴素的极限思想,即无穷小过程计算特别形状的面积、体积和曲线长的例子。
在中国,公元前5世纪,战国时期名家的代表作《庄子?天下篇》中记载了惠施的一段话:"一尺之棰,日取其半,万世不竭",是我国较早出现的极限思想。
但把极限思想运用于实践,即利用极限思想解决实际问题的典范却是魏晋时期的数学家刘徽。
他的"割圆术"开创了圆周率研究的新纪元。
刘徽首先考虑圆内接正六边形面积,接着是正十二边形面积,然后依次加倍边数,则正多边形面积愈来愈接近圆面积。
用他的话说,就是:"割之弥细,所失弥少。
割之又割,以至于不可割,则与圆合体,而无所失矣。
"按照这种思想,他从圆的内接正六边形面积一直算到内接正192边形面积,得到圆周率的近似值3.14。
大约两个世纪之后,南北朝时期的著名科学家祖冲之(公元429-500年)祖恒父子推进和发展了刘徽的数学思想,首先算出了圆周率介于3.1415926与3.1415927之间,这是我国古代最伟大的成就之一。
其次明确提出了下面的原理:"幂势既同,则积不容异。
"我们称之为"祖氏原理",即西方所谓的"卡瓦列利原理"。
并应用该原理成功地解决了刘徽未能解决的球体积问题。
欧洲古希腊时期也有极限思想,并用极限方法解决了许多实际问题。
较为重要的当数安提芬(Antiphon,B.C420年左右)的"穷竭法"。
他在研究化圆为方问题时,提出用圆内接正多边形的面积穷竭圆面积,从而求出圆面积。
但他的方法并没有被数学家们所接受。
后来,安提芬的穷竭法在欧多克斯(Eudoxus,B.C409-B.C356)那里得到补充和完善。
之后,阿基米德(Archimedes,B.C287-B.C212)借助于穷竭法解决了一系列几何图形的面积、体积计算问题。
微积分的发展历史
微积分的产生——划时代的成就.1 微积分思想的萌芽1.1 古希腊罗马——微分、积分思想的发源地原子论朴素的微分和积分思想.古希腊的原子论者具有朴素的微分和积分思想,该学派的创始人是留基伯(Leucippcus of Miletus),代表人物则是百科全书式的学者德漠克利特(Democritus of Abdera).原子论者把宇宙间的万物看成由不可再分的原子构成,以及原子虽然不能再分但仍有内部结构的思想,表现在数学上就是对于表示有限的长度、面积和体积的量x ,进行了一次微分(dx)和二次微分(dx 2). 德漠克利特曾用原子论思想第一次算出圆锥和棱锥的体积分别等于和它们同底同高的圆柱和棱柱体积的三分之一.极限法的早期形式穷竭法.为了计算曲边形的面积和体积,欧多克斯(Eudoxus of Cnidos )曾提出了一个计算方法,这个方法在17世纪时被人称为“穷竭法”.用现代的符号表示就是:如果对于任意的正整数n ,等式k b a nn =(常数)成立,且当n →∞时,A a n →,B b n →,则有k BA =.他用这个方法证明了德漠克利特已得出的求圆锥和棱锥体积的公式.阿基米德(Archimedes)对穷竭法也作出了重要贡献,他在《圆的度量》、《论圆柱和球》、《抛物线求积》、《论螺线》等著作中,应用了穷竭法,并引用了近似现代微积分中的“大和”与“小和”概念.并且他用这种方法计算出了球的体积和表面积、抛物线弓形的面积以及一些旋转体的体积等数学问题.芝诺的拟难.芝诺(Zero of Elea)是古希腊爱利亚学派的代表人,他虽然不是一个科学家,更谈不上是一位数学家,但他提出的四个拟难——二分法、阿基里斯追龟、飞箭、运动场,客观上把微积分中的离散和连续的对立统一惹人注目地摆了出来,对微积分发展有一定的影响.其中“二分法”和“阿基里斯追龟”涉及无穷运算问题,比如,收敛的无穷级数,虽有无穷多项,但其和仍为有限的;“飞箭”则是一个典型的导数问题,运动的物体在每一时刻不仅有速度,而且还有加速度等;“运动场”明显地同运动的两个相反的方向即正负概念有关.1.2 阿拉伯和欧洲中世纪——无限和运动的研究在整个中世纪,希腊文化遗产在某种程度上是由逐渐缩小的、以君士坦丁堡为中心的拜占庭帝国保存下来的.但是,在黑暗时代的几个世纪中,有效地利用这些遗产,并且最后把它们输送到西欧去的,却是地中海地区的阿拉伯政权.代数和三角学的确立.从7世纪开始,阿拉伯帝国逐渐崛起,到8世纪,它已成为一个地跨亚、欧、非三洲,阿拉伯帝国在所辖的较大城市建立图书馆和天文馆,政府组织人力进行天文观测,编制星表,集中学者翻译和注释希腊罗马古典名著.正当欧洲处在黑暗时期,“阿拉伯数学”却成了这时期西方科学的代表.希腊罗马的古典名著正是通过“阿拉伯人”的工作才得以保存下来,这是阿拉伯人对人类文明的重要贡献之一.不仅如此,阿拉伯也是东西科学文化交流的桥梁,今天通行的“印度—阿拉伯数码”以及我国古代“四大发明”等,都是通过阿拉伯从东方传到西方去的,这为欧洲以后科学文化的复苏创造了重要条件.有继承才有发展,阿拉伯人在保留古希腊罗马文化和传统文化的同时,也有一定的发展和创造.代数和三角学的确立就是他们对数学所做出的贡献.对无限和运动的研究.这一时期,除了“印度—阿拉伯数码”的逐渐普及,代数和三角学已经确立以及数学符号化已有端倪外,对无限的讨论以及对运动和速度的研究已成为数学家们注意的中心.例如德国的红衣主教库萨的尼古拉,把圆与三角形分别看成边数最多和边数最少的多边形,把无限大和零分别看成自然数的上界和下界.他还说尽管“世界不是无限的,但毕竟不能认为它是有限的,因为世界没有一条把它包围起来的界限”,这表明了他把无限看作一个过程的潜无限思想.14世纪英国很有声誉的数学家苏依塞斯的重要著作《算术》中,已有变量、极大和极小概念的原始形式,预示了变数和导数即将进入数学领域.他所使用的“流数”、“流量”等概念,被300年后的牛顿所采用.在无限问题上他指出,要解决所有关于无限的诡辩,只要认识到有限和无限不能有它们的比就行了,这是关于对有限和无限应有不同的论证的最早认识.1.3 古代中国——面积、体积与极限思想的丰富简单几何图形面积和体积的计算.在微积分的发展历史上,对任意封闭的平面曲线围成图形面积的计算,和任意封闭的空间曲线包围立体图形体积的计算,是产生积分概念的主要途径之一.计算面积和体积可以追溯到原始农业社会,根据我国甲骨文记载,约在300年以前的殷代,就把耕种的土地分成方形小块以求面积.积分概念就是在初等几何计算面积和体积的基础上逐渐形成的.《庄子》和《墨经》中的极限思想.极限概念是微积分区别于初等数学的特有概念,没有极限概念就没有现代的微积分.战国时代的《庄子·天下篇》中,有不少极限思想,其中最脍炙人口的一句话是:“一尺之椎,日取其半,万世不竭.”可以理解为无穷无尽、永远达不到极限的潜无限思想.无穷或无限概念,是极限概念的特殊情况,是微积分的重要概念.《墨经》也是战国时代的重要著作之一,该书对有穷和无穷作了明确的区分.该书说,“穷,或有前,不容尺也”,意思是有穷就是有边界的区域,用尺沿一个方向去量它一定能量完;“穷,或不容尺,有穷;莫不容尺,无穷也”,即有穷就是能量尽这个区域,如果量不尽,就是无穷.与此同时《墨经》也有丰富的微分思想,比如:“端,体之无厚而最前者也”;“端,无间也”;“非半则不动,说在端”.第一句话就是说,“端”就是不可度量且位于物体的最前面的东西.第二和第三句是说,如果没有空隙、也不能再进行分割的就是端.这是对构成物质的最基本的元素相当精确的定义,实际上就是对物体经“化整为零”后的微分概念.极限思想的运用——割圆术.我国三国时的数学家刘徽提出的“割圆术”,他从圆内接正六边形做起,令边数成倍地增加,逐步推求圆内接正12边形,正24边形,……,直到正3072边形,用这个正3072边形面积来逼近圆面积,就得到π的较精确的值3.1416,“割之弥细,所失弥少;割之又割,以至于不可割,则与圆周合体而无所失矣.”这就包含着微积分中“无限细分,无限求和”的思想方法.另外,古代与中世纪中国学者在天文历法研究中曾涉及到天体运动的不均匀性及有关的极大、极小值问题,如郭守敬《授时历》中求“月离迟疾”(月亮运行的最快点和最慢点)、求月亮白赤道交点与黄赤道交点距离的极值(郭守敬甚至称之为“极数”)等问题,但东方学者以惯用的数值手段(“招差术”,即有限差分计算)来处理,从而回避了连续变化率.总之,在17世纪以前,真正意义上的微分学研究的例子可以说是较少的.2微积分孕育的半个世纪在历史上,积分概念和方法的产生先于微分.积分的原理,溯源于古希腊人所创造的计算面积、体积和弧长相联系的求和方法,在古代的穷竭法中就已萌芽.微分思想虽然可追溯到古希腊,但它的概念和法则几乎是16世纪下半叶后与近代力学同时产生和发展起来的.微分思想和积分思想起初互不相干,基本上是平行而又独立地发展着,都是对具体问题采取具体的方法,尽管在思想上有某些相似之处,但毕竟没有形成统一的方法.这两个统一方法形成后建立起其间联系又晚一些.直至17世纪上半叶,以力学为中心的一系列问题向数学提出了挑战,迫使数学家探索新的数学思想和方法来解决求曲线的长度、曲线围成的面积和体积、物体的重心、变化率和切线、函数的极值、物体在任意时刻的速度和加速度等大量生产、科研实践中提出的数学问题.对上述问题的研究以及对二项式定理和级数的讨论所形成的数学思想和方法的成熟和发展,孕育了微积分的诞生.2.1积分学概念和方法的产生在积分概念和方法的形成过程中,最有代表性的工作主要有:2.1.1 开普勒的同维无穷小方法开普勒(Johannes Kepler,1571-1630)是德国著名天文学家、力学家和数学家,在大学学习时曾接触到哥白尼学说,他的思想受毕达哥拉斯和柏拉图的影响较大,认为宇宙是上帝安排的和谐的体系,但他不象前人那样盲目相信,而是尊重事实.他寻求宇宙是和谐体系的显著成绩是先后总结出行星运动三定律,其中第一定律认为行星绕日运动并非是匀速运动,其轨道也不是圆而是椭圆.这就从根本上打破了传统的、权威的观念,是对哥白尼的天文学的重大发展. 图5-1 开普勒开普勒的父亲好喝酒,以开酒馆为业,少年时期的开普勒常帮父亲营业.他发现当时酒商求奥地利酒桶容积的方法不精确,经过研究在1615年发表《测量酒桶的新立体几何》,该书分为三个部分,第一部分是阿基米德式的空间几何,其中大约有90个旋转体的体积是阿基米德没有研究过的;第二部分重点是研究酒桶体积的求法;第三部分是这一方法的应用.在该书中,开普勒对古希腊的原子论方法作了发展——用无数个同维小元素之和来确定曲边形的面积及旋转体的体积.例如,把圆当作无限多个边的正多边形从而把无限多个以圆心为顶点的等腰三角形面积之和计为圆面积,于是得到圆面积等于周长乘半径之半. []n S S S A ∆++∆+∆=2121 221r rs π== 图 5-2他还认为球的体积是无数个小圆锥的体积之和,这些圆锥的顶点在球心,底面则是球面的一部分;将圆锥看成是极薄的圆盘之和,并由此计算出它的体积,然后进一步证明球的体积是半径乘以球面面积的三分之一⎪⎭⎫ ⎝⎛⨯⨯=3142R R V π.开普勒还用类似的方法算出了圆柱、圆环以及苹果形、柠檬形等的体积.开普勒的方法并不严格.