第十一届全国“华罗庚金杯”少年数学邀请赛初赛试卷
第十一届全国华罗庚金杯少年数学邀请赛初赛试卷
第十一届全国“华罗庚金杯”少年数学邀请赛初赛试卷(小学组)答案一、选择题(每小题6分,满分36分)二、A组填空题(每小题8分,满分32分)三、B组填空题(每小题两个空,每个空4分,每小题8分,满分32分)一、选择题1.D2.C 2008006=2×7×11×13×17×593.A 2006年12月31日是星期日,2007年元旦是星期一4.D 第二只蚂蚁爬4K与第一只蚂蚁在B点相遇。
再爬8K即在DA边上与第一只蚂蚁第二次相遇。
5.B S阴=S△PDE +S△PDC =S△PDE+ S△PDB= S△BDE=(ED×EF)/2=S四边形ADEF/2=6.36/2=3.186.B 2×3×3×2×1+3×2×3×2×1=72,贝贝在两端和不在两端。
二、A组填空题7. 35 2+6+9×3=35 进位一次各位数字之和减少98. 23 有三角形的50-28=22人,有三角板的女生22-14=8人,有直尺的女生31-8=23人。
9. 226.08 AB=6,π×(6/2)^2×8=226.0810. 4三、B组填空题11. 500,2700 (300+200)÷(6-5)=500,6×500-300=270012. 101,4①5个一位奇数占5位,45个两位奇数占90位,两个三位奇数占6位,5+90+6=101位;②一位奇数的各位数字之和被9除余7,两位奇数的各位数字之和被9整除,两个三位奇数被9除的余数是6,数a被9除的余数是4。
13. 27,37①先取红色的1点至13点各一张,再取黑色的1点至13点各1张,再取任意1张,即13+13+1=27(张);②先取不能被3整除的(13-4)X4=36(张),再任取1张能被3整除的即可14. 95,155①边长是1,2,3,4,5,6的正方形有6X6+5X5+4X4+3X3+2X2+1X1=(6×7×13)/6=91(个),对角线长是2的正方形有4个,共95个。
历届“华杯赛”初赛决赛试题汇编【小中组(附答案)】
二、简答题(每小题 15 分, 共 60 分, 要求写出简要过程)
9. 用 4 个数码 4 和一些加、减、乘、除号和小括号, 写出值分别等于 2、3、4、 5、6 的五个算式. 10. 右图是 U, V, W, X 四辆不同类型的汽车每百千米的耗油 量. 如果每辆车都有 50 升油, 那么这四辆车最多可行驶 的路程总计是多少千米? 11. 某商店卖出一支钢笔的利润是 9 元, 一个小熊玩具的进 价为 2 元. 一次, 商家采取 “买 4 支钢笔赠送一个小熊玩具”的打包促销, 共 获利润 1922 元. 问这次促销最多卖出了多少支钢笔? 12. 编号从 1 到 10 的 10 个白球排成一行, 现按照如下方法涂红色: 1)涂 2 个球; 2)被涂色的 2 个球的编号之差大于 2. 那么不同的涂色方法有多少种?
四百米比赛进入冲刺阶段,甲在乙前面 30 米,丙在丁后面 60 米,乙在丙前面 20 米. 这时,跑在最前面的两位同学相差( (A)10 (B)20 )米. (D)60
(C)50
5.
在右图所示的两位数的加法算式中, 已知 A B C D 22 , ). (B)4 (C)7 (D)13
一、选择题 (每小题 10 分, 满分 60 分. 以下每题的四个选项中, 仅 有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号 内.)
2012年-2017年华罗庚金杯少年数学邀请赛初赛真题合集(小高组)附答案
目录第二十二届华罗庚金杯少年数学邀请赛 (1)第二十一届华罗庚金杯少年数学邀请赛 (3)第二十一届华罗庚金杯少年数学邀请赛 (5)第二十届华罗庚金杯少年数学邀请赛 (7)第二十届华罗庚金杯少年数学邀请赛 (9)第十九届华罗庚金杯少年数学邀请赛 (11)第十九届华罗庚金杯少年数学邀请赛 (13)第十八届华罗庚金杯少年数学邀请赛 (15)第十八届华罗庚金杯少年数学邀请赛 (17)第十七届华罗庚金杯少年数学邀请赛 (19)第十七届华罗庚金杯少年数学邀请赛 (21)第二十二届华罗庚金杯少年数学邀请赛答案 (23)第二十一届华罗庚金杯少年数学邀请赛答案 (24)第二十一届华罗庚金杯少年数学邀请赛答案 (25)第二十届华罗庚金杯少年数学邀请赛答案 (26)第二十届华罗庚金杯少年数学邀请赛答案 (27)第十九届华罗庚金杯少年数学邀请赛答案 (28)第十九届华罗庚金杯少年数学邀请赛答案 (29)第十八届华罗庚金杯少年数学邀请赛答案 (30)第十八届华罗庚金杯少年数学邀请赛答案 (31)第十八届华罗庚金杯少年数学邀请赛答案 (32)第十七届华罗庚金杯少年数学邀请赛答案 (33)第十七届华罗庚金杯少年数学邀请赛答案 (34)A B 第二十二届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)(时间 2016 年 12 月 10 日 10:00-11:00)一、选择题.(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1. 两个有限小数的整数部分分别是 7 和 10,那么这两个有限小数的积的整数部分有( )种可能的取值.A .16B .17C .18D .192. 小明家距学校,乘地铁需要 30 分钟,乘公交车需要 50 分钟,某天小明因故先乘地铁,再换乘公交车,用了 40 分钟到达学校,其中换乘过程用了 6 分钟,那么这天小明乘坐公交车用了( )分钟. A .6 B .8 C .10 D .123. 将长方形 ABCD 对角线平均分成 12 段,连接成右图,长方形 ABCD 内部空白部分面积总和是 10 平方厘米,那么阴影部分面积总和是( )平方厘米.A .14B .16C .18D .204.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是( ).A .2986B .2858C .2672D .27545. 在序列 20170……中,从第 5 个数字开始,每个数字都是前面 4 个数字和的个位数,这样的序列可以一直写下去.那么从第 5 个数字开始,该序列中一定不会出现的数组是( )A .8615B .2016C .4023D .20176. 从 0 至 9 选择四个不同的数字分别填入方框中的四个括号中,共有( )种填法使得方框中话是正确的.× 71 0 2罗华金杯ABG FHDEC二、填空题.(每小题 10 分,共 40 分)7. 若( 1 5 245 3— )× 9 2 5 7 ÷ 2 +2.25=4,那么A 的值是 .3 34 1A8. 右图中,“华罗庚金杯”五个汉字分别代表 1-5 这五个不同的数字,将各线段两端点的数字相加得到五个和,共有 种情况使得这五个和恰为五个连续自然数.9. 右图中,ABCD 是平行四边形,E 为 CD 的中点,AE 和 BD 的交点为 F ,AC 和 BE 的交点为 H ,AC 和BD 的交点为 G ,四边形 EHGF 的面积是 15 平方厘米,则 ABCD 的面积是平方厘米.10. 若 2017,1029 与 725 除以 d 的余数均为 r ,那么 d -r 的最大值是 .庚第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组A 卷) (时间:2015 年 12 月 12 日 10:00~11:00一、选择题.(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内) 1. 算式999 9 × 999 9 的结果中含有( )个数字 0.2016个92016个9A .2017B .2016C .2015D .20142. 已知 A ,B 两地相距 300 米.甲、乙两人同时分别从 A 、B 出发,相向而行,在距 A 地 140 米处相遇;如果乙每秒多行 1 米,则两人相遇处距 B 地 180 米.那么乙原来的速度是每秒( )米.A . 2 2B . 2 4C .3D . 3 15 5 53. 在一个七位整数中,任何三个连续排列的数字都构成一个能被 11 或 13 整除的三位数,则这个七位数最大是( )A .9981733B .9884737C .9978137D .98717734. 将 1,2,3,4,5,6,7,8 这 8 个数排成一行,使得 8 的两边各数之和相等,那么共有( )种不同的排法. A .1152B .864C .576D .2885. 在等腰梯形 ABCD 中,AB 平行于 CD ,AB =6,CD =14,∠AEC 是直角,CE =CB ,则 AE 2 等于( )A .84B .80C .75D .646. 