椭圆的焦点弦长公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆的焦点弦长公式
θ
2222
21cos 2c a ab F F -=及其应用 在有关椭圆的综合题中,常常遇到椭圆焦点弦的问题,如何解决这类问题呢?首先我们有
命题:
若椭圆的焦点弦21F F 所在直线的倾斜角为θ,a 、b 、c 分别表示椭圆的长半轴长、短半轴长和焦半距,则有θ
2222
21cos 2c a ab F F -=。 上面命题的证明很容易得出,在此笔者只谈谈该命题的应用。
例1、已知椭圆的长轴长
AB 8=,焦距21F F =24,过椭圆的焦点1F 作一直线交椭圆于P 、Q 两点,设X
PF 1∠=α)0(πα<<,当α取什么值时,PQ 等于椭圆的短轴长?
分析:由题意可知PQ 是椭圆的焦点弦,且4=a ,22=c ,从而22=b ,故由焦
点弦长公式θ
2222
21c o s 2c a ab F F -=及题设可得:24cos 816)22(4222=-⨯⨯α,解得αc o s ±=22-,即α=arc 22cos -或arc -π22cos -。
例2、在直角坐标系中,已知椭圆E 的一个焦点为F (3,1),相应于F 的准线为Y 轴,直线l 通过点F ,且倾斜角为3
π,又直线l 被椭圆E 截得的线段的长度为516,求椭圆E 的方程。 分析:由题意可设椭圆E 的方程为1)1()3(2
2
22=-+--b y a c x ,又椭圆E 相应于F 的准线为Y 轴,故有32
+=c c a (1), 又由焦点弦长公式有3cos 22222π
c a ab -=5
16 (2)又 222c b a += (3)。解由(1)、(2)、(3)联列的方程组得:42=a ,32=b ,1=c ,
从而所求椭圆E 的方程为13
)1(4)4(2
2=-+-y x 。 例3、已知椭圆C :12222=+b
y a x (0>>b a ),直线1l :1=-b y a x 被椭圆C 截得的弦
长为22,过椭圆右焦点且斜率为3的直线2l 被椭圆C 截得的弦长是它的长轴长的5
2,求椭圆C 的方程。 分析:由题意可知直线1l 过椭圆C 的长、短轴的两个端点,故有82
2=+b a , (1)又由焦点弦长公式得θ2222cos 2c a ab -=54a , (2) 因tan θ=3,得3
πθ=,(3) 又 222c b a += (4)。解由(1)、(2)、(3)、(4)联列的方程组得:62=a ,22
=b ,从而所求椭圆E 的方程为12
62
2=+y x 。