比如,当圆分解为其底为一点之等腰三角形时,无异于说这时的三角形是一个线段,圆的面积是无数条线段(即半径)之和.在一些问题中,开普勒也确认面积就是直线之和.用无数个同维无穷小之和计算面积和体积是开普勒的基本思想,虽然还不严格,但确有合理之处,这也是开普勒方法的精华,他化曲为直和微小元求和的思想,对积分学很富有启发性. 2.1.2卡瓦列里和托里拆利的不可分量法“不可分元”并无严格的定义,费尔马、帕斯卡和罗伯瓦尔等都有类似思想,但是以卡瓦列里的思想最典型. 卡瓦列里(BonaventuraCavalieri,1598-1647)是意大利的牧师,也是伽俐略的学生.他的积分思想同古代原子论一脉相承,但比开普勒的方法更普遍,称之为“不可rS i O分元法”.这一思想集中体现在他的《用新方法促进的连续不可分量的几何学》(1635)和《六个几何问题》中两部著作之中.卡瓦列里认为线是由无限多个点组成,就象链条由珠子穿成的一样;面是由无限多条平行线段组成,就象布是由线织成的一样;立体则是由无限多个平行平面组成,就象书是由每一页积累成的一样;不过它们都是对无穷多个组成部分来说的.换句话说,他把几何图形看成是比它低一维的几何元素构成的:线是点的总和,平面是直线的总和, 图5-3 卡瓦列里立体是平面的总和,他分别把这些元素叫做线、面和体的“不可分量”.他建立了一条关于这些不可分量的普遍原理,后以“卡瓦列里原理”著称:两个等高的立体,如果它们的平行于底面且离开底面有相等距离的截面面积之间总有给定的比,那么这两个立体的体积之间也有同样的比.卡瓦列里利用这条原理计算出许多立体图形的体积,然而他对积分学创立最重要的贡献还在于证明了:如果两线段之比为2:1,则其平方和之比为3:1,立方和之比为4:1,直到九次方和之比为10:1,实际上已相当于今天的积分式⎰++=an n a n dx x 0111 (n 为自然数) 使早期的积分学突破了体积计算的现实原型而向一般算法过渡.卡瓦列里的不可分量方法比他的前人包括开普勒所使用的方法更接近于普遍的积分学算法,开普勒曾向同行们提出一个挑战问题:求抛物线弓形绕弦旋转而成的旋转体体积.卡瓦列里用自己的方法解决了开普勒的问题.人们认为,以卡瓦列里为代表的不可分量法就是17世纪初期的积分法,也是牛顿和莱布尼茨以前积分思想发展的高峰.卡瓦列里虽然克服了开普勒用各自不同的直线图形表示不同的曲边图形对应的不可分量之间的关系,而非每个面积中的不可分量全体,这就避免了无限的概念,自然就造成了理论上的不可克服的矛盾.同时,卡瓦列里求积法还具有不注意代数和算术的纯几何缺点.对卡瓦列里不可分量法作出重要修正的是他的朋友、伽利略的学生、意大利的托里拆利(E.Torricelli,1608-1647).1646年卡瓦列里发表《关于无限抛物线》中批评说:“把不可分元看成是相等的,即把点与点在长度上、线与线在宽度上、面与面在厚度上看成相等的说法纯属空话,它既难以证明,又无直观基础.”他以圆和三角形的不可分元为例说明二者的不可分元并不相同:一个是具有极小中心角的扇形,一个是具 图 5-4有微小宽度的带状体.所以他用开普勒的同维无穷小去代替卡瓦列利的不可分量,同时又保留了不可分量法在求积上的有效性,不但取得了曲线求积问题的许多成果,而且在理论上向近代积分靠近了一步.2.1.2 费马、帕斯卡和沃里斯等人的推进费马于1636年提出了一个相当于近代定积分的积分法,用统一的矩形条分割曲线形;用矩形面积近似地代替曲边形面积;利用曲线方程求出矩形面积,并以其构成的几何级数之和近似地得到曲线面积;对和式取极限使近似值转化为精确值.而帕斯卡则采取等分x 轴上的区间和略去无穷序列之和的高阶差的方法,这对牛顿、莱布尼茨产生了很大的影响.费马还将其积分法用于求弧长,他把曲线长视为微小线段长之和,再把线段长度之和转化为求曲线围成的面积来获得结果.英国数学家沃里斯1656年发表《无穷的算术》,使卡瓦列里、费马的不可分法得到系统的推广.他用数的语言把几何方法算术化,使无限的概念以解析的形式出现,开辟了用级数表示函数的道路,使得无限算术代替了有限算术,这对确立微积分奠定了重要的思想基础.沃里斯还利用微分三角形,给出了近代意义的弧微分概念和计算公式:22dy dx ds +=,但未能给出弧长的计算方法.到17世纪60年代,求积法已取得十分丰富的成果,发展得相当完善了.2.2微分学概念和法则的发展以上介绍的微积分准备阶段的工作,主要采用几何方法并集中于积分问题,解析几何的诞生改变了这一状况.解析几何的两位创始人笛卡儿和费马,都是将坐标方法引入微分学问题研究的前锋.2.2.1费马借助微小增量作切线费马在1637年发表了《求最大值和最小值的方法》,记述了一个求曲线切线的方法,这个方法的大意如下:设PT 是曲线在P 点的切线(如图5-5),TQ 叫次切线,只要知其长,就可确定T 点,再连接PT 就可以了.为了确定TQ ,设QQ 1为TQ 的微小增量,其长为E (即今之△x ), ∵△TQP ∽△PRT 1 ∴1RT PRQP TQ = 费马认为,当E(=PR)很小时,RT 1同RP 1几乎相等,因此有QPP Q E RP E QP TQ -==111 图 5-5 用现在的符号,把QP 写成)(x f ,于是有)()()(x f E x f E x f TQ -+= 即 )()()(x f E x f x f E TQ -+⋅=这时,费马先用E 除分子和分母,然后再让E=0就得到TQ 的数值(即今之)()(x f x f TQ '=).费马用这个方法解决了许多难题,应当说,这是微分方法的第一个真正值得注意的先驱工作.但是,他没有通过割线移动来决定切线,也没有通过计算斜率的极限来求切线.割线移动决定切线的思想,是笛卡儿1638年提出来的.2.2.2笛卡儿“圆法”求曲线)(x f y =过点))(,(x f x P 的切线,笛卡儿的方法是首先确定曲线在点P 处的法线与x 轴的焦点C 的位置,然后作该法线的过点P 的垂线,便可得到所求的切线.如图5-6,过C 点作半径r=CP 的圆,因CP 是曲线)(x f y =在P 点处的法线,那么点P 应是该曲线与圆222)(r v x y =-+的“重交点”(在一般情况下所作圆与曲线还会相交于P 点附近的另一点).如果[]2)(x f 是多项式,有垂交点就相当于方程 222)()]([r x v x f =-+ P T 1P 1RT Q Q 1将以P 点的横坐标x 为重根.但具有重根e x =的多项式的形式必须是∑⋅-i i x c e x 2)(,笛卡儿把上述方程有重根 的条件写成: ∑-=--+i i x c e x r x v x f 2222)()()]([, 图 5-6然后用比较系数法求得v 与e 的关系.带入x e =,就得到用x 表示的v ,这样过点P 的切线的斜率就是)(x f x v -. 以抛物线kx y =2为例,kx x f y ==)(,方程22)(r x v kx =-+有重根的条件为: 222)()(e x r x v kx -=--+令x 的系数相等,得e v k 22-=-,即k e v 21+=.代入x e =,于是次法距k x v 21=-,求出抛物线过点()kx x ,的切线斜率是xk kx k x f x v 212/)(==-. 笛卡儿的代数方法在推动微积分的早期发展方面有很大的影响,牛顿就是以笛卡儿圆法为起跑点而踏上研究微积分的道路的.笛卡儿圆法在确定重根时会导致极繁复的代数计算,1658年荷兰数学家胡德(J.Hudde)提出了一套构造曲线切线的形式法则,称为“胡德法则”.胡德法则为确定笛卡儿圆法所需的重根提供了机械的算法,可以完成求任何代数曲线的切线斜率时所要进行的计算.2.2.3费马求极值的方法用代数方法求函数的极大值和极小值,是产生微分学的重要途径之一.记载费马求极大值与极小值方法这份手稿,实际上是他写给梅森(M.Mersenne)的一封信,梅森是当时欧洲科学界领头任务伽利略、费马、笛卡儿、帕斯卡等人之间保持书信交往的中心.费马的方法用现在的符号表示大意如下:设)(x f 是x (x 就是费马的A )的某个多项式,现在讨论)(x f y =的极大值.如果)(x f 在x 点达到极大值,则对充分小的E>0必有:)(E x f +<)(x f 和)(E x f -<)(x f将此二不等式之左边展开则有:+++=+2)()()()()(E x Q x E x P x f E x f <)(x f-+-=-2)()()()()(E x Q x E x P x f E x f <)(x f消去这两个不等式两边的共同项,再用E 除则分别给出下面两个不等式:++E x Q x P )()(<0-+-E x Q x P )()(<0当E 充分小时,此二式左边的符号完全由)(x P 确定.可见,当)(x P 0≠时,此二式不可能有同一的符号,因此必须)(x P =0,从此式解出x 就是所求的极大值.同理可以求出极小值.费马的方法实际上就是,当计算有理整函数)(x f 的极值时,先计算它的导数x x f x x f x f x ∆-∆+='→∆)()(lim )(0,再令0)(='x f ,解之就是极值点. 不难看出,费马的方法尚有不足之处:第一,费马没有引入无穷小概念,我们在解释他的E 时设为“充分小”,是为了同今天的思想相一致,但费马并没有如此表述;第二,正如他自己所说,把求极值的方法普遍化问题尚缺乏证明;第三,令0)(=x P ,只是求出极值的必要条件,而不是充分条件.尽管费马求极值方法尚有不足之处,但已接近今天之形式,他已经看到了求切线和求极值有相同的数学结构.可以认为,在微分学的先驱工作中,费马是比较成熟的一个,无论是求切线还是求极值,他的方法在当时的影响都比较大.2.3微积分系统理论探索的前夜这里将要介绍的是帕斯卡、沃里斯和巴罗等人的工作,他们的工作对牛顿和莱布尼茨的微积分的产生有着直接的关系,如过把卡瓦列利和费马等人看作微积分先驱的杰出代表,则这几个人的工作是向牛顿和莱布尼茨微积分的过渡.2.3.1帕斯卡等的无穷小方法布莱斯·帕斯卡(Pascal Blaise,1623-1662)的一生,虽然只有39岁,而他的一段黄金时期(30-35岁)又专门研究神学,但是他在数学上的成就却很大.他是世界上第一架计算机的设计者,是概率论和射影几何的奠基人之一,提出了西方数学史所谓的“帕斯卡三角形”,他也是一位哲学家,并很有写作才能.他同罗伯瓦尔和费马一起,被称为当时法国数学界的三巨头.帕斯卡在积分学方面做的工作,是以他名字命名的三角形有 图5-7 帕斯卡一定关系.因为用这个三角形可以比较容易地求出自然数幂的二项式的展开式,不过帕斯卡是用文字表述的.他凭借这个结果并引入无穷小概念,算出了以曲线n x y =为一边的曲边梯形的面积.他把无穷小概念也应用于微分学,在他的《四分之一圆的正弦论》(1659)这部著作中,有一幅被称之为“微分三角形”的图形(图5-8).他说,当区间(即图中的RR=EK)很小时,则“弧可以代替切线”.通过“微分三角形”说明可以用直线代替,并进一步作出切线.