从自然数 1,2,3,…,2015,2016 中,任意取 n 个不同的数,要求总能在这 n 个不同的数中找到 5个数,它们的数字和相等.那么 n 的最小值等于( ). A .109 B .110 C .111 D .112EABD C二、填空题.(每小题 10 分,共 40 分)AP M O7. 两个正方形的面积之差为 2016 平方厘米,如果这样的一对正方形的边长都是整数厘米,那么满足上述条件的所有正方形共有对.8. 如下图,O ,P ,M 是线段 AB 上的三个点,AO = 4 AB ,BP = 2AB ,M 是 AB 的中点,且 OM =2,那5 3么 PM 长为 .9. 设 q 是一个平方数.如果 q -2 和 q +2 都是质数,就称 q 为 p 型平方数.例如,9 就是一个 p 型平方数.那么小于 1000 的最大 p 型平方数是 .10. 有一个等腰梯形的纸片,上底长度为 2015,下底长度为 2016.用该纸片剪出一些等腰梯形,要求剪出的梯形的两底边分别在原来梯形的底边上,剪出的梯形的两个锐角等于原来梯形的锐角,则最多可以剪出 个同样的等腰梯形.第二十一届华罗庚金杯少年数学邀请赛初赛试卷 B (小学高年级组)(时间:2015 年 12 月 12 日 10:00~11:00)一、选择题.(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内) 1. “凑 24 点”游戏规则是:从一副扑克牌中抽去大小王剩下 52 张,(如果初练也可只用 1 至 10 这 40 张牌)任意抽取 4 张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成 24.每张牌必须用一次且只能用一次,并不能用几张牌组成一个多位数,如抽出的牌是 3,8,8,9,那么算式为(9- 8)×8×3 或(9-8÷8)×3 等.在下面 4 个选项中,唯一无法凑出 24 点的是( ). A .1,2,2,3 B .1,4,6,7 C .1,5,5,5 D .3,3,7,72. 有一种数,是以法国数学家梅森的名字命名的,它们就是形如 2n -1( n 为质数)的梅森数,当梅森数是质数时就叫梅森质数,是合数时就叫梅森合数.例如:22-1=3 就是一个梅森质数.第一个梅森合数是( ).A .4B .15C .127D .20473. 有一种饮料包装瓶的容积是 1.5 升.现瓶里装了一些饮料,正放时饮料高度为 20 厘米,倒放时空余部分的高度为 5 厘米,如下图.那么瓶内现有饮料( )升.A .1B .1.2C .1.25D .1.3754. 已知 a ,b 为自然数, 4 = 1 + 1,那么 a +b 的最小值是( ).15 a bA .16B .20C .30D .65. 如下图,平面上有 25 个点,每个点上都钉着钉子,形成 5×5 的正方形钉阵.现有足够多的橡皮筋,最多能套出( )种面积不同的正方形.A .4B .6C .8D .106. 在一个七位整数中,任何三个连续排列的数字都构成一个能被 11 或 13 整除的三位数,那么这个七位数最大是( ).A .9981733B .9884737C .9978137D .9871773二、填空题.(每小题 10 分,共 40 分)华 杯 赛 三 十 年× 杯 杯今 年 认 真 赛 好今 年 认 真 赛 好 三 十 年 华 杯 赛 好7. 计算:20152+20162-2014×2016-2015×2017= .8. 在下边的算式中,相同汉字代表相同数字,不同汉字代表不同数字.当杯代表 5 时,“华杯赛”所代表的三位数是 .9. 于 2015 年 10 月 29 日闭幕的党的十八届五中全会确定了允许普遍二孩的政策.笑笑的爸爸看到当天的新闻后跟笑笑说:我们家今年的年龄总和是你年龄的 7 倍,如果明年给妳添一个弟弟或妹妹,我们家 2020 年的年龄总和就是你那时年龄的 6 倍.那么笑笑今年 岁.10. 教育部于 2015 年 9 月 21 日公布了全国青少年校园足球特色学校名单,笑笑所在的学校榜上有名.为 了更好地备战明年市里举行的小学生足球联赛,近期他们学校的球队将和另 3 支球队进行一次足球友 谊赛.比赛采用单循环制(即每两队比赛一场),规定胜一场得 3 分,负一场得 0 分,平局两队各得 1分;以总得分高低确定名次,若两支球队得分相同,就参考净胜球、相互胜负关系等决定名次.笑笑学校的球队要想稳获这次友谊赛的前两名,至少要得 分.第二十届华罗庚金杯少年数学邀请赛初赛 A 试卷(小学高年级组)(时间:2015 年 3 月 14 日 10:00—11:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1. 现在从甲、乙、丙、丁四个人中选出两个人参加一项活动,规定:如果甲去,那么乙也去;如果丙不去,那么乙也不去;如果丙去,那么丁不去.最后去参加活动的两个人是( )A .甲、乙B .乙、丙C .甲、丙D .乙、丁2. 以平面上任意 4 个点为顶点的三角形中,钝角三角形最多有( )个.A .5B .2C .4D .33. 桌上有编号 1 至 20 的 20 张卡片,小明每次取出 2 张卡片,要求一张卡片的编号是另一张卡片的 2 倍多 2,则小明最多取出( )张卡片. A .12B .14C .16D .184. 足球友谊比赛的票价是 50 元,赛前一小时还有余票,于是决定降价,结果售出的票增加了三分之一, 而票房收入增加了四分之一,那么每张票售价降了( )元.A .10B . 25C . 50D .25235. 一只旧钟的分针和时针每重合一次,需要经过标准时间 66 分,那么,这只旧钟的 24 小时比标准时间的 24 小时( ).A .快 12 分B .快 6 分C .慢 6 分D .慢 12 分6. 在下图的 6×6 方格内,每个方格中只能填 A 、B 、C 、D 、E 、F 中的某个字母,要求每行、每列、每个标有粗线的 2×3 长方形的六个字母均不能重复.那么,第四行除了首尾两个方格外,中间四个方格填入的字母从左到右的顺序是( ).A .E 、 C 、 D 、 FB .E 、D 、C 、FC .D 、 F 、 C 、E D .D 、C 、F 、EB CA B D ABCE二、填空题(每小题 10 分,共 40 分) - - - = AFDPBEC7. 计算4811 + 265 1 + 904 129 41 55184160 7036 12 2030 42 568. 过正三角形 ABC 内一点 P ,向三边作垂线,垂足依次为 D 、E 、F ,连接 AP 、BP 、CP .如果正三角形ABC 的面积是 2028 平方厘米,三角形 PAD 和三角形 PBE 的面积都是 192 平方厘米,则三角形 PCF的面积为平方厘米.9. 自然数 2015 最多可以表示成 个连续奇数的和.10. 由单位正方形拼成的 15×15 网格,以网格的格点为顶点作边长为整数的正方形,则边长大于 5 的正方形有 个.第二十届华罗庚金杯少年数学邀请赛A BED H C 初赛 C 试卷(小学高年级组)(时间:2015 年 3 月 14 日 10:00—11:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1. 计算:( 9 - 11 + 13 - 15 + 17 )×120- 1 ÷ 1=( )20 30 42 56 72 3 4A .42B .43C .15 1D .16 2332. 如图,有一排间距相同但高度不等的小树,树根成一条直线,树顶也成一条直线,这两条直线成 45 度角.最高的小树高 2.8 米,最低的小树高 1.4 米,那么从左向右数第 4 棵树的高度是( )米.A .2.6B .2.4C .2.2D .2.03. 春季开学后,有不少同学都将部分压岁钱捐给山区的贫困学生,事后,甲、乙、丙、丁 4 位同学有如下的对话: 甲:“丙、丁之中至少有 1 人捐了款.” 乙:“丁、甲之中至多有 1 人捐了款.” 丙:“你们 3 人中至少有 2 人捐了款.” 丁:“你们 3 人中至多有 2 人捐了款.” 已知这 4 位同学说的都是真话且其中恰有 2 位同学捐了款,那么这 2 位同学是( ).A .甲、乙B .丙、丁C .甲、丙D .乙、丁4. 六位同学数学考试的平均成绩是 92.5 分,他们的成绩是互不相同的整数,最高的 99 分,最低的 76分,那么按分数从高到低居第三位的同学的分数至少是( ). A .94 B .95 C .96D .975. 如图,BH 是直角梯形 ABCD 的高,E 为梯形对角线 AC 上一点;如果△DEH 、△BEH 、△BCH 的面积依次为 56、50、40,那么△CEH 的面积是( ).A .32B .34C .35D .366. 一个由边长为 1 的小正方形组成的n n 的方格网,用白色或黑色对每个小正方形涂色,要求满足在任意矩形的 4 个角上的小正方形不全同色,那么正整数 n 的最大值是( ).A .3B .4C .5D .645°二、填空题(每小题10 分,共40 分)7.在每个格子中填入1 至6 中的一个,使得每行、每列及每个2×3 长方形内(粗线框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和是质数,那么四位数相约华杯是3 月 1 4相约华杯8.整数n 一共有10 个约数,这些约数从小到大排列,第8 个数是n.那么整数n 的最大值是39.在边长为300 厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是平方厘米,两块阴影部分的周长差是厘米.(π取3.14)10.A 地、B 地、C 地、D 地依次分布在同一条公路上,甲、乙、丙三人分别从A 地、B 地C 地同时出发,匀速向D 地行进.当甲在C 地追上乙时,甲的速度减少40%;当甲追上丙时,甲的速度再次减少40%;甲追上丙后9 分钟,乙也追上了丙,这时乙的速度减少25%;乙追上丙后再行50 米,三人同时到D 地.已知乙出发时的速度是每分钟60 米,那么甲出发时的速度是每分钟米,A、D 两地间的路程是米.第十九届华罗庚金杯少年数学邀请赛初赛 A 试卷(小学高年级组)(时间:2014 年 3 月 15 日 8:00—9:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.) 1. 平面上的四条直线将平面分割成八个部分,则这四条直线中至多有( )条直线互相平行.A .0B .2C .3D .42. 某次考试有 50 道试题,答对一道题得 3 分,答错一道题扣 1 分,不答题不得分.小龙得分 120 分,那么小龙最多答对了( )道试题.A .40B .42C .48D .503. 用左下图的四张含有 4 个方格的纸板拼成了右下图所示的图形.若在右下图的 16 个方格分别填入 1、3、5、7(每个方格填一个数),使得每行、每列的四个数都不重复,且每个纸板内四个格子里的数也不重复,那么 A 、B 、C 、D 四个方格中数的平均数是( ).A . 4B . 5C D .74. 小明所在班级的人数不足 40 人,但比 30 人多,那么这个班男、女生人数的比不可能是( ).A .2︰3B .3︰4C .4︰5D .3︰75. 某学校组织一次远足活动,计划 10 点 10 分从甲地出发,13 点 10 分到达乙地,但出发晚了 5 分钟, 却早到达了 4 分钟.甲、乙两地之间的丙地恰好是按照计划时间到达的,那么到达丙地的时间是( ). A .11 点 40 分 B .11 点 50 分 C .12 点 D .12 点 10 分6. 如图所示,AF =7cm ,DH =4cm ,BG =5cm ,AE =1cm .若正方形 ABCD 内的四边形 EFGH 的面积为78 平方厘米,则正方形的边长为( )cm .A .10B .11C .12D .13ABA EDHF BC二、填空题(每小题 10 分,共 40 分)甲 乙7. 五名选手 A 、B 、C 、D 、E 参加“好声音”比赛,五个人站成一排集体亮相.他们胸前有每人的选手编号牌,5 个编号之和等于 35.已知站在 E 右边的选手的编号和为 13;站在 D 右边的选手的编号和为 31;站在 A 右边的选手的编号和为 21;站在 C 右边的选手的编号和为 7.那么最左侧与最右侧的选手编号之和是 .8. 甲、乙同时出发,他们的速度如下图所示,30 分钟后,乙比甲一共多行走了米.9. 四个黑色 1×1×1 的正方体和四个白色 1×1×1 的正方体可以组成方体(经过旋转得到相同的正方体视为同一种情况).种不同的 2×2×2 的正10. 在一个圆周上有 70 个点,任选其中一个点标上 1,按顺时针方向隔一个点的点上标 2,隔两个点的点上标 3,再隔三个点的点上标 4,继续这个操作,直到 1,2,3,…,2014 都被标记在点上.每个点可 能不止标有一个数,那么标记了 2014 的点上标记的最小整数是分分5 10 15 202530 5 10 15 202530第十九届华罗庚金杯少年数学邀请赛初赛 B 试卷(小学高年级组)(时间:2014 年 3 月 15 日 8:00—9:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.) 1. 平面上的四条直线将平面分割成八个部分,则这四条直线中至多有( )条直线互相平行.A .0B .2C .3D .42. 在下列四个算式中: AB ÷ CD =2,E ×F =0,G -H =1,I +J =4,A ~J 代表 0~9 中的不同数字,那么两位数 AB 不可能是( ). A .54 B .58 C .92 D .963. 淘气用一张正方形纸剪下了一个最大的圆(如图甲),笑笑用一张圆形纸剪下了七个相等的最大圆(如图乙),在这两种剪法中,哪种剪法的利用率最高?(利用率指的是剪下的圆形面积和占原来图形面积的百分率)下面几种说法中正确的是( ).A .淘气的剪法利用率高B .笑笑的剪法利用率高C .两种剪法利用率一样D .无法判断4. 小华下午 2 点要到少年宫参加活动,但他的手表每个小时快了 4 分钟,他特意在上午 10 点时对好了表.当小华按照自己的表于下午 2 点到少年宫时,实际早到了( )分钟.A .14B .15C .16D .175. 甲、乙、丙、丁四个人今年的年龄之和是 72 岁.几年前(至少一年)甲是 22 岁时,乙是 16 岁.又知道,当甲是 19 岁的时候,丙的年龄是丁的 3 倍(此时丁至少 1 岁).如果甲、乙、丙、丁四个人的年龄互不相同,那么今年甲的年龄可以有( )种情况.A .4B .6C .8D .106. 有七张卡片,每张卡片上写有一个数字,这七张卡片摆成一排,就组成了七位数 2014315.将这七张卡片全部分给了甲、乙、丙、丁四人,每人至多分 2 张.他们各说了一句话: 甲:“如果交换我卡片上的 2 个数字在七位数中的位置,那么新的七位数就是 8 的倍数.” 乙:“如果交换我卡片上的 2 个数字在七位数中的位置,那么新的七位数仍不是 9 的倍数.” 丙:“如果交换我卡片上的 2 个数字在七位数中的位置,那么新的七位数就是 10 的倍数.” 丁:“如果交换我卡片上的 2 个数字在七位数中的位置,那么新的七位数就是 11 的倍数.” 已知四个人中恰好有一个人说了谎,那么说谎的人是( ).A .甲B .乙C .丙D .丁甲 乙二、填空题(每小题 10 分,共 40 分)13 ÷ 3 + 3 ÷ 2 1 + 17. 算式 1007× 4 44 3 ÷19 的计算结果是 .(1 + 2 + 3 + 4 + 5)⨯ 5 - 228. 海滩上有一堆栗子,这是四只猴子的财产,它们想要平均分配,第一只猴子来了,它左等右等别的猴子都不来,便把栗子分成四堆,每堆一样多,还剩下一个,它把剩下的一个顺手扔到海里,自己拿走了四堆中的一堆.第二只猴子来了,它也没有等到别的猴子,于是它把剩下的栗子等分成四堆,还剩下一个,它又扔掉一个,自己拿走一堆.第三只猴子也是如此,等分成四堆后,把剩下的一个扔掉, 自己拿走一堆;而最后一只猴子来,也将剩下的栗子等分成了四堆,扔掉多余的一个,取走一堆.那 么这堆栗子原来至少有 个.9. 甲、乙二人同时从 A 地出发匀速走向 B 地,与此同时丙从 B 地出发匀速走向 A 地.出发后 20 分钟甲与丙相遇,相遇后甲立即掉头;甲掉头后 10 分钟与乙相遇,然后甲再次掉头走向 B 地.结果当甲走到 B 地时,乙恰走过 A 、B 两地中点 105 米,而丙离 A 地还有 315 米.甲的速度是乙的速度的 倍,A 、B 两地间的路程是 米.10. 从 1,2,3,…,2014 中取出 315 个不同的数(不计顺序)组成等差数列,其中组成的等差数列中包含 1 的有 种取法;总共有 种取法.第十八届华罗庚金杯少年数学邀请赛初赛 A 试卷(小学高年级组)(时间:2013 年 3 月 23 日 10:00—11:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.) 1. 2012.25×2013.75-2010.25×2015.75=( )A .5B .6C .7D .82. 