把无穷小概念引入数学,是微积分发展史上的重要事件.以无穷小作基础才能把曲线看成直线.有人认为,如果帕斯卡能在无穷小的基础上寄兴趣于算术的考虑并致力于切线的求法,那么他就有可能比牛顿和莱布尼茨更早地击中微积 图 5-8分的要害.事实上,帕斯卡的工作对莱布尼茨的微积分产生了直接的影响. 2.3.2沃里斯的算术化英国的沃里斯(J.Wallis,1616-1703)是一位牧师的儿子,受过良好的古典教育.在剑桥大学学习期间专攻神学,以后对数学感兴趣.从1649年B AR I D KR E E C起任牛津大学的“沙维教授”,是17世纪时的英国仅次于牛顿的著名数学家.在微积分的先驱者中,沃斯里的算术化工作很有意义,可以说,没有算术化就没有牛顿的微积分.沃里斯接受了韦达、笛卡儿和费马等前辈们的思想——应用代数研究几何问题,他试图使算术完全脱离几何表示.另外在求积问题上,他 图5-9 沃里斯接受卡瓦列利的不可分元思想和流行的略去无穷小方法,并且应用尚不精确的无穷大和无穷小概念.他在数学史上第一次用符号∞表示无穷大,用∞1表示无穷小或零量,并把它们和有限数同样看待,一起参加运算.沃里斯在他的重要著作《无穷算术》(1655)一书中用算术方法得到如下的定理:“若有一无穷数列,从0开始按任意指数不断增加,那么,这些数之和与各数均等于其最大数的同样数目之和的比值为该指数+11.”用今天的符号表示就是⎰+=1011n dx x n (n 是整数或分数),这表明卡瓦列利和帕斯卡等所确定的关系⎰++=a n n a n dx x 0111 (n 为正整数),当n 为分数时仍然成立. 2.3.3巴罗的求切线和求积的互逆性 英国的伊萨克·巴罗(Isaac Barrow,1630-1677)是微积分发展史上最重要的人物之一,他本人也是神学家,精通希腊文和阿拉伯文,所以对希腊古典著作很有造诣;曾任剑桥大学教授、副校长,是牛顿的老师,1669年即牛顿26岁的那年,他主动宣布牛顿的学识已超过自己,并把“卢卡斯教授”职位让给牛顿,成了数学史上的佳话.他的主要著作是《光学和几何讲义》.巴罗的数学观基本上与希腊人相同,认为只有几何才是数学,而代数他认为不应该看成数学,应包括到逻辑中去.尽管他偏爱几何,但对 图5-10 巴罗 即将临产的微积分也有深刻的理解.巴罗曾设想曲线是由所谓的“线元”构成的,而线则是线元之延长,这是不可分元的不同说法,不过巴罗最有意义的贡献是把“求切线”和“求积”作为互逆问题联系起来.比如,他的《几何讲义》第十讲的命题十一和第十一讲的命题十九,用今天的符号表示分别是:(1)如果⎰=xzdx y 0,则zdx dy = (2)如果zdx dy =,则⎰=xy zdx 0 (设x=0时y=0)巴罗还采用帕斯卡二十年代提出而沃里斯正在使用的“微分三角形”思想来求曲线的切线.微分三角形是指由自变量增量x ∆和函数增量y ∆为直角边所构成的直角三角形.他第一个认识到xy ∆∆对于决定切线有重大意义,于是将微分三角形和费马的方法结合起来,从而得到比费马更优越的方法.实际上,巴罗已经接触到了微分的本质,因为x y ∆∆可以用来决定导数. 微积分的先驱们的工作,以费马和巴罗为标志而结束,由于历史的局限性,上述数学家关注的是具体几何特有的解答方法,而未注意大量成果的优越性、创造性和普遍性能够提炼成新的统一的方法构成一门新的学科,也就是需要创立具有普遍意义的抽象概念、具有一般符号和一整套解析形式与规则的可以应用的微积分学.牛顿和莱布尼茨正是在这样的时刻出。
微积分发展简史课件
实的理论基础。
柯西序列
02 通过柯西序列,解决了实数系连续性的问题,并建立
了极限理论。
布尔查诺-维尔斯特拉斯定理
03
证明了实数系连续性的唯一性,为实数理论的发展提
供了重要的支撑。
泛函分析的兴起
函数空间
研究函数集合的性质和结构,为泛函分析提供了基础 。
傅里叶分析
研究函数的傅里叶级数展开和性质,为泛函分析提供 了重要的工具。
极限理论是微积分的基础,19 世纪之前,数学家们一直在探索 如何用极限的概念来描述函数的
变化趋势。
极限理论的建立经历了漫长的发 展过程,最终由德国数学家魏尔 斯特拉斯、戴德金和康托尔等人
完成。
极限理论的严格定义和证明,为 微积分的进一步发展提供了坚实
的数学基础。
导数与积分的进一步发展
导数和积分是微积分的两个 核心概念,19世纪数学家们 对这两个概念进行了更深入
例如,常微分方程理论的建立,为解决各种 实际问题提供了重要的数学模型。
同时,偏微分方程的发展也取得了 重大进展,例如热传导方程、波动 方程等,这些方程在物理、工程、 化学等领域都有广泛的应用。
03
20世纪微积分的新发展
实数理论的发展
魏尔斯特拉斯的ε-δ定义
01
对实数进行严格的数学定义,为实数连续性提供了坚
描述物体运动规律
微积分可以用来描述物体的运动规律,例如物体的速度、加速度 、位移等。
电磁学研究
在电磁学中,微积分被用来研究电磁场的分布和变化规律。
量子力学
在量子力学中,微积分被用来描述微观粒子的运动规律和分布情 况。
在经济中的应用
01
供需关系
微积分可以用来描述商品的供需 关系,例如价格与销售量的关系 。
微积分的发明历程
微积分的发明历程如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。
微积分堪称是人类智慧最伟大的成就之一。
从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。
整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分枝还是牛顿和莱布尼茨。
微积分的思想从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。
公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。
作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的“天下篇”中,著有“一尺之棰,日取其半,万世不竭”。
三国时期的高徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。
他在1615年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。
圆的面积就是无穷多的三角形面积之和,这些都可视为黄型极限思想的佳作。
意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。
这些都为后来的微积分的诞生作了思想准备。
解析几何为微积分的创立奠定了基础由于16世纪以后欧洲封建社会日趋没落,取而代之的是资本主义的兴起,为科学技术的发展开创了美好前景。
到了17世纪,有许多著名的数学家、天文学家、物理学家都为解决上述问题做了大量的研究工作。
笛卡尔1637年发表了《科学中的正确运用理性和追求真理的方法论》(简称《方法论》),从而确立了解析几何,表明了几何问题不仅可以归结成为代数形式,而且可以通过代数变换来发现几何性质,证明几何性质。
微积分的地发展历史
微积分的产生——划时代的成就.1 微积分思想的萌芽1.1 古希腊罗马——微分、积分思想的发源地原子论朴素的微分和积分思想.古希腊的原子论者具有朴素的微分和积分思想,该学派的创始人是留基伯(Leucippcus of Miletus),代表人物则是百科全书式的学者德漠克利特(Democritus of Abdera).原子论者把宇宙间的万物看成由不可再分的原子构成,以及原子虽然不能再分但仍有内部结构的思想,表现在数学上就是对于表示有限的长度、面积和体积的量x ,进行了一次微分(dx)和二次微分(dx 2). 德漠克利特曾用原子论思想第一次算出圆锥和棱锥的体积分别等于和它们同底同高的圆柱和棱柱体积的三分之一.极限法的早期形式穷竭法.为了计算曲边形的面积和体积,欧多克斯(Eudoxus ofCnidos )曾提出了一个计算方法,这个方法在17世纪时被人称为“穷竭法”.用现代的符号表示就是:如果对于任意的正整数n ,等式k b a nn =(常数)成立,且当n →∞时,A a n →,B b n →,则有k BA =.他用这个方法证明了德漠克利特已得出的求圆锥和棱锥体积的公式.阿基米德(Archimedes)对穷竭法也作出了重要贡献,他在《圆的度量》、《论圆柱和球》、《抛物线求积》、《论螺线》等著作中,应用了穷竭法,并引用了近似现代微积分中的“大和”与“小和”概念.并且他用这种方法计算出了球的体积和表面积、抛物线弓形的面积以及一些旋转体的体积等数学问题.芝诺的拟难.芝诺(Zero of Elea)是古希腊爱利亚学派的代表人,他虽然不是一个科学家,更谈不上是一位数学家,但他提出的四个拟难——二分法、阿基里斯追龟、飞箭、运动场,客观上把微积分中的离散和连续的对立统一惹人注目地摆了出来,对微积分发展有一定的影响.其中“二分法”和“阿基里斯追龟”涉及无穷运算问题,比如,收敛的无穷级数,虽有无穷多项,但其和仍为有限的;“飞箭”则是一个典型的导数问题,运动的物体在每一时刻不仅有速度,而且还有加速度等;“运动场”明显地同运动的两个相反的方向即正负概念有关.1.2 阿拉伯和欧洲中世纪——无限和运动的研究在整个中世纪,希腊文化遗产在某种程度上是由逐渐缩小的、以君士坦丁堡为中心的拜占庭帝国保存下来的.但是,在黑暗时代的几个世纪中,有效地利用这些遗产,并且最后把它们输送到西欧去的,却是地中海地区的阿拉伯政权.代数和三角学的确立.从7世纪开始,阿拉伯帝国逐渐崛起,到8世纪,它已成为一个地跨亚、欧、非三洲,阿拉伯帝国在所辖的较大城市建立图书馆和天文馆,政府组织人力进行天文观测,编制星表,集中学者翻译和注释希腊罗马古典名著.正当欧洲处在黑暗时期,“阿拉伯数学”却成了这时期西方科学的代表.希腊罗马的古典名著正是通过“阿拉伯人”的工作才得以保存下来,这是阿拉伯人对人类文明的重要贡献之一.不仅如此,阿拉伯也是东西科学文化交流的桥梁,今天通行的“印度—阿拉伯数码”以及我国古代“四大发明”等,都是通过阿拉伯从东方传到西方去的,这为欧洲以后科学文化的复苏创造了重要条件.有继承才有发展,阿拉伯人在保留古希腊罗马文化和传统文化的同时,也有一定的发展和创造.代数和三角学的确立就是他们对数学所做出的贡献.对无限和运动的研究.这一时期,除了“印度—阿拉伯数码”的逐渐普及,代数和三角学已经确立以及数学符号化已有端倪外,对无限的讨论以及对运动和速度的研究已成为数学家们注意的中心.例如德国的红衣主教库萨的尼古拉,把圆与三角形分别看成边数最多和边数最少的多边形,把无限大和零分别看成自然数的上界和下界.他还说尽管“世界不是无限的,但毕竟不能认为它是有限的,因为世界没有一条把它包围起来的界限”,这表明了他把无限看作一个过程的潜无限思想.14世纪英国很有声誉的数学家苏依塞斯的重要著作《算术》中,已有变量、极大和极小概念的原始形式,预示了变数和导数即将进入数学领域.