2013 年的钟声敲响了,小明哥哥感慨地说:这是我有生以来第一次将要渡过一个没有重复数字的年份.已知小明哥哥出生的年份是 19 的倍数,那么 2013 年小明哥哥的年龄是( )岁.A .16B .18C .20D .223. 一只青蛙 8 点从深为 12 米的井底向上爬,它每向上爬 3 米,因为井壁打滑,就会下滑 1 米,下滑 1 米的时间是向上爬 3 米所用时间的三分之一.8 点 17 分时,青蛙第二次爬至离井口 3 米之处,那么青蛙从井底爬到井口时所花的时间为( )分钟.A .22B .20C .17D .164. 一个盒子里有黑棋子和白棋子若干粒,若取出一粒黑子,则余下的黑子数与白子数之比为 9︰7,若放回黑子,再取出一粒白子,则余下的黑子数与白子数之比为 7︰5,那么盒子里原有的黑子数比白子数多( )个.A .5B .6C .7D .85. 图 ABCD 是平行四边形,M 是 DC 的中点,E 和 F 分别位于 AB 和 AD 上,且 EF 平行于 BD .若三角形 MDF 的面积等于 5 平方厘米,则三角形 CEB 的面积等于( )平方厘米.A .5B .10C .15D .206. 水池 A 和 B 同为长 3 米,宽 2 米,深 1.2 米的长方体.1 号阀门用来向 A 池注水,18 分钟可将无水的A 池注满;2 号阀门用来从 A 池向B 池放水,24 分钟可将 A 池中满池水放入 B 池.若同时打开 1 号和2 号阀门,那么当 A 池水深 0.4 米时,B 池有( )立方米的水.A .0.9B .1.8C .3.6D .7.2D F MCAEB二、填空题(每小题 10 分,共 40 分)D E AFB7. 小明、小华、小刚三人分 363 张卡片,他们决定按年龄比来分.若小明拿 7 张,小华就要拿 6 张;若小刚拿 8 张,小明就要拿 5 张.最后,小明拿了 张;小华拿了张.张;小刚拿了8. 某公司的工作人员每周都工作 5 天休息 2 天,而公司要求每周从周一至周日,每天都至少有 32 人上班,那么该公司至少需要名工作人员.9. 如图,AB 是圆 O 的直径,长 6 厘米,正方形 BCDE 的一个顶点 E 在圆周上,∠ABE =45°.那么圆 O中非阴影部分的面积与正方形 BCDE 中非阴影部分面积的差等于 平方厘米(取 π=3.14)10. 圣诞老人有 36 个同样的礼物,分别装在 8 个袋子中.已知 8 个袋子中礼物的个数至少为 1 且各不相 同.现要从中选出一些袋子,将选出的袋子中的所有礼物平均分给 8 个小朋友,恰好分完(每个小朋 友至少分得一个礼物).那么,共有 种不同的选择.第十八届华罗庚金杯少年数学邀请赛AB 初赛 B 试卷(小学高年级组)(时间:2013 年 3 月 23 日 10:00—11:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1. 一个四位数,各位数字互不相同,所有数字之和等于 6,并且这个数是 11 的倍数,则满足这种要求的四位数共有( )个.A .6B .7C .8D .92. 2+2×3+2×3×3+……+2× 3 ⨯ 3 ⨯⨯ 3 个位数字是( ). 9个3A .2B .8C .4D .63. 在下面的阴影三角形中,不能由下图中左面的阴影三角形经过旋转、平移得到的是图( )中的三角形.ABCD4. 某日,甲学校买了 56 千克水果糖,每千克 8.06 元.过了几日,乙学校也需要买同样的 56 千克水果糖,不过正好赶上促销活动,每千克水果糖降价 0.56 元,而且只要买水果糖都会额外赠送 5%同样的水果糖.那么乙学校将比甲学校少花( )元.A .20B .51.36C .31.36D .10.365. 甲、乙两仓的稻谷数量一样,爸爸、妈妈和阳阳单独运完一仓稻谷分别需要 10 天、12 天和 15 天.爸爸、妈妈同时开始分别运甲、乙两仓的稻谷,阳阳先帮妈妈,后帮爸爸,结果同时运完两仓稻谷.那么阳阳帮妈妈运了( )天. A .3B .4C .5D .66. 如图,将长度为 9 的线段 AB 分成 9 等份,那么图中所有线段的长度的总和是( ).A .132B .144C .156D .165二、填空题(每小题10 分,共40 分)7.将乘积0.2˙43˙×0.32˙5233˙化为小数,小数点后第2013 位的数字是.8.一只青蛙8 点从深为12 米的井底向上爬,它每向上爬3 米,因为井壁打滑,就会下滑1 米,下滑1 米的时间是向上爬3 米所用时间的三分之一.8 点17 分时,青蛙第二次爬至离井口3 米之处,那么青蛙从井底爬到井口时所花的时间为分钟.9.一个水池有三个进水口和一个出水口.同时打开出水口和其中的两个进水口,注满整个水池分别需要6 小时、5 小时和4 小时;同时打开出水口和三个进水口,注满整个水池需要3 小时.如果同时打开三个进水口,不打开出水口,那么注满整个水池需要小时.10.九个同样的直角三角形卡片,用卡片的锐角拼成一圈,可以拼成类似下图所示的平面图形.这种三角形卡片中的两个锐角中较小的一个的度数有种不同的可能值.(下图只是其中一种可能的情况)第十七届华罗庚金杯少年数学邀请赛初赛 A 试卷(小学高年级组)(时间:2012 年 3 月 17 日 10:00—11:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1. 计算:[(0.8+ 1 )×24+6.6]÷ 9-7.6=( ).5 14A .30B .40C .50D .602. 以平面上 4 个点为端点连接线段,形成的图形中最多可以有( )个三角形.A .3B .4C .6D .83. 一个奇怪的动物庄园里住着猫和狗,狗比猫多 180 只.有 20%的狗错认为自己是猫;有 20%的猫错认为自己是狗.在所有的猫和狗中,有 32%认为自己是猫,那么狗有( )只.A .240B .248C .420D .8424. 下图的方格纸中有五个编号为 1,2,3,4,5 的小正方形,将其中的两个涂上阴影,与图中阴影部分正好组成正方体的展开图,这两个正方形的编号可以是( )A .1,2B .2,3C .3,4D .4,55. 在下图所示的算式中,每个字母代表一个非零数字,不同的字母代表不同的数字,则和的最小值是( ) A .369B .396C .459D .5496. 下图是由相同的正方形和相同的等腰直角三角形构成,则正方形的个数为( )A .83B .79C .72D .651 253 4A B C + D E F H IJ二、填空题(每小题 10 分,共 40 分)百十个百 十 个A EC HFB7. 如图的计数器三个档上各有 10 个算珠,将每档算珠分成上下两部分,得到两个三位数.要求上面部分是各位数字互不相同的三位数,且是下面三位数的倍数,则上面部分的三位数是.8. 四支排球队进行单循环比赛,即每两队都要赛一场,且只赛一场.如果一场比赛的比分是 3:0 或 3:1.则胜队得 3 分,负队得 0 分;如果比分是 3:2,则胜队得 2 分,负队得 1 分.比赛的结果各队得分恰好是四个连续的自然数,则第一名的得分是 分.9. 甲、乙两车分别从 A 、B 两地同时出发,且在 A 、B 两地往返来回匀速行驶.若两车第一次相遇后,甲车继续行驶 4 小时到达 B ,而乙车只行驶了 1 小时就到达 A ,则两车第 15 次(在 A ,B 两地相遇次数不计)相遇时,它们行驶了 小时.10. 正方形 ABCD 的面积为 9 平方厘米,正方形 EFGH 的面积为 64 平方厘米.如图所示,边 BC 落在 EH上.己知三角形 ACG 的面积为 6.75 平方厘米,则三角形 ABE 的面积为 平方厘米.。
第十一届全国“华罗庚金杯”少年数学邀请赛决赛试题解答(初一组)
第十一届全国“华罗庚金杯〞少年数学邀请赛决赛试题解答〔初一组〕一. 填空1 计算:()()⎥⎦⎤⎢⎣⎡-÷+⎪⎭⎫ ⎝⎛-⨯÷⎭⎬⎫⎩⎨⎧-⨯⎥⎦⎤⎢⎣⎡---342)2(5833225.01631=( ).答:47解:原式(){}235130254388.⎡⎤⎛⎫⎡⎤=---⨯÷⨯-- ⎪⎢⎥⎣⎦⎝⎭⎣⎦()144187⎛⎫=-÷-= ⎪⎝⎭.2 当2m π=时,多项式31am bm ++的值是0,那么多项式31452a b ππ++=〔 〕.答:5.解:根据 38210a b ππ++=,即()3311458215522a b a b ππππ++=+++=,故原式的值为5.3 将假设干本书籍分给几名小朋友,如果每人分4本书,就还余下20本书,如果每人分8本书,就有1名小朋友虽然分到了一些书,但是缺乏8本, 那么共有〔 〕名小朋友. 答:6.解:设共有x 名小朋友,由题意,04208(1)8x x <+--<,02848x <-<推出75<<x ,得6=x .4 图16中的长方形ABCD 是由四个等腰直角三角形和一个正方形EFGH 拼成. 长方形ABCD 的面积是120平方厘米,那么正方形EFGH 的面积等于〔 〕平方厘米. 答:10.图16解法1:如图16a ,延长BF 交DC 于N 点,延长EH 交BC 于M 点,由条件可知1122CE CM CN CB ===,DA DE CB CN ===,所以 CM=MB =CE=EN =ND . 将长方形ABCD 的长边3等分,短边2等分,如图1a 所示,连接对应的等分点,分成网格图形, 数一数,长方形ABCD 恰好等于12个正方形EFGH 的面积,由于长方形ABCD 的面积为120平方厘米,所以正方EFGH 的面积等于10平方厘米.解法 2:设正方形EFGH 的边长为x ,根据题意,图1中的四个三角形为等腰直角三角形,那么三角形EHC 的直角边长为x ,三角形CGB 的直角边长为x 2, 三角形ABF 的直角边长为x 3,三角形ADE 的斜边长为x 4.并且,正方形EFGH 的面积=2x ,三角形EHC 的面积=22x ,三角形CGB 的面积=2222)2(x x =,三角形ABF 的面积=292)3(22x x =, 三角形ADE 的面积=2⨯三角形CGB 的面积=24x .因此120=2222221242922x x x x x x =+++, 故102=x ,即正方形EFGH 的面积等于10平方厘米.5 满足方程2006182006|x |--+=的所有x 的和为〔 〕. 答: 4012.解:根据绝对值的性质,逐步去除等式2006182006|x |--+=绝对值符号,得到2006120068x --=-,2006120068x -=+-,()2006120068x =++-,或()2006120068x =-+-由表达式可以看到,x 有2个不同的解,它们的和是:图2图16a()2006120068++-+()20061200684012-+-=.6 一个存有一些水的水池,有一个进水口和假设干个口径相同的出水口, 进水口每分钟进水3立方米.假设同时翻开进水口和三个出水口, 池中水16分钟放完; 假设同时翻开进水口与五个出水口, 池中水9分钟放完. 池中原有水〔 〕立方米. 答: 288.解: 设每个出水口每分钟放出水x 立方米, 池中原有水y 立方米, 那么3163165939x yx y⨯⨯=⨯+⎧⎨⨯⨯=⨯+⎩, 解上面二元一次方程组,()4845482721x -=-=,7x =〔立方米〕,316748288y =⨯⨯-=〔立方米〕. 7 20062005122006220052)1(164834221-++-++-+-=+ k k k S ,小于S 的最大的整数是〔 〕. 解答:因为,2005200620052006123420052006248162212342005200602481622S =-+-++-⎛⎫⎛⎫⎛⎫=-+-++-> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2005200620042005200620052006123420052006248162212345200420052006248163222211320032006 1.283222S =-+-++-⎛⎫⎛⎫⎛⎫=-------- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<-----< 因此小于S 的最大的整数是0.8 如图17,数轴上标有21n +个点,它们对应的整数是:(),1,,2,1,0,1,2,,1,n n n n ------.为了确保从这些点中可以取出2006个,其中任何两个点之间的距离都不等于4,那么n 的最小值是〔 〕.答: 2005.解:① 将数轴上的21n +个点,自左端开始,连续8个点为一组,每组仅取右边4个点,这样就可以确保所取出的点,其中任意两点之间的距离不等于 4. 从多少组中才能取出2006个点?既然,200645012=⨯+,即从501组可以取出2004个点,另外,再从第502组中取出2个点,就得到2006个点. 所以,850124010⨯+=.即数轴上至少有4010个点,就能够确保从这4010个点中取出2006个,其中任意两点之间的距离不等于4.214010n +≥,2005n ≥.当n =2005时,可以取 -2005,-2004,-2003,-2002,-1997,-1996,-1995,-1994,,-2005+8k ,-2004+8k ,-2003+8k ,-2002+8k ,,1995,1996,1997,1998,2003,2004,共2006个,其中任何两个数所代表的两个点之间的距离都不等于4.② 当2004=n 时,数轴上连续点的个数是214009n +=. 此时,将距离是4的2个点配对,共有2004对,另外还有单独的一个点,从每个配对中只取一个点,否那么一定有2个点的距离是4, 连同单独的一个点,一共可以取出2005个点,但是要求取出2006个点,不得不将某个配对的两个点都取出,它们的距离是4. 所以,当2004=n 时,任取2006个点,一定有2个点,距离是4. 当2004<n 时,补足至4009个点,就可以说明n 的最小值是2005.二. 解答以下各题〔要求写出简要过程〕9 图18中,ABCD 是矩形,6BC cm =,10AB cm =,AC 和BDCD 为轴旋转一周,那么阴影局部扫过的立体的体积是多少立方厘米?〔π 取3.14〕图18图17解: 〔见小学组决赛第11题解答〕 10 将21个整数:109832101238910,,,,,,,,,,,,,------分为个数不相等的六组数,分别计算各组的平均值,那么这六个平均值的和最大是多少? 解: 将21个整数分为个数不相等的6组,各组的个数分别为1、2、3、4、5、6个. 既然是求六组个平均值的和的最大值,应当将数值大的分在整数个数少的组中. 所以,可以如下分组:10第一组第二组98第三组765第四组4321第五组-1-2-3-4第六组-5-6-7-8-9-10计算上述六组整数的平均值的和:1098765432101567891012345611110862272221172.+--=++++++--2-3-4------+++++=++ 答:最大的和是1172.评注和说明:下面说明理由.六组数分别为{}{}{}{}{}{}112123123412345123456,,,,,,,,,,,,,,,,,,,,a b b c c c d d d d e e e e e f f f f f f ,那么各组数平均数的和为()()()()()12123126111212312341234512345623660302015121060b bc c c f f f a a b b c c cd d d de e e e ef f f f f f ++++++++++++++++++++++++++++++=我们要使得这个分数最大,只要使得分子最大. 先考虑让那一个字母取10,显然是1a ,这样能使总和最大;同理,让12,b b 取8,9对总和的奉献是最大的……以此类推,{}{}{}{}{}{}10,8,9,5,6,7,1,2,3,4,4,3,2,1,0,10,9,8,7,6,5----------是我们得到的分组结果.这一过程无非就是把我们的解题过程用代数式翻译了一遍.为了同学们能多体会字母代表数的抽象性,这里再介绍一种更为一般一些的方法.()()()()()()()()61121231234123451234561091019100;S a b b c c c d d d d e e e e e f f f f f f =++++++++++++++++++++=+++++-++-+-=()()()()()()51121231234123451093445S a b b c c c d d d d e e e e e =++++++++++++++≤+++-+-=;()()()411212312341092155S a b b c c c d d d d =+++++++++≤++++=;()()3112123109640S a b b c c c =+++++≤+++=;()2112109827S a b b =++≤++=; 1110S a =≤因而有()()()()()1212312611121231234123451234561234562366030201512106030105321060b bc c c f f f a a b b c c cd d d de e e e ef f f f f f S S S S S S ++++++++++++++++++++++++++++++=+++++=()11240102251659060300270225165906035,2a b b +++++≤++++≤= 该不等式在{}{}{}{}{}{}112123123412345123456,,,,,,,,,,,,,,,,,,,,a b b c c c d d d d e e e e e f f f f f f 分别取{}{}{}{}{}{}10,8,9,5,6,7,1,2,3,4,4,3,2,1,0,10,9,8,7,6,5----------时恰好能取到等号,因此最大值为352. 