他所使用的“流数”、“流量”等概念,被300年后的牛顿所采用.在无限问题上他指出,要解决所有关于无限的诡辩,只要认识到有限和无限不能有它们的比就行了,这是关于对有限和无限应有不同的论证的最早认识.1.3 古代中国——面积、体积与极限思想的丰富简单几何图形面积和体积的计算.在微积分的发展历史上,对任意封闭的平面曲线围成图形面积的计算,和任意封闭的空间曲线包围立体图形体积的计算,是产生积分概念的主要途径之一.计算面积和体积可以追溯到原始农业社会,根据我国甲骨文记载,约在300年以前的殷代,就把耕种的土地分成方形小块以求面积.积分概念就是在初等几何计算面积和体积的基础上逐渐形成的.《庄子》和《墨经》中的极限思想.极限概念是微积分区别于初等数学的特有概念,没有极限概念就没有现代的微积分.战国时代的《庄子·天下篇》中,有不少极限思想,其中最脍炙人口的一句话是:“一尺之椎,日取其半,万世不竭.”可以理解为无穷无尽、永远达不到极限的潜无限思想.无穷或无限概念,是极限概念的特殊情况,是微积分的重要概念.《墨经》也是战国时代的重要著作之一,该书对有穷和无穷作了明确的区分.该书说,“穷,或有前,不容尺也”,意思是有穷就是有边界的区域,用尺沿一个方向去量它一定能量完;“穷,或不容尺,有穷;莫不容尺,无穷也”,即有穷就是能量尽这个区域,如果量不尽,就是无穷.与此同时《墨经》也有丰富的微分思想,比如:“端,体之无厚而最前者也”;“端,无间也”;“非半则不动,说在端”.第一句话就是说,“端”就是不可度量且位于物体的最前面的东西.第二和第三句是说,如果没有空隙、也不能再进行分割的就是端.这是对构成物质的最基本的元素相当精确的定义,实际上就是对物体经“化整为零”后的微分概念.极限思想的运用——割圆术.我国三国时的数学家刘徽提出的“割圆术”,他从圆内接正六边形做起,令边数成倍地增加,逐步推求圆内接正12边形,正24边形,……,直到正3072边形,用这个正3072边形面积来逼近圆面积,就得到π的较精确的值3.1416,“割之弥细,所失弥少;割之又割,以至于不可割,则与圆周合体而无所失矣.”这就包含着微积分中“无限细分,无限求和”的思想方法.另外,古代与中世纪中国学者在天文历法研究中曾涉及到天体运动的不均匀性及有关的极大、极小值问题,如郭守敬《授时历》中求“月离迟疾”(月亮运行的最快点和最慢点)、求月亮白赤道交点与黄赤道交点距离的极值(郭守敬甚至称之为“极数”)等问题,但东方学者以惯用的数值手段(“招差术”,即有限差分计算)来处理,从而回避了连续变化率.总之,在17世纪以前,真正意义上的微分学研究的例子可以说是较少的.2微积分孕育的半个世纪在历史上,积分概念和方法的产生先于微分.积分的原理,溯源于古希腊人所创造的计算面积、体积和弧长相联系的求和方法,在古代的穷竭法中就已萌芽.微分思想虽然可追溯到古希腊,但它的概念和法则几乎是16世纪下半叶后与近代力学同时产生和发展起来的.微分思想和积分思想起初互不相干,基本上是平行而又独立地发展着,都是对具体问题采取具体的方法,尽管在思想上有某些相似之处,但毕竟没有形成统一的方法.这两个统一方法形成后建立起其间联系又晚一些.直至17世纪上半叶,以力学为中心的一系列问题向数学提出了挑战,迫使数学家探索新的数学思想和方法来解决求曲线的长度、曲线围成的面积和体积、物体的重心、变化率和切线、函数的极值、物体在任意时刻的速度和加速度等大量生产、科研实践中提出的数学问题.对上述问题的研究以及对二项式定理和级数的讨论所形成的数学思想和方法的成熟和发展,孕育了微积分的诞生.2.1积分学概念和方法的产生在积分概念和方法的形成过程中,最有代表性的工作主要有:2.1.1 开普勒的同维无穷小方法开普勒(Johannes Kepler,1571-1630)是德国著名天文学家、力学家和数学家,在大学学习时曾接触到哥白尼学说,他的思想受毕达哥拉斯和柏拉图的影响较大,认为宇宙是上帝安排的和谐的体系,但他不象前人那样盲目相信,而是尊重事实.他寻求宇宙是和谐体系的显著成绩是先后总结出行星运动三定律,其中第一定律认为行星绕日运动并非是匀速运动,其轨道也不是圆而是椭圆.这就从根本上打破了传统的、权威的观念,是对哥白尼的天文学的重大发展. 图5-1 开普勒开普勒的父亲好喝酒,以开酒馆为业,少年时期的开普勒常帮父亲营业.他发现当时酒商求奥地利酒桶容积的方法不精确,经过研究在1615年发表《测量酒桶的新立体几何》,该书分为三个部分,第一部分是阿基米德式的空间几何,其中大约有90个旋转体的体积是阿基米德没有研究过的;第二部分重点是研究酒桶体积的求法;第三部分是这一方法的应用.在该书中,开普勒对古希腊的原子论方法作了发展——用无数个同维小元素之和来确定曲边形的面积及旋转体的体积.例如,把圆当作无限多个边的正多边形从而把无限多个以圆心为顶点的等腰三角形面积之和计为圆面积,于是得到圆面积等于周长乘半径之半. []n S S S A ∆++∆+∆=Λ2121 221r rs π== 图 5-2他还认为球的体积是无数个小圆锥的体积之和,这些圆锥的顶点在球心,底面则是球面的一部分;将圆锥看成是极薄的圆盘之和,并由此计算出它的体积,然后进一步证明球的体积是半径乘以球面面积的三分之一⎪⎭⎫ ⎝⎛⨯⨯=3142R R V π.开普勒还用类似的方法算出了圆柱、圆r S iO环以及苹果形、柠檬形等的体积.开普勒的方法并不严格.比如,当圆分解为其底为一点之等腰三角形时,无异于说这时的三角形是一个线段,圆的面积是无数条线段(即半径)之和.在一些问题中,开普勒也确认面积就是直线之和.用无数个同维无穷小之和计算面积和体积是开普勒的基本思想,虽然还不严格,但确有合理之处,这也是开普勒方法的精华,他化曲为直和微小元求和的思想,对积分学很富有启发性.2.1.2卡瓦列里和托里拆利的不可分量法“不可分元”并无严格的定义,费尔马、帕斯卡和罗伯瓦尔等都有类似思想,但是以卡瓦列里的思想最典型.卡瓦列里(BonaventuraCavalieri,1598-1647)是意大利的牧师,也是伽俐略的学生.他的积分思想同古代原子论一脉相承,但比开普勒的方法更普遍,称之为“不可分元法”.这一思想集中体现在他的《用新方法促进的连续不可分量的几何学》(1635)和《六个几何问题》中两部著作之中.卡瓦列里认为线是由无限多个点组成,就象链条由珠子穿成的一样;面是由无限多条平行线段组成,就象布是由线织成的一样;立体则是由无限多个平行平面组成,就象书是由每一页积累成的一样;不过它们都是对无穷多个组成部分来说的.换句话说,他把几何图形看成是比它低一维的几何元素构成的:线是点的总和,平面是直线的总和,图5-3 卡瓦列里立体是平面的总和,他分别把这些元素叫做线、面和体的“不可分量”.他建立了一条关于这些不可分量的普遍原理,后以“卡瓦列里原理”著称:两个等高的立体,如果它们的平行于底面且离开底面有相等距离的截面面积之间总有给定的比,那么这两个立体的体积之间也有同样的比.卡瓦列里利用这条原理计算出许多立体图形的体积,然而他对积分学创立最重要的贡献还在于证明了:如果两线段之比为2:1,则其平方和之比为3:1,立方和之比为4:1,直到九次方和之比为10:1,实际上已相当于今天的积分式⎰++=an n a n dx x 0111 (n 为自然数) 使早期的积分学突破了体积计算的现实原型而向一般算法过渡.卡瓦列里的不可分量方法比他的前人包括开普勒所使用的方法更接近于普遍的积分学算法,开普勒曾向同行们提出一个挑战问题:求抛物线弓形绕弦旋转而成的旋转体体积.卡瓦列里用自己的方法解决了开普勒的问题.人们认为,以卡瓦列里为代表的不可分量法就是17世纪初期的积分法,也是牛顿和莱布尼茨以前积分思想发展的高峰.卡瓦列里虽然克服了开普勒用各自不同的直线图形表示不同的曲边图形对应的不可分量之间的关系,而非每个面积中的不可分量全体,这就避免了无限的概念,自然就造成了理论上的不可克服的矛盾.同时,卡瓦列里求积法还具有不注意代数和算术的纯几何缺点.对卡瓦列里不可分量法作出重要修正的是他的朋友、伽利略的学生、意大利的托里拆利(E.T orricelli,1608-1647).1646年卡瓦列里发表《关于无限抛物线》中批评说:“把不可分元看成是相等的,即把点与点在长度上、线与线在宽度上、面与面在厚度上看成相等的说法纯属空话,它既难以证明,又无直观基础.”他以圆和三角形的不可分元为例说明 二者的不可分元并不相同:一个是具有极小中心角的扇形,一个是具 图 5-4有微小宽度的带状体.所以他用开普勒的同维无穷小去代替卡瓦列利的不可分量,同时又保留了不可分量法在求积上的有效性,不但取得了曲线求积问题的许多成果,而且在理论上向近代积分靠近了一步.2.1.2 费马、帕斯卡和沃里斯等人的推进费马于1636年提出了一个相当于近代定积分的积分法,用统一的矩形条分割曲线形;用矩形面积近似地代替曲边形面积;利用曲线方程求出矩形面积,并以其构成的几何级数之和近似地得到曲线面积;对和式取极限使近似值转化为精确值.而帕斯卡则采取等分x 轴上的区间和略去无穷序列之和的高阶差的方法,这对牛顿、莱布尼茨产生了很大的影响.费马还将其积分法用于求弧长,他把曲线长视为微小线段长之和,再把线段长度之和转化为求曲线围成的面积来获得结果.英国数学家沃里斯1656年发表《无穷的算术》,使卡瓦列里、费马的不可分法得到系统的推广.他用数的语言把几何方法算术化,使无限的概念以解析的形式出现,开辟了用级数表示函数的道路,使得无限算术代替了有限算术,这对确立微积分奠定了重要的思想基础.沃里斯还利用微分三角形,给出了近代意义的弧微分概念和计算公式:22dy dx ds +=,但未能给出弧长的计算方法.到17世纪60年代,求积法已取得十分丰富的成果,发展得相当完善了.2.2微分学概念和法则的发展以上介绍的微积分准备阶段的工作,主要采用几何方法并集中于积分问题,解析几何的诞生改变了这一状况.解析几何的两位创始人笛卡儿和费马,都是将坐标方法引入微分学问题研究的前锋.2.2.1费马借助微小增量作切线费马在1637年发表了《求最大值和最小值的方法》,记述了一个求曲线切线的方法,这个方法的大意如下:设PT 是曲线在P 点的切线(如图5-5),TQ 叫次切线,只要知其长,就可确定T 点,再连接PT 就可以了.为了确定TQ ,设QQ 1为TQ 的微小增量,其长为E (即今之△x ),∵△TQP ∽△PRT 1 P T 1P 1R∴1RT PR QP TQ = 费马认为,当E(=PR)很小时,RT 1同RP 1几乎相等,因此有QPP Q E RP E QP TQ -==111 图 5-5 用现在的符号,把QP 写成)(x f ,于是有)()()(x f E x f E x f TQ -+= 即 )()()(x f E x f x f E TQ -+⋅=这时,费马先用E 除分子和分母,然后再让E=0就得到TQ 的数值(即今之)()(x f x f TQ '=).费马用这个方法解决了许多难题,应当说,这是微分方法的第一个真正值得注意的先驱工作.但是,他没有通过割线移动来决定切线,也没有通过计算斜率的极限来求切线.割线移动决定切线的思想,是笛卡儿1638年提出来的.2.2.2笛卡儿“圆法”求曲线)(x f y =过点))(,(x f x P 的切线,笛卡儿的方法是首先确定曲线在点P 处的法线与x 轴的焦点C 的位置,然后作该法线的过点P 的垂线,便可得到所求的切线.如图5-6,过C 点作半径r=CP 的圆,因CP 是曲线)(x f y =在P 点处的法线,那么点P 应是该曲线与圆222)(r v x y =-+的“重交点”(在一般情况下所作圆与曲线还会相交于P 点附近的另一点).如果[]2)(x f 是多项式,有垂交点就相当于方程222)()]([r x v x f =-+将以P 点的横坐标x 为重根.但具有重根e x =的多项式的形式必须是∑⋅-i i x c e x 2)(,笛卡儿把上述方程有重根 的条件写成:∑-=--+i i x c e x r x v x f 2222)()()]([, 图 5-6然后用比较系数法求得v 与e 的关系.带入x e =,就得到用x 表示的v ,这样过点P 的切线的斜率就是)(x f x v -. 以抛物线kx y =2为例,kx x f y ==)(,方程22)(r x v kx =-+有重根的条件为: 222)()(e x r x v kx -=--+令x 的系数相等,得e v k 22-=-,即k e v 21+=.代入x e =,于是次法距k x v 21=-,求出抛物线过点()kx x ,的切线斜率是xk kx k x f x v 212/)(==-. 笛卡儿的代数方法在推动微积分的早期发展方面有很大的影响,牛顿就是以笛卡儿圆法为起跑点而踏上研究微积分的道路的.笛卡儿圆法在确定重根时会导致极繁复的代数计算,1658年荷兰数学家胡德(J.Hudde)提出了一套构造曲线切线的形式法则,称为“胡德法则”.胡德法则为确定笛卡儿圆法所需的重根提供了机械的算法,可以完成求任何代数曲线的切线斜率时所要进行的计算.2.2.3费马求极值的方法用代数方法求函数的极大值和极小值,是产生微分学的重要途径之一.记载费马求极大值与极小值方法这份手稿,实际上是他写给梅森(M.Mersenne)的一封信,梅森是当时欧洲科学界领头任务伽利略、费马、笛卡儿、帕斯卡等人之间保持书信交往的中心.费马的方法用现在的符号表示大意如下:设)(x f 是x (x 就是费马的A )的某个多项式,现在讨论)(x f y =的极大值.如果)(x f 在x 点达到极大值,则对充分小的E>0必有:)(E x f +<)(x f 和)(E x f -<)(x f将此二不等式之左边展开则有:ΛΛ+++=+2)()()()()(E x Q x E x P x f E x f <)(x fΛΛ-+-=-2)()()()()(E x Q x E x P x f E x f <)(x f消去这两个不等式两边的共同项,再用E 除则分别给出下面两个不等式:ΛΛ++E x Q x P )()(<0ΛΛ-+-E x Q x P )()(<0当E 充分小时,此二式左边的符号完全由)(x P 确定.可见,当)(x P 0≠时,此二式不可能有同一的符号,因此必须)(x P =0,从此式解出x 就是所求的极大值.同理可以求出极小值.费马的方法实际上就是,当计算有理整函数)(x f 的极值时,先计算它的导数xx f x x f x f x ∆-∆+='→∆)()(lim )(0,再令0)(='x f ,解之就是极值点. 不难看出,费马的方法尚有不足之处:第一,费马没有引入无穷小概念,我们在解释他的E 时设为“充分小”,是为了同今天的思想相一致,但费马并没有如此表述;第二,正如他自己所说,把求极值的方法普遍化问题尚缺乏证明;第三,令0)(=x P ,只是求出极值的必要条件,而不是充分条件.尽管费马求极值方法尚有不足之处,但已接近今天之形式,他已经看到了求切线和求极值有相同的数学结构.可以认为,在微分学的先驱工作中,费马是比较成熟的一个,无论是求切线还是求极值,他的方法在当时的影响都比较大.2.3微积分系统理论探索的前夜这里将要介绍的是帕斯卡、沃里斯和巴罗等人的工作,他们的工作对牛顿和莱布尼茨的微积分的产生有着直接的关系,如过把卡瓦列利和费马等人看作微积分先驱的杰出代表,则这几个人的工作是向牛顿和莱布尼茨微积分的过渡.2.3.1帕斯卡等的无穷小方法布莱斯·帕斯卡(Pascal Blaise,1623-1662)的一生,虽然只有39岁,而他的一段黄金时期(30-35岁)又专门研究神学,但是他在数学上的成就却很大.他是世界上第一架计算机的设计者,是概率论和射影几何的奠基人之一,提出了西方数学史所谓的“帕斯卡三角形”,他也是一位哲学家,并很有写作才能.他同罗伯瓦尔和费马一起,被称为当时法国数学界的三巨头.帕斯卡在积分学方面做的工作,是以他名字命名的三角形有 图5-7 帕斯卡一定关系.因为用这个三角形可以比较容易地求出自然数幂的二项式的展开式,不过帕斯卡是用文字表述的.他凭借这个结果并引入无穷小概念,算出了以曲线n x y 为一边的曲边梯形的面积.他把无穷小概念也应用于微分学,在他的《四分之一圆的正弦论》(1659)这部著作中,有一幅被称之为“微分三角形”的图形(图5-8).他说,当区间(即图中的RR=EK)很小时,则“弧可以代替切线”.通过“微分三角形”说明可以用直线代替,并进一步作出切线.把无穷小概念引入数学,是微积分发展史上的重要事件.以无穷小作基础才能把曲线看成直线.有人认为,如果帕斯卡能在无穷小的基础上寄兴趣于算术的考虑并致力于切线的求法,那么他就有可能比牛顿和莱布尼茨更早地击中微积 图 5-8分的要害.事实上,帕斯卡的工作对莱布尼茨的微积分产生了直接的影响.2.3.2沃里斯的算术化英国的沃里斯(J.Wallis,1616-1703)是一位牧师的儿子,受过良好的古典教育.在剑桥大学学习期间专攻神学,以后对数学感兴趣.从1649年起任牛津大学的“沙维教授”,是17世纪时的英国仅次于牛顿的著名数学家.在微积分的先驱者中,沃斯里的算术化工作很有意义,可以说,没有算术化就没有牛顿的微积分.沃里斯接受了韦达、笛卡儿和费马等前辈们的思想——应用代数研究几何问题,他试B AR I D KR E E C图使算术完全脱离几何表示.另外在求积问题上,他 图5-9 沃里斯接受卡瓦列利的不可分元思想和流行的略去无穷小方法,并且应用尚不精确的无穷大和无穷小概念.他在数学史上第一次用符号∞表示无穷大,用∞1表示无穷小或零量,并把它们和有限数同样看待,一起参加运算.沃里斯在他的重要著作《无穷算术》(1655)一书中用算术方法得到如下的定理:“若有一无穷数列,从0开始按任意指数不断增加,那么,这些数之和与各数均等于其最大数的同样数目之和的比值为该指数+11.”用今天的符号表示就是⎰+=1011n dx x n (n 是整数或分数),这表明卡瓦列利和帕斯卡等所确定的关系⎰++=a n n a n dx x 0111 (n 为正整数),当n 为分数时仍然成立. 2.3.3巴罗的求切线和求积的互逆性英国的伊萨克·巴罗(Isaac Barrow,1630-1677)是微积分发展史上最重要的人物之一,他本人也是神学家,精通希腊文和阿拉伯文,所以对希腊古典著作很有造诣;曾任剑桥大学教授、副校长,是牛顿的老师,1669年即牛顿26岁的那年,他主动宣布牛顿的学识已超过自己,并把“卢卡斯教授”职位让给牛顿,成了数学史上的佳话.他的主要著作是《光学和几何讲义》.巴罗的数学观基本上与希腊人相同,认为只有几何才是数学,而代数他认为不应该看成数学,应包括到逻辑中去.尽管他偏爱几何,但对 图5-10 巴罗即将临产的微积分也有深刻的理解.巴罗曾设想曲线是由所谓的“线元”构成的,而线则是线元之延长,这是不可分元的不同说法,不过巴罗最有意义的贡献是把“求切线”和“求积”作为互逆问题联系起来.比如,他的《几何讲义》第十讲的命题十一和第十一讲的命题十九,用今天的符号表示分别是:(1)如果⎰=xzdx y 0,则zdx dy =。
微积分发展史
说牛顿发明了微积分。
莱布尼茨的微积分
莱布尼茨当时还没有微积分 的符号,他用语言陈述他的 特征三角形导出的第一个重
微积分的现代发展
在Riemann将Cauchy的积分含义扩展之后, Lebesgue又引进了测度的概念,进一步将 Riemann积分的含义扩展。例如著名的 Dirichilet函数在Riemann积分下不可积,而在 Lebesgue积分下便可积。
我国的数学泰斗陈省身先生所研究的微分几何领域, 便是利用微积分的理论来研究几何,这门学科对 人类认识时间和空间的性质发挥的巨大的作用。 并且这门学科至今仍然很活跃。前不久由我国数 学家朱熹平、曹怀东完成最后封顶的庞加莱猜想 便属于这一领域。
1715年数学家泰勒在著作《正的和反的增量 方法》中陈述了他获得的著名定理,即现 在以他的名字命名的泰勒定理。后来麦克 劳林重新得到泰勒公式的特殊情况,现代 微积分教材中一直将这一特殊情形的泰勒 级数称为“麦克劳林”级数。
18世纪的数学家还将微积分算法推广到多元 函数而建立了偏导数理论和多重积分理论。 这方面的贡献主要应归功于尼古拉·伯努利、 欧拉和拉格朗日等数学家。
第第二一类类是是,,望已远知镜物的体光的程移设动计的使距得离求表曲为线时 间的函数的公式的,切求线物问体题在任意时刻的速 度第第和三四加类类速是问度,题使确是瞬定求时炮行变弹星化的沿率最轨问大道题射运程动以的及路求 行程星、离行开星太矢阳径的扫最过远的和面最积近以距及离物等体涉重及 心与引的力函等数,极使大面值积、、极体小积值、问曲题线长、
微积分发展史课件
文艺复兴时期的数学与微积分思想的突破
文艺复兴时期,欧洲的数学家们开始系统地研究微积分,如意大利数学家卡瓦列里等人对极限、连续 等概念进行了系统化的研究。
英国物理学家牛顿和德国数学家莱布尼茨分别独立地发展出了微积分的基本理论,从而宣告了微积分 的诞生。
02
微积分的创立
牛顿的贡献
牛顿对微积分的贡献主要体现在他的 著作《自然哲学的数学原理》中。他 提出了流数术,也就是微积分的基本 理论和方法。
05
微积分的未来发展
微积分的理论发展
01
数学建模与仿真
微积分理论在未来的发展将更加深入 地与数学建模和仿真技术相结合,研 究更加复杂、精细的数学模型,提高 微积分的应用范围和效果。
02
机器学习和大数据分 析
随着机器学习和大数据分析技术的不 断发展,微积分理论将与这些技术相 结合,实现更高效、准确的微积分计 算和应用。
高等教育普及
微积分作为一门重要的数学课程将在高等教 育中得到更加广泛的普及和教育,提高大学 生的数学素养和思维能力。
中小学教育改革
微积分教育将进一步渗透到中小学教育中, 促进中小学教育改革和数学教育的创新发展 。
06
参考文献
参考文献
01
02
03
1. 罗伯特·卡尼格尔. 《微积分的 历程》. 人民邮电出版社.