11 当5431013231241000m ,,,,,,,,,=----时,从等式()()2123150m x m y m ++-+-=可以得到10个关于x 和y 的二元一次方程,问这10个方程有没有公共解?如果有,求出这些公共解?解:分别取0m =和1m =,我们得到两个方程:210340x y x y ++=⎧⎨--=⎩ 先求两个方程的公共解,把它们看作二元一次方程组,解得:1,1-==y x .把1,1-==y x 代入()()212315m x m y m ++-+-,值恒为0. 此即意味着:当5431013231241000m ,,,,,,,,,=----时,()()212315m x m y m ++-+-=0成立.所以,1,1-==y x 是对应的10个方程的的公共解.答:这些方程的公共解是 1,1-==y x .12 平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36度. 说明理由.解:在平面上任取一点O ,过O 点作的5条直线的平行线12345,,,,l l l l l . 将以O 为中心的周角分为10个彼此依次相邻的小的角,记为12910,,,,θθθθ.每个小角iθ〔1,2,,9,10i =〕都等于这5条直线相交的一个交角.这10个小角的和恰等于360,即.12910360θθθθ++++=,根据抽屉原理,至少有一个小角不超过36.三. 解答以下各题〔要求写出详细过程〕13 如图19,A 、B 和C 是圆周的三等分点,甲、乙、丙三只蚂蚁分别从A 、B 、C 三个点同时出发,甲和乙沿圆周逆时针爬行,丙顺时针爬行. 甲、乙、丙三只蚂蚁爬行的速度之比是8:6:5,求出三只蚂蚁所有的会合地点. 解:① 设圆周的周长为3L ,甲的速度为v 8,乙的速度为v 6,丙的速度为v 5;甲第一次追上乙时,爬行的时间和爬行的路程分别是:甲爬行的时间=862L L v v v =-, 甲爬行的路程=842Lv L v=, ABAC A图19因为圆周的周长为3L ,即甲在Bk+1(k 是整数)次追上乙时,甲爬行的时间=322L kLv v+, 甲爬行的路程=3822L kL v v v ⎛⎫+⨯= ⎪⎝⎭()412314L kL L k L +=+⨯+因为()314k L ⨯+是圆周周长的整数倍,所以,甲在B 点追上乙. ② 在时刻322L kLv v+,( 丙爬行的路程=3315362222L kL k v L kL L v v ⎛⎫⎛⎫+⨯=++- ⎪ ⎪⎝⎭⎝⎭,当k =1时,上式是35922L kL v L L v v ⎛⎫+⨯=+ ⎪⎝⎭因为丙是从C 出发顺时针爬行,所以,丙爬行至B 处,意味着甲、乙、丙能够在B 点会合.答;甲、乙、丙仅仅在B 处集合. 14 m, n 都是正整数,并且),11)(11()311)(311)(211)(211(m m A +-+-+-=),11)(11()311)(311)(211)(211(nn B +-+-+-=① 证明:A =m m 21+, n n B 21+=; ② 假设,261=-B A 求 m 和n 的值. 解:①111111(1-)(1+)(1-)(1+)(1-)(1+)2233111111(1-)(1-)(1-)(1+)(1+)(1+)23231213411 ;23232A m m m m m m m m m m==-++=⨯⨯⨯⨯⨯⨯⨯=同样,nn B 21+=②由题设,11111222226m n A B m n m n ++-=-=-=,11113m n -=111131313nm n n+=+=, 所以,1313nm ,n=+ ()13131313131313131313n n m ,n n n+-⨯===-+++ 即13+n 是1313⨯的因数,1313⨯只有3个因数:1,13,132. 所以,13+n=132,n =132 –13=156, m =12.〕评注和说明:另一方法可以求出正整数m,n ,使11113m n -=. 设()1m Ka,n Kb,a,b ===,代入上式,11113b a Ka Kb Kab --==. ()b a -和a,b 都互质,一定整除K .记Kd b a=-是正整数,b a >那么有 1113dab =. 由上式和b a >,1311b ,a ,d ===. 所以,K =12,m 和n 有唯一解,12156m ,n ==.。
“华罗庚金杯”少年数学邀请赛(口试)试题1-10届
华罗庚金杯少年数学邀请赛口试试题第01届华罗庚金杯少年数学邀请赛口试试题1. 这是七巧板拼成的正方形,正方形边长20厘米,问七巧板中平行四边形的一块(如右图中阴影部分)的面积是多少?2.从所有分母小于10的真分数中,找出一个最接近0.618的分数。
3.有49个小孩子,每人胸前有一个号码,号码从1到49各不相同,请你挑选出若干个小孩,排成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,你最多能挑选出多少个小孩子?4.有一路公共汽车,包括起点和终点站共有15个车站,如果有一辆车,除终点到站外,每一站上车的乘客中,恰好各有一位乘客从这一站到以后的每一站,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?5.正方形的树林每边长1000米,里面有白杨树和榆树,小明从树林的西南角走入树林,碰见一株白杨树就往正北走,碰见一株榆树就往正东走,最后他走了东北角上,问:小明一共走了多少米的距离?6.自然数按从小到大的顺序排成螺旋形,在2处拐第一个弯,在3处拐第二个弯,在5处拐第三个弯……问拐第二十个弯的地方是哪一个数?第02届华罗庚金杯少年数学邀请赛口试试题1、如下图是一个对称的图形,黑色部分面积大还是阴影部分面积大?2、你能不能将自然数1到9分别填入右面的方格中,使得每个横格中的三个数之和都是偶数?3、司机开车按顺序到五个车站接学生到学校(如下图),每个站都有学生上车,第一站上了一批学生,以后每站上车的人数都是前一站上车人数的一半,车到学校时,车上最少有多少学生?4、如图中五个正方形的边长分别是1米、2米、3米、4米、5米。
问:白色部分面积与阴影部分面积之比是多少?5、用1、2、3、4、5这五个数两两相乘,可以得到10个不同的乘积,问乘积中是偶数多还是奇数多?6、7、将右边的硬纸片沿虚线折起来,便可作成一个正方体,问:这个正方体的2号面对面是几号面?(如下图)8、下面是一个11位数,它的每三个相邻数之和都是20,你知道打“?”的数字是几?9、有八张卡片,右图分别写着自然数1到8,从中取出三张,要使这三张卡片上的数字之和为9,问有多少种不同的取法?第03届华罗庚金杯少年数学邀请赛团体决赛口试1.一条白色的正方形手帕,它的边长是18厘米,手帕上横竖各有二道红条,如右图阴影所示部分,红条宽都是2厘米.问:这条手帕白色部分的面积是多少?2.伸出你的左手,从大拇指开始如图所示的那样数数字,1,2,3,……,问:数到1991时,你数在那个手指上?3.有3个工厂共订300份吉林日报,每个工厂订了至少99份,至多101份.问:一共有多少种不同的订法?4.图上有两条垂直相交的直线段AB、CD,交点为E(如下图).已知:DE=2CE,BE=3AE.在AB和CD上取3个点画一个三角形.问:怎样取这3个点,画出的三角形面积最大?5.如下图中有两个红色的圆,两个蓝色的圆,红色圆的直径分别是1992厘米和1949厘米,蓝色圆的直径分别是1990厘米和1951厘米.问:红色二圆面积大还是蓝色二圆面积大?6.在一张9行9列的方格纸上,把每个方格所在的行数和列数加起来(如下图),填在这个方格中,例如a=5+3=8.问:填入的81个数字中,奇数多还是偶数多?7.能不能在下式:1□2□3□4□5□6□7□8□9=10的每个方框中,分别填入加号或减号,使等式成立?8.把一个时钟改装成一个玩具钟(如右图),使得时针每转一圈,分针转16圈,秒针转36圈.开始时3针重合.