2. 李大潜. 《微积分发展史》. 北 京高等教育出版社.
3. 张顺燕. 《微积分的思想和方 法》. 北京大学出版社.
THANKS
感谢观看
投资组合优化
微积分被广泛应用于投资组 合优化中,通过求解最优化 问题来获得最大收益或最小
化风险。
期权定价
微积分在期权定价模型中也 有着重要的应用,例如Black-
二组历史上的微积分的创立和发展
其中最著名的要数最速降线问题:即最快下降的曲线的问题。这个 曾经的难题用变分法的理论可以轻而易举的解决。
中国古代数学家也产生过积分学的萌芽思想,例如三国时期的刘徽,他对积分 学的思想主要有两点:割圆术及求体积问题的设想。
微积分的产生
到了十七世纪,有许多科学问题需要解决,这些问题也 就成了促使微积分产生的因素。归结起来,大约有四种主要 类型的问题:
第一类是研究运动的时候直接出现的,也就是求即时速 度的问题;第二类问题是求曲线的切线的问题;第三类问题 是求函数的最大值和最小值问题;第四类问题是求曲线长、 曲线围成的面积、曲面围成的体积、物体的重心、一个体积 相当大的物体作用于另一物体上的引力。
让我们一起来了解微积分
› 微积分创立的历史过程 › 微积分创立的历史意义 › 微积分的发展及其价值
微积分的早期历史
从微积分成为一门学科来说,是在17世纪,但是积分的思想早在古代就已经产 生了。
公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等 问题的研究就含有微积分思想。
公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著 作《圆的测量》和《论球与圆柱》中就已含有积分学的萌芽,他在研究解决抛物线下 的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线所得的体积的问题中就隐含 着近代积分的思想。
微积分创立历史中的“争斗”
› 前面已经提到,一门学科的创立并不是某一个人的业绩,而是经过多少人的 努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的, 微积分也是这样。
微积分发展简史
微积分发展简史微积分是近代数学中最伟大的成就,对它的重要性无论作怎样的估计都不会过分.- 冯·诺依曼287 年: 阿基米德的"逼近法""给我一个支点,我可以撬动地球."对数学和物理学的影响极为深远,被视为古希腊最杰出的科学家. 他与牛顿和高斯被西方世界评价为有史以来最伟大的三位数学家.他利用“逼近法”算出球表面积、球体积、抛物线、椭圆面积,后世的数学家依据这种方法加以发展成近代的“微积分”.1620年费地的布面油画《沉思的阿基米德》263 年: 刘徽注释《九章算术》东方古代数学泰斗用割圆术计算圆周率, "割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣".求得圆周率的近似值为3.14, 这种极限思想和无穷可分甚至是古希腊数学不能比拟的.1088 年: 沈括著《梦溪笔谈》中国科学史上的重要文献北宋的沈括所著百科全书式的著作, 因为写于润州(今镇江)梦溪园而得名,收录了沈括一生的所见所闻和见解. 内容涉及天文、数学、物理、化学、生物、地质、地理、气象、医学、工程技术、文学、史事、美术及音乐等学科. 书中开创了“垛积术”(高阶等差级数求和), “会圆术”(求出弧长的方法). "棋局都数"的研究则暗用了组合方法和指数定律.1629 年: 费马“我发现了一个美妙的证明,但由于空白太小而没有写下来.”皮埃尔·德·费马法国律师和业余数学家(不过在数学上的成就不比职业数学家差). 费马引理给出了一个求出. 可微函数的最大值和最小值的方法。
因此,利用费马引理,求函数的极值的问题便化为解方程的问题.费马及费马最后定理1637 年: 笛卡尔"我思故我在. "勒内·笛卡尔, 法国著名哲学家、数学家、物理学家. 对数学最重要的贡献是创立了解析几何. 笛卡尔成功地将当时完全分开的代数和几何学联系到了一起, 他向世人证明,几何问题可以归结成代数问题,也可以通过代数转换来发现、证明几何性质, 为后人在微积分上的工作提供了坚实的基础.约 1150 : 婆什迦罗印度数学的最高成就婆什迦罗, 印度古代和中世纪最伟大的数学家, 天文学家. 对数学主要贡献: 比牛顿和莱布尼茨早五个世纪就构想了微积分; 采用缩写文字和符号来表示未知数和运算; 他广泛使用了无理数, 并在运算时和有理数不加区别.婆什迦罗及他设计的永动机1665 年: 牛顿与《广义二项式定义》"如果我比别人看得更远,那是因为我站在巨人的肩上. "艾萨克·牛顿, 英格兰物理学家, 数学家, 天文学家, 在老师巴罗的指导下, 1665年发表广义二项式定理,并开始发展一套新的数学理论,也就是后来为世人所熟知的微积分学, 牛顿称之为"流数术".1670 年: 伊萨克·巴罗《几何学讲义》"一个爱书的人,他必定不致缺少一个忠实的朋友,一个良好的老师,一个可爱的伴侣,一个优婉的安慰者."英国著名数学家, 1670 年发布的《几何学讲义》包含了他对无穷小分析的卓越贡献,特别是其中“通过计算求切线的方法”,十分接近微积分基本定理,微积分的最终制定后来由其学生艾萨克·牛顿完成.伊萨克·巴罗(1630年-1677年)1684 年: 莱布尼茨关于微分学的第一篇论文"世界上没有两片完全相同的树叶."戈特弗里德·威廉·莱布尼茨, 德意志哲学家、数学家, 获誉为十七世纪的亚里士多德.在数学上,他从几何角度和牛顿先后独立发明了微积分,1684年发表了第一篇微分学论文《一种求极大值、极小值和切线的新方法, 它也适用于有理量与无理量以及这种新方法的奇妙类型的计算》 , 他所发明了微积分的数学符号 dx, dy 和∫ 被更广泛的使用.莱布尼茨 1646~17161691 年: 约翰.伯努利著世界上第一本关于微积分的教科书瑞士的伯努利家族是世界颇负盛名的数学世家雅各布和弟弟约翰·伯努利是莱布尼茨的朋友,他们不但迅速掌握了莱布尼茨的微积分并加以发扬光大, 而且是最先应用微积分于各种问题的数学家.洛必达法则纠纷有一段时间,伯努利被洛必达聘请为私人数学老师。
浅谈微积分的发展历史
浅谈微积分的发展历史李飞姜攀牛晋徽微积分是数学史上一个伟大的发明。
微积分在两千多年前就开始萌芽,但真正开始发展是从16世纪开始的,并由牛顿和莱布尼兹在17世纪建立,然而为它打好逻辑基础的是19世纪柯西。
从此之后,微积分成了各学科中重要的数学工具。
1 引言在高等数学的教学中,微积分是教学难点之一,学生普遍反应微积分的许多概念和公式比较难以理解。
近几年国内外越来越多的大学在数学教材引入数学史的知识,通过“历史线索”和“历史原型”来组织高等数学的教学,使学生真正理解课本上抽象的概念和形式化的公式背后的实际内涵。
为便于将数学史引入高等数学的教学中,本文简单地介绍一下微积分的发展历史。
2 微积分的发展历史微积分从发端至今已有两千多年的历史,并且其发展并不是一帆风顺的,本文将其分为四个阶段:萌芽阶段;酝酿阶段;创立阶段;发展阶段。
2.1 萌芽阶段2000多年前东西方的数学家就开始对微积分思想的萌芽和探索。
这个阶段对后世最有影响的是古希腊的数学发展。
古希腊的数学并不是单独的一个分支 ,而是与天文 、哲学密不可分的,其研究对象以几何学为主。
这一阶段最重要的两个哲学思想是“穷竭法”和“原子论”。
公元前5世纪,古希腊诡辩学派的安提丰(Antiphon)为解决“化圆为方”的问题,提出如下方法:“先作一圆内接正方形,将边数加倍,得内接8边形;再加倍,得16边形。
如此作下去,最后正多边形穷竭了圆。
”该方法被阿基米德(Archimedes)发展为“穷竭法”。
同样在公元前5世纪,德谟克利特(Demokritos)提出了“原子论”,并用“原子论”解释数学概论,提出:“线段、面积和立体都是由一些不可再分的原子构成的 ,而计算面积 、体积就是将这些‘原子’累加起来”。
他根据这一思想来求解圆锥体的体积,发现“圆锥体积等于具有同底同高的圆柱体积的三分之一”。
但这一结论的证明是由攸多克萨斯(Eudoxus)完成的。
德谟克利特认为圆锥体是由一系列底面积不等的不可再分的圆形薄片构成,因此圆锥体的表面不光滑。
论述微积分发展简史
论述微积分发展简史论述微积分发展简史1一、微积分的萌芽微积分的思想萌芽可以追溯到古代,早在希腊时期,人类已经开始讨论无穷、极限以及无穷分割等概念。
这些都是微积分的中心思想;虽然这些讨论从现代的观点看有很多漏洞,有时现代人甚至觉得这些讨论的论証和结论都很荒谬,但无可否认,这些讨论是人类发展微积分的第一步。
公元前五世纪,希腊的德谟克利特提出原子论:他认為宇宙万物是由极细的原子构成。
在中国,《庄子.天下篇》中所言的一尺之捶,日取其半,万世不竭,亦指零是无穷小量。
这些都是最早期人类对无穷、极限等概念的原始的描述。
二、微积分的创立微积分的产生一般分为三个阶段:极限概念;求积的无限小方法;积分与微积分的互逆关系。
最后一个阶段是由牛顿、莱布尼茨完成的。
前两个阶段的工作,欧洲的大批数学家一直追溯到希腊的阿基米德都做出了各自的贡献。
中世纪时期,欧洲科学发展停滞不前,人类对无穷、极限和积分等观念的想法都没有甚麼突破。
中世纪以后,欧洲数学和科学急速发展,微积分的观念也於此时趋於成熟。
在积分方面,一六一五年,开普勒把酒桶看作一个由无数圆薄片积累而成的物件,从而求出其体积。
而伽利略的学生卡瓦列里即认为一条线由无穷多个点构成;一个面由无穷多条线构成;一个立体由无穷多个面构成。
这些想法都是积分法的前驱。
在微分方面,十七世纪人类也有很大的突破。
费马在一封给罗贝瓦的信中,提及计算函数的极大值和极小值的步骤,而这实际上已相当於现代微分学中所用,设函数导数為零,然后求出函数极点的方法。
另外,巴罗亦已经懂得透过「微分三角形」(相当於以dx、dy、ds為边的三角形)求出切线的方程,这和现今微分学中用导数求切线的方法是一样的。
由此可见,人类在十七世纪已经掌握了微分的要领。
英国著名数学家、物理学家牛顿从研究物理问题出发创立了微积分(1665—1666),牛顿称之为“流数术理论”.牛顿的“流数术”中,有三个重要的概念:流动量、流动率、瞬.牛顿的流数术以力学中的点的连续运动为原型,把随时问连续变化的量而产生的一个连续变化的变量,即以时间为独立变数的函数(生长中的量)称为流动量,流动率是流动量的变化速度,即变化率(生长率),称为导数牛顿专论微积分的著作有两部,第一部正式的、系统的论述流数术的重要著作是《流数术和无穷级数》,于1671年写成,在1736年才正式出版.另一部著作是《曲线求积论》,于1676—1691年写成,在1704年出版.德国数学家莱布尼兹从儿何角度出发独立地创立了微积分(1675—1676).莱布尼兹当时把微积分称为“无穷小算法”.他的微积分符号的使用最初体现在1675年的手稿中.1684年他在《教师学报》杂志上发表了微分法的论文《一种求极大值、极小值和切线的新方法,它也适用于无理量,以及这种新方法的奇妙类型的计算》.这是历史上最早发表的关于微积分的文章.1686年他在该杂志上又发表了最早的积分法的论文《潜在的几何与不可分量和无限的分析》。
微积分发展史
1686年,莱布尼茨又发表了他的第一篇积分学沦 文《深奥的几何与不可分量及无限的分析》。 这篇论文初步论述了积分或求积问题与微分或 切线问题的互逆关系。
莱布尼茨分析道:‘‘研究不定求积或其不可能 性的方法,对我来说不过是我称之为反切线方 法的更广泛的问题的特殊情形(并且事实上是比 较容易的情形),而这种反切线方法包括了整个 超越几何的绝大部分.”