问:在时针旋转一周的过程中,3针重合了几次?(不计起始和终止的位置).9.将1,2,3,4,5,6,7,8这8个数分成3组,分别计算各组数的和.已知这3个和互不相等,且最大的和是最小的和的2倍.问:最小的和是多少?10.这是一个棋盘,将一个白子和一个黑子放在棋盘线交叉点上,但不能在同一条棋盘线上.问:共有多少种不同的放法(如下图)?11.这是两个圆,它们的面积之和为1991平方厘米,小圆的周长是大圆周长的90%(如右图).问:大圆的面积是多少?12.有一根1米长的木条,第一次去掉它的,第二次去掉余下木条的;第三次又去掉第二次余下木条的,等等;这样一直下去,最后一次去掉上次余下木条的.问:这根木条最后还剩下多长?13.这是一个楼梯的截面图(如下图),高2.8米,每级台阶的宽和高都是20厘米.问:此楼梯截面的面积是多少?14.请找出6个不同的自然数,分别填入6个括号中,使这个等式成立.第04届华罗庚金杯少年数学邀请赛团体决赛口试1.2×3×5×7×11×13×17这个算式中有七个数连乘,请回答:最后得到的乘积中,所有数位上的数字和是多少?请讲一讲你是怎样算的?2.这是一个中国象棋盘(图中小方格都是相等的正方形,“界河”的宽等于小正方形边长),黑方有一个“象”,它只能在1,2,3,4,5,6,7位置中的一个,红方有两个“相”,它们只能在8,9,10,11,12, 13,14中的两个位置.问:这三个棋子(一个“象”和两个“相”)各在什么位置时,以这三个棋子为顶点构成的三角形的面积最大?3.将一根长为374厘米的合金铝管截成若干根36厘米和24厘米两种形状的短管(加工损耗忽略不计)问:剩余部分的管子最少是多少厘米?4.乙两人同时从A出发向B行进,甲速度始终不变,乙在走前面路程时,速度为甲的2倍,而走后面路程时,速度是甲的,问甲、乙二人谁选到B?请你说明理由。
全国“华罗庚金杯”少年数学邀请赛初赛试卷(含答案)
十二届全国“华罗庚金杯”少年数学邀请赛初赛试卷(六年级组)一、选择题(每小题10分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.1.算式等于().(A)1020 (B)204 (C)273 (D)7472.折叠一批纸鹤,甲同学单独折叠需要半小时,乙同学单独折叠需要45分钟,则甲、乙两同学共同折叠需要().(A)12分钟(B)15分钟(C)18分钟(D)20分钟3.如图,将四条长为16cm,宽为2cm的矩形纸条垂直相交平放在桌面上,则桌面被盖住的面积是().(A)72 (B)128 (C)124 (D)1124.48名少先队员选中队长,候选人是甲、乙、丙三人,开票中途累计.甲得13票,乙得10票,丙得7票.得票多的人当选,则以后甲至少要再得()票才能当选.(A)7 (B)8 (C)9 (D)105.一个长方体的长、宽、高恰好是3个连续的自然数,并且它的体积的数值等于它的所有棱长之和的数数值的2倍,那么这个长方体的表面积是().(A)74 (B)148 (C)150 (D)1546.从和为55的10个不同的非零自然数中,取出3个数后,余下的数之和是55的则取出的三个数的积最大等于().(A)280 (B)270 (C)252 (D)216二、填空题(每小题10分).7.如图,某公园有两段路AB=175米,BC=125米,在这两段路上安装路灯,要求A,B,C三点各设一个路灯,相邻两个路灯间的距离都相等。
则在这两段路上至少要安装路灯个.8.将的积写成小数的形式是.9.如图,有一个边长为1的正三角形,第一次去掉三边中点连线围成的那个正三角形;第二次对留下的三个正三角形,再分别去掉它们中点连线围成的三角形;…做到第四次后,一共去掉了个三角形,去掉的所有三角形的边长之和是.10.同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要种颜色的旗子。
(整理)第十一届全国“华罗庚金杯”少年数学邀请赛华杯赛初一组试卷附答案1
第十一届全国"华罗庚金杯"少年数学邀请赛决赛试卷(初一组) (红色字为参考答案)(时间2006年4月22日10:00~l l :30〉一、.填空 1、计算:243331(0.25)(2)3()5(2)168⎧⎫⎡⎤⎡⎤---⨯-÷⨯-+÷-=⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭( 47 )2、当2m π=时,多项式31am bm ++的值是0,则多项式31452a b ππ++=( 5 )3、将若干本书分给几名小朋友,如果每人分4本书,就还余下20本书,如果每人分8本书,就剩有1名小朋友虽然分到了一些书,但是不足8本,则共有( 6 )名小朋友4、图l 中的长方形ABCD 是由四个等腰直角三角形和一 个正方形EFGH 拼成.己知长方形ABCD 的面积为120平方厘米,则正方形EFGH 的面积等于( 10 )平方厘米5、满足方程|||x-2006|-1|+8|=2006的所有x 的和为( 4012 )6、一个存有一些水的水池,有一个进水口和若干个口径相同的山水口,进水口每分钟进水3立方米.若同时打开进水口和三个出水口,池中水16分钟放完;若同时 打开进水口与五个出水口,池中水9分钟放完.池中原有水( 288 )立方米7、已知120052006123420052006(1)24816222k k k S +=-+-++-++-,则小于S 的最大的整数是( 0 )8.如图2,数轴上标有2n+1个点,它们对应的整数是:,(1),,2,1,0,1,2,,1,n n n n ------为了确保从这些点中可以取出2006个,其中任何两个点之间的距离都不等于4,则n 的最小值是( 2005 )图1图2n n-10-1-2-(n-1)-n二.解答下列各题,要求写出简要过程9、如图3,ABCD 是矩形,BC=6cm,AB =10cm,AC 和BD 是对角线.图中的阴影部分以CD 为轴旋转一周,则阴影 部分扫过的立体的体积是多少立方厘米?(z 取3.14) 解: ①设三角形BCO 以CD 为轴旋转一周所得到的立体的体积是S,S 等于高为10厘米,底面半径是6厘米的 圆锥的体积减去2个高为5厘米,底面半径是3厘米的圆 锥的体积. ②即:S=13×26×10×π-2×13×23×5×π=90π, 2S=180π=565.2(立方厘米).答:体积是565.2立方厘米. 10、将21个整数10,9,8,,3,2,1,0,1,2,3,,8,9,10------分为个数不相等的六组数,分别计算各组的平均值,那么这六个平均值的和最大是多少? 解:①分为个数不相等的6组,整数的个数分别为1、2、3、4、5、6. ②应当将数值大的分在整数个数少的组中.所以,可以如下分组:第一组10 第二组9 8 第三组7 6 5 第四组4 3 2 1 第五组0 -1 -2 -3 -4 第六组-5 -6 -7 -8 -9 -10③计算它们的平均值的和:109876543210123456789101171234562++++++----------+++++= 答:最大的和是1172。
历年华罗庚金杯试题
历年华罗庚金杯试题第一届“华罗庚金杯”少年数学邀请赛初赛试题1.1966、1976、1986、1996、2006这5个数的总和是多少?2.每边长是10厘米的正方形纸片,正中间挖一个正方形的洞,成为一个宽度是1厘米的方框。
把5个这样的方框放在桌面上,成为这样的图案。
问桌面上被这些方框盖住的部分面积是多少平方厘米?3.105的约数共有几个?4.妈妈让小明给客人烧水沏茶。
洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟。
小明估算了一下,完成这些工作要花20分钟,为了使客人早点喝上茶,按你认为最合理的安排,多少分钟就能沏茶了?5.右面的算式里,4个小纸片各盖住了一个数字。
被盖住的4个数字总和是多少?6.松鼠妈妈采松籽。
晴天每天可以采20个。
有雨的天每天只能采12个。
它一连几天采了112个松籽,平均每天采14个。
问这几天当中有几天有雨?7.边长1米的正方体2100个,堆成一个实心的长方体。
它的高是10米,长、宽都大于高。
问长方体的长与宽的和是几米?8.早晨8点多钟,有两辆汽车先后离开化肥厂,向幸福村开去。
两辆汽车的速度都是每小时60公里。
8点32分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的3倍。