三、莱布尼茨的微积分
在微积分的创立上,牛顿与莱布尼茨分享荣誉。 莱布尼茨(1646——1716)出生于德国莱比锡一个 教授家庭,早年在莱比锡大学学习法律,同时 开始接触伽利略、开普勒、笛卡儿、帕斯卡以 及巴罗等人的科学思。1667年获阿尔持多夫大 学法学博士学位,次年开始为缅因茨选帝侯服 务,不久被派往巴黎任大使。莱布尼茨在巴黎 居留了四年[1672—1676),这四年对他整个科 学生涯的意义,可以与牛顿在家乡躲避瘟疫的 两年类比,莱布尼茨许多重大的成就包括创立 微积分都是在这一时期完成或奠定了基础。
牛顿微积分学说最早的公开表述出现在1687年出 版的力学名著《自然哲学的数学原理》之中。 因此《原理》也成为数学史上的划时代著作。 《原理》在创导首末比方法的同时保留了无限小 瞬,这种做法常常被认为自相矛盾而引起争议。 实际上,在牛顿的时代,建立微积分严格基础 的时机尚不成熟,在这样的条件下,牛顿在大 胆创造新算法的同时,坚持对微积分基础给出 不同解释,说明了他对微积分基础所存在的困 难的深邃洞察和谨慎态度。
古代与中世纪中国学者在天文历法研究中 曾涉及到天体运动的不均匀性及有关的极大、 极小值问题,如郭守敬《按时历》中求“月离 迟疾”(月亮运行的最快点和最慢点)、求月亮 白赤道交点与黄赤道交点距离的极值(郭守敬甚 至称之为“极数”)等问题,但东方学者以惯用 的数值手段(“招差术”,即有限差分计算)来 处理,从而回避了连续变化率。 总之,在17世纪以前,真正意义上的微分 学研究的例子可以说是很罕见的。
00-微积分的历史
高等数学
绪论 —— 微积分的历史简介
第1页,共91页。
微积分的产生——17、18、19世纪的微积分.
很久很久以前,
在很远很远的一块古老的土地上, 有一群智者……
开普勒、笛卡尔、卡瓦列里、费马、帕斯卡、 格雷戈里、罗伯瓦尔、惠更斯、巴罗、瓦里斯、
牛顿、莱布尼茨、…… .
第2页,共91页。
第22页,共91页。
各项公理,或因从哲学观点看可以认为是“显然” 的,或仅仅因其非常有说服力,而被不加证明地予以 接受。
这可靠吗?
第23页,共91页。
已定型的数学结构就建立在这些公理的基础之上。在 后来的许多世纪中,公理化的欧几里德数学曾被认为是数 学体系的典范,甚至为其他学科所努力效仿。(例如,像 笛卡尔、斯宾诺沙等哲学家,就曾试图把他们的学说用公 理方式,或者如他们所说,“更加几何化”地提出来,以 便使之更有说服力。)
第26页,共91页。
微积分不仅使用了函数概念,还引入了 两个全新的且更为复杂的概念:微分和积分。 这样,除了用来处理数值所需要的基础外, 还需要逻辑方面的基础。
第27页,共91页。
微分与积分是分析中的两种基本的极限过程。这两种 过程的一些特殊的情况,甚至在古代就已经有人考虑过 (在阿基米德工作中达到高峰),而在十六世纪和十七世 纪,更是越来越受到人们的重视。然而,微积分的系统发 展是在十七世纪才开始的,通常认为是牛顿和莱布尼茨两 位伟大的科学先驱的创造。这一系统发展的关键在于认识 到:过去一直分别研究的微分和积分这两个过程,实际上 是彼此互逆的联系着。
第11页,共91页。
第三类问题
求函数的最大最小值问题。 十七世纪初期,伽利略断定,在真空中以 45 角 发射炮弹时,射程最大。 研究行星运动也涉及最大最小值问题。
《微积分发展史》课件
随着科技的发展,微积分将与物理学、工程 学、经济学等领域更加紧密地结合,推动跨 学科的研究和应用。
数学建模和计算方法的创新
未来微积分的发展将更加注重数学建模和计算方法 的创新,以解决复杂的问题和现象。
数学教育的普及和提高
随着教育水平的提高,微积分将更加普及, 并成为更多人学习和掌握的数学工具。
微积分与其他学科的交叉发展
与物理学的结合
微积分在物理学中有广泛的应用 ,如力学、电磁学等领域。未来 将进一步深化微积分与物理学的 交叉研究,推动理论和实践的结 合。
与工程学的结合
微积分在工程学中发挥着重要的 作用,如流体动力学、控制理论 等。未来将进一步加强微积分在 工程实践中的应用和创新。
与经济学的结合
19世纪的发展
总结词
微积分的严格化
实数理论的建立
实数理论的建立为微积分提供了更加严密的数学 基础,进一步推动了微积分的发展。
ABCD
极限理论的建立
19世纪,极限理论得到了深入的研究和探讨, 为微积分的严格化奠定了基础。
变分法的兴起
19世纪,变分法得到了广泛的应用和发展,为 解决优化和极值问题提供了重要的工具。
03
微积分的发展
18世纪的发展
总结词
微积分的基础建立
牛顿和莱布尼茨的贡献
牛顿的《自然哲学的数学原理》和莱布尼茨的《微积分学 》分别从不同角度奠定了微积分的基础。
微分学的发展
18世纪,微分学在函数、导数、微分等方面取得了重要 进展,为后续的数学和科学领域提供了强大的工具。
积分学的发展
积分学也在18世纪得到了深入的研究和发展,包括定积 分、不定积分以及积分的应用等方面。
微积分历史简介
缺陷
Isaac Newton在《自然哲学的数学原理》中给微积分披上了 在 自然哲学的数学原理》 几何外衣,阻碍了18世纪英国数学的发展 几何外衣,阻碍了 世纪英国数学的发展
二
Gottfried Wilhelm Leibniz (1646 ----1716)
Leibniz 生于德国,1667年获法学博士学位, 1672被派往 生于德国, 年获法学博士学位, 年获法学博士学位 被派往 法国巴黎任大使(1672-1676),在此他结识了荷兰物理学家,数 法国巴黎任大使 ,在此他结识了荷兰物理学家, 学家( 学家(C . Huygens)开始研究切线 ,面积 ,体积等微积分的基 ) 面积 本问题 1684 年Leibniz 发表了他的第一篇微积分论文《一种求极大值 发表了他的第一篇微积分论文《 与极小值和切线的新方法》 与极小值和切线的新方法》
1686年Leibniz 发表了他的第二篇微积分论文《深奥的几何学 年 发表了他的第二篇微积分论文《 与不可分量及无限的分析》 与不可分量及无限的分析》
三 第一发明人问题
发明人问题是由瑞士数学家( 发明人问题是由瑞士数学家(N . F. de duillier)挑起的 挑起的 N . F. de duillier 1699年在一本小册子中提出“Newton是 年在一本小册子中提出“ 年在一本小册子中提出 是 微积分的第一发明人, 是微积分的第二发明人, 微积分的第一发明人, Leibniz是微积分的第二发明人, 是微积分的第二发明人 Leibniz借鉴了 借鉴了Newton的成果 的成果” 借鉴了 的成果 Leibniz即时作出了反驳 即时作出了反驳 1712年 英国皇家学会宣布Newton 微积分的第一发明人 1712年,英国皇家学会宣布Newton是微积分的第一发明人 , 这引起了Leibniz的申诉,,争论在双方追随者见越演越烈,直到 的申诉,,争论在双方追随者见越演越烈, 这引起了 的申诉,,争论在双方追随者见越演越烈 Newton和Leibniz去世,后经过调查,特别是 去世, 的手稿分析, 和 去世 后经过调查,特别是Leibniz的手稿分析, 的手稿分析 证实Newton和Leibniz独立完成了微积分,发明时间 独立完成了微积分, 证实 和 独立完成了微积分 发明时间Newton早于 早于 Leibniz, 发表时间 发表时间Leibniz 早于 早于Newton 可悲的是18世纪英国和欧洲大陆数学发展分道扬镳, 可悲的是 世纪英国和欧洲大陆数学发展分道扬镳,英国 世纪英国和欧洲大陆数学发展分道扬镳 对微积分的发展不再有贡献, 对微积分的发展不再有贡献,微积分的发展由欧洲大陆完成
微积分的起源与发展
微积分的起源与发展主要内容:一、微积分为什么会产生二、中国古代数学对微积分创立的贡献三、对微积分理论有重要影响的重要科学家四、微积分的现代发展一、微积分为什么会产生微积分是微分学和积分学的统称,它的萌芽、发生与发展经历了漫长的时期。
公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。
作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。
比如我国的庄周所着的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。
三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。
”这些都是朴素的、也是很典型的极限概念。
到了十七世纪,哥伦布发现新大陆,哥白尼创立日心说,伽利略出版《力学对话》,开普勒发现行星运动规律--航海的需要,矿山的开发,火松制造提出了一系列的力学和数学的问题,这些问题也就成了促使微积分产生的因素,微积分在这样的条件下诞生是必然的。
归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。
已知物体移动的距离表为时间的函数的公式,求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表为时间的函数的公式,求速度和距离。
困难在于:十七世纪所涉及的速度和加速度每时每刻都在变化。
例如,计算瞬时速度,就不能象计算平均速度那样,用运动的时间去除移动的距离,因为在给定的瞬刻,移动的距离和所用的时间都是0,而0 / 0 是无意义的。
但根据物理学,每个运动的物体在它运动的每一时刻必有速度,是不容怀疑的。
第二类问题是求曲线的切线的问题。
这个问题的重要性来源于好几个方面:纯几何问题、光学中研究光线通过透镜的通道问题、运动物体在它的轨迹上任意一点处的运动方向问题等。
困难在于:曲线的“切线”的定义本身就是一个没有解决的问题。
古希腊人把圆锥曲线的切线定义为“与曲线只接触于一点而且位于曲线的一边的直线”。
微积分的发展历程
微积分的发展历程微积分的创立,被誉为“人类精神的最高胜利”,在18世纪,微积分进一步深入发展,这种发展与广泛的应用紧密交织在一起,刺激和推动了许多数学新分支的产生,从而形成了“分析”这样一个在观念和方法上都具有鲜明特点的数学领域。
在数学史上,18世纪可以说是分析研究的时代,也是向现代数学过渡的重要时期。
1)微积分的发展无限小算法的推广,在英国和欧洲大陆国家是循着不同的路线进行的。
不列颠的数学家们在剑桥、牛津、伦敦和爱丁堡等著名的大学里教授和研究牛顿的流数术,他们中的优秀代表有泰勒(B.Taylor)、麦克劳林(C.Maclaurin)、棣莫弗(A.de Moivre)、斯特林(J.Stirling)等。
泰勒(1685_1731)做过英国皇家学会秘书。
他在1715年出版的《正的和反的增量方法》一书中,陈述了他早在1712年就已获得的著名定理其中v为独立变量z的增量,和为流数。
泰勒假定z随时间均匀变化,故为常数,从而上述公式相当于现代形式的“泰勒公式”:。
泰勒公式使任意单变量函数展为幂级数成为可能,是微积分进一步发展的有力武器。
但泰勒对该定理的证明很不严谨,也没有考虑级数的收敛性。
泰勒公式在x=0时的特殊情形后来被爱丁堡大学教授麦克劳林重新得到,现代微积分教科书中一直把x=0时的泰勒级数称为“麦克劳林级数”。
麦克劳林(1698_1746)是牛顿微积分学说的竭力维护者,他在这方面的代表性著作《流数论》,以纯熟却难读的几何语言论证流数方法,试图从“若干无例外的原则”出发严密推演牛顿的流数论,这是使微各分形式化的努力,但因囿于几何传统而并不成功。
《流数论》中还包括有麦克劳林关于旋转可耻椭球体的引力定理,证明了两个共焦点的椭球体对其轴或赤道上一个质点的引力与它们的体积成正比。
麦克劳林之后,英国数学陷入了长期停滞的状态。
微积分发明权的争论滋长了不列颠数学家的民族保守情绪,使他们不能摆脱牛顿微积分学说中弱点的束缚。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这里的问题是,当把非均匀变化的问题 看成均匀变化时,能表示为两个量的积的形 式,则此时处理非均匀变化问题,可以采 用 ……???
用什么方法?我们以后再慢慢讲。 它是积分学的问题。
牛顿与莱布尼茨
实际上在牛顿与莱布尼茨作出他们的冲刺之 前,微积分的大量知识已经积累起来了。甚至在巴 罗的一本书里就能看到求切线的方法、两个函数的 积和商的微分定理、x 的幂的微分、求曲线的长度、
方法的全面威力的信念,促使研究者们走得很远(如
果束缚于严格的限制的框架上,这将是不可能的)。
不过只有具备卓越才能的数学大师们才有可能能避免
发生大错。
微积分不仅使用了函数概念,还引入
了两个全新的且更为复杂的概念:微分和
积分。这样,除了用来处理数值所需要的 基础外,还需要逻辑方面的基础。
微分与积分是分析中的两种基本的极限过程。 这两种过程的一些特殊的情况,甚至在古代就已经
第一类问题
已知物体移动的距离表为时间的函数的公式, 求物体在任意时刻的速度和加速度;反过来,已知 物体的加速度表为时间的函数的公式,求速度和距 离。
第一类问题
困难在于:十七世纪所涉及的速度和加速度每时 每刻都在变化。例如,计算瞬时速度,就不能象计算 平均速度那样,用运动的时间去除移动的距离,因为 在给定的瞬刻,移动的距离和所用的时间都是 0,而 0 / 0 是无意义的。但根据物理学,每个运动的物体在 它运动的每一时刻必有速度,是不容怀疑的。
经过中世纪的停滞时期后,数学同自然科学一
起,在新出现的微积分的基础上开始了突飞猛进的发
展,这时公理化的方法才被人们遗弃了。
曾经极其广泛地开拓了数学领域的有创造才能的
先驱们,并不因为要使这些新发现受制于协调的逻辑
分析而束缚住自己,因此,在十七世纪,逐渐广泛地 采用直观证据来代替演绎的证明。一些第一流的数学 家在确实感到结论无误地情况下,运用了一些新的概 念,有时甚至运用一些神秘的联想。由于对微积分新
小球下落的运动状态可用下面的公式描述:
d 16 t 2 (英尺)
当 t 4 时,d 16 42 256 ,
费马所在时代用 的是英制单位
设任意一个时间增量是 h ,在第(4 + h)秒时,
小球会下降 256 英尺加上距离增量 k :
256 k 16 (4 h) 2 256 128h 16h 2
即
k 128h 16h 2
在 h 秒内(时间间隔)的平均速度为
?
k 128h 16h 2 128 16h h h
幸好费马作 了这个现在看来 并不合理的除法 运算,……
令 h = 0 ,得到小球在第四秒时的下落速度
d 128
(d 是牛顿发明的记号)
费马推导的问题所在
这里的问题是,当把非均匀变化的问题
看成均匀变化时,能表示为两个量的商的形
式,则此时处理非均匀变化问题,可以采
用 ……???
用什么方法?我们以后再慢慢讲。 它是微分学的问题。
古希腊人研究过的面积问题
计算抛物线 y x 与坐标轴 x 轴 在 0 x 1间所围成的面积。
2
y
y x2
S O
只有当 h 0 时,才能对方程两边作同除以h 的运算。
k 128h 16h 2 即 128 16h 只有当 h 0 时才正确。 h h
这样就不能令 h = 0 而得出结论。此外, 对于 d 16 t 2 这样简单的函数, 可以进行上述化简工作, 而对于更为
复杂的函数, 就不一定可以进行这样的化简工作了, 一
十七世纪的微积分
任何研究工作的开端,几乎都是极不完美 的尝试,且通常并不成功。每一条通向某个目 的地的路都有许多未知的真理 ,唯有一一尝 试,方能觅得捷径。也只有甘愿冒险,才能将 正确的途径示以他人。……可以这样说,为了 寻找真理,我们是注定要经历挫折和失败的。 ——狄德罗
任何重要思想的起源都可以追溯到几十年或 几百年以前 ,函数的概念也是如此 。直到1 7世 纪,人们对函数才有了明确的理解。函数概念的 提出,与伽利略和格雷戈里有关。格雷戈里将函
第二类问题
求曲线的切线。 这个问题的重要性来源于好几个方面:纯几何问
题、光学中研究光线通过透镜的通道问题、运动物体
在它的轨迹上任意一点处的运动方向问题等。
第二类问题
困难在于:曲线的“切线”的定义本身就是一个 没有解决的问题。 古希腊人把圆锥曲线的切线定义为“与曲线只接 触于一点而且位于曲线的一边的直线”。这个定义对 于十七世纪所用的较复杂的曲线已经不适应了。
般只能导出如下的关系式:k f (h) , 这样,当 h = 0 h h 时,k / h 就是 0 / 0 了,这是没有意义的。
费马推导的问题所在
费马一直没能证明他所做的这些,也 没有把这项工作非常深入地进行下去,但
他坚信最终可以得到一个合理的几何证明。
尽管如此,事实上我们必须承认他是微积
分学的创始人之一。
识到微分与积分之间的互逆关系。牛顿和莱布尼茨
创建的系统的微积分就是基于这一基本思想。
费马研究的一个问题 假设一个小球正向地面落去,我们想知道下落后 第 4 秒时小球的速度(瞬时速度)。 如果我们考虑用小球下落中时间间隔来代替时 刻,用它在这一段时间间隔内下降的距离除以所用时 间,就得到这一间隔中小球的平均速度。我们可以计 算从第四秒起,间隔为 1/2 秒,1/4 秒,1/8 秒,…… 内的平均速度。显然,时间间隔越短,计算出来的平 均速度就越接近第四秒时的速度。这就是说,我们有 了一个方案:首先计算不同时间间隔内的平均速度, 然后研究当时间间隔越来越小时,它们会趋近于哪一 个数。这个数就是要求的小球在第四秒时第瞬时速 度。
第三类问题
求函数的最大最小值问题。 十七世纪初期,伽利略断定,在真空中以 45 角
发射炮弹时,射程最大。
研究行星运动也涉及最大最小值问题。
第三类问题
困难在于:原有的初等计算方法已不适于解决研 究中出现的问题。但新的方法尚无眉目。
第四类问题
求曲线的长度、曲线所围成的面积、曲面所围成 的体积、物体的重心、一个体积相当大的物体作用于 另一个物体上的引力。
看一下阿基米德在证明两个圆的
面积比等于其直径平方比所作的
Archimedes
工作。
阿基米德证明的主 要精神是证明圆可以被 圆内接多边形穷竭。 在圆里面内接一个 正方形,其面积大于圆 面积的 1/2 (因为它大 于圆外切正方形面积的 1/2,而外切正方形的面 积大于圆的面积。)
D
A
C 3
2
1
E B
所得到的八边形 不仅包含正方形且包 含圆与正方形面积之 差的一半以上。
8 边形
在八边形的每边 上也可按照在 AB 上 作三角形ABC 那样地 作一个三角形,从而 得到一个正十六边 形。
16边形
这个正十六边形 不仅包含八边形且包 含圆与八边形面积之 差的一半以上。 这种做法你想做 多少次就可以做多少 次。可以肯定,圆与 某一边数足够多的正 多边形面积之差可以 弄得比任何预先给定 的量还要小。
高等院校非数学类本科数学课程
大 学 数 学(一)
—— 一元微积分学
绪论 —— 微积分的历史简介
聊聊天
微积分的产生——17、18、19世纪的微积分.
很久很久以前, 在很远很远的一块古老的土地上,
有一群智者……
开普勒、笛卡尔、卡瓦列里、费马、帕斯卡、 格雷戈里、罗伯瓦尔、惠更斯、巴罗、瓦里斯、 牛顿、莱布尼茨、…… .
定积分中的变量代换、隐函数的微分定理等等。
牛顿与莱布尼茨
于是人们惊问,在主要的新结果方面,还有什 么有待于发现呢?问题的回答是,方法的较大普遍 性以及从特殊问题里已建立起来的东西中认识其普
遍性。
牛顿与莱布尼茨
数学的真正划分不是分为几何和算术,而是分 成普遍的和特殊的。这普遍的东西是由两个包罗万
1
x
y
yx
2
y2 y1
O
h
x1
h
x2
x
S * y1h y2 h
S S*
y
yx
2
y3
y2 y1
O
h
*
x1 h x 2 h x3
x
S y1h y2h y3h
S S*
y
如 何 求 此 面 积 的 精 确 值 ?
yx
2
yn yi
直观地看, 小矩形越多,其 面积和就越接近 于所求曲线下的 面积。
第四类问题
困难在于:古希腊人用穷竭法求出了一些面积和 体积,尽管他们只是对于比较简单的面积和体积应用 了这个方法,但也必须添加许多技巧,因为这个方法 缺乏一般性,而且经常得不到数值的解答。 穷竭法先是被逐步修改,后来由微积分的创立而 被根本修改了。
欧多克斯的穷竭法是一种有限且相当复杂的 几何方法。它的思想虽然古老,但很重要,阿基 米德用得相当熟练,我们就用他的一个例子来说 明一下这种方法。
有人考虑过(在阿基米德工作中达到高峰),而在
十六世纪和十七世纪 ,更是越来越受到人们的重
视。然而,微积分的系统发展是在十七世纪才开始
的,通常认为是牛顿和莱布尼茨两位伟大的科学先 驱的创造。这一系统发展的关键在于认识到:过去 一直分别研究的微分和积分这两个过程,实际上是 彼此互逆的联系着。
公正的历史评价,是不能把创建微积分归功于 一两个人的偶然的或不可思议的灵感的。许多人, 例如,费马、伽利略、开普勒、巴罗等都曾为科学 中的这些具有革命性的新思想所鼓舞,对微积分的 奠基作出过贡献。 事实上,牛顿的老师巴罗,就曾经几乎充分认
16边形 32边形 64边形
希腊数学的重大成就之一,是将许多数学命题和 定理按逻辑上连贯的方式归为为数不多的非常简单的 公设或公理。即熟知的几何公理和算术法则,它们支 配着如整数、几何点这样一些基本对象之间的关系。