到了8点39分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的2倍.那么,第一辆汽车是8点几分离开化肥厂的?9.有一个整数,除300、262、205,得到相同的余数.问这个整数是几?10.甲、乙、丙、丁4个人比赛乒乓球,每两个人都要赛一场.结果甲胜了丁,并且甲、乙、丙3个胜的场数相同.问丁胜了几场?11.两个十位数1111111111和9999999999的乘积有几个数字是奇数?12.黑色、白色、黄色的筷子各有8根,混杂地放在一起。
黑暗中想从这些筷子中取出颜色不同的两双筷子。
问至少要取多少根才能保证达到要求?13.有一块菜地和一块麦地,菜地的21和麦地的31放在一起是13亩,麦地的21和菜地的31放在一起是12亩,那么,菜地是几亩?14.71427和19的积被7除,余数是几?15.科学家进行一项实验,每隔5小时做一次记录.做第十二次记录时,挂钟的时针恰好指向9,问做第一次记录时,时针指向几?16.有一路电车的起点站和终点站分别是甲站和乙站。
华杯赛历届试题
第一届华杯赛决赛一试试题1. 计算:2.975×935×972×(),要使这个连乘积的最后四个数字都是“0”,在括号内最小应填什么数?3.把+、-、×、÷分别填在适当的圆圈中,并在长方形中填上适当的整数,可以使下面的两个等式都成立,这时,长方形中的数是几?9○13○7=100 14○2○5=□4.一条1米长的纸条,在距离一端0.618米的地方有一个红点,把纸条对折起来,在对准红点的地方涂上一个黄点然后打开纸条从红点的地方把纸条剪断,再把有黄点的一段对折起来,在对准黄点的地方剪一刀,使纸条断成三段,问四段纸条中最短的一段长度是多少米?5.从一个正方形木板锯下宽为米的一个木条以后,剩下的面积是平方米,问锯下的木条面积是多少平方米?6.一个数是5个2,3个3,2个5,1个7的连乘积。
这个数当然有许多约数是两位数,这些两位的约数中,最大的是几?7.修改31743的某一个数字,可以得到823的倍数,问修改后的这个数是几?8.蓄水池有甲、丙两条进水管,和乙、丁两条排水管,要灌满一池水,单开甲管需3小时,单开丙管需要5小时,要排光一池水,单开乙管需要4小时,单开丁管需要6小时,现在池内有池水,如果按甲、乙、丙、丁的顺序,循环各开水管,每天每管开一小时,问多少时间后水清苦始溢出水池?9.一小和二小有同样多的同学参加金杯赛,学校用汽车把学生送往考场,一小用的汽车,每车坐15人,二小用的汽车,每车坐13人,结果二小比一小要多派一辆汽车,后来每校各增加一个人参加竞赛,这样两校需要的汽车就一样多了,最后又决定每校再各增加一个人参加竞赛,二小又要比一小多派一辆汽车,问最后两校共有多少人参加竞赛?10.如下图,四个小三角形的顶点处有六个圆圈。
如果在这些圆圈中分别填上六个质数,它们的和是20,而且每个小三角形三个顶点上的数之和相等。
问这六个质数的积是多少?11.若干个同样的盒子排成一排,小明把五十多个同样的棋子分装在盒中,其中只有一个盒子没有装棋子,然后他外出了,小光从每个有棋子的盒子里各拿一个棋子放在空盒内,再把盒子重新排了一下,小明回来仔细查看了一番,没有发现有人动过这些盒子和棋子,问共有多少个盒子?12.如右图,把1.2,3.7, 6.5, 2.9, 4.6,分别填在五个○内,再在每个□中填上和它相连的三个○中的数的平均值,再把三个□中的数的平均值填在△中,找出一个填法,使△中的数尽可能小,那么△中填的数是多少?13.如下图,甲、乙、丙是三个站,乙站到甲、丙两站的距离相等。
全国“华罗庚金杯”决赛试卷(五年级组)
全国“华罗庚金杯”少年数学邀请赛决赛试卷(五年级组)(时间:(时间: 10:00~11:30 )一、填空题(每题10分,共80分)1、计算:)195167248(66.698.19)75.4285412375.2247816(-´´´´+´= 2、一次数学竞赛满分是100分,某班前六名同学的平均得分是95.5分,排名第六的同学的得分是89分,每人得分是互不相同的整数,那么排名第三的同学至少得至少得 分。
分。
3、在下面的等式中,相同的字母表示同一数字,若abcd -dcba =□997,那么,那么 □ 中 应填应填 。
4、在梯形ABCD 中,上底长5厘米,下底长10厘米,20=D BOC S 平方厘米,则梯形ABCD 的面积是的面积是平方厘米。
平方厘米。
5、已知:10△3=14, 8△7=2, 43△141=,根据这几个算式找规律,如果,根据这几个算式找规律,如果85△x =1,那么x = . 6、右图中共有、右图中共有 个三角形。
个三角形。
7、有一个自然数,除以2余1,除以3余2,除以4余3,除以5余4,除以6余5,则这个数最小是,则这个数最小是 。
8、A 是乘积为2007的5个自然数之和,B 是乘积为2007的4个自然数之和。
那么A 、B 两数之差的最大值是两数之差的最大值是 。
装订线全国“华罗庚金杯”少年数学邀请赛决赛试题参考答案(五年级组)一、填空题(每题10分,共80分)分)题号题号 1 2 3 4 5 6 7 8 答案答案 3 96 2 45 8124 59 1781 1~8题答案提示:题答案提示:1、3 解:原式=÷øöçèæ-´´úûùêëé´÷øöçèæ++´÷øöçèæ+1951679666.698.19419285412819247816 =19528953419285441912819247881916´÷øöçèæ´+´+´+´=195289531515713138´÷øöçèæ+++=195289531952895´÷øöçèæ+=3 2、96 解:要想排名第三的同学得分尽量低,则其它几人的得分就要尽量的高,故第一名应为100分,第二名应为99分,因此第三、四、五名的总分为:分,因此第三、四、五名的总分为: 95.5×95.5×66-100-99-89=285(分) 故第三、四、五名的平均分为故第三、四、五名的平均分为 285÷3=95(分),因此第三名至少要得96分。
第11届华杯赛初赛试题详细解答
第十一届全国“华罗庚金杯”少年数学邀请赛初赛试卷(小学组)(时间2006年3月18日10:00~11:00)注意:1、因为是平时练习,所以每个题中间留有空格,以便写详细的解题过程, 考试的时候也是要有过程的,只是过程写在草稿纸上!2、对华杯赛初赛历届考过的所有题型一定要熟悉,相关公式、结论一定 要背诵!一、选择题 以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内(每小题6分).1. 如图1所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD . 取AB 的中点M 和BC 的中点N ,剪掉MBN 得五边形AMNCD . 则将折迭的五边形AMNCD 纸片展开铺平后的图形是( ).【考点与分析】答案选D.几何图形折叠、翻转、展开图,这题最保守的做法是,按照题意操作得到图形,考试的时候也可以撕草稿纸来操作!这题可以用还原法--倒推!!由第3个图,及对称性得解。
2.2008006共有( )个质因子. (A) 4 (B ) 5 (C ) 6 (D ) 7【考点与分析】答案选C .数论计数:计算质因数个数,注意本题是求质因数的个数,不是因素的个数。
关键是分解质因素,这种大数如果用短除法就弱爆了。
先分析2008006这个数,很明显,奇数位数字和=6+2=8=偶数位数字和,因此2008006能同时被7、11、13整除,而7×11×13=1001,因此2008006=7×11×13×2006=7×11×13×2×1003,难道1003是质数吗?1003附近是322=1024,分解1003也就是要找能够整除1003的小于图132的质数,结果找到17,1003=17×59,因此2008006=2×7×11×13×17×59,有6个质因子。
历届华杯赛初赛小高真题
初赛试卷(小学高年级组)(时间: 2016年12月10日10:00—11:00)一、选择题(每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1.两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.(A)16 (B)17 (C)18 (D)192.小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.(A)6 (B)8 (C)10 (D)123.将长方形ABCD对角线平均分成12段,连接成右图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.(A)14 (B)16 (C)18 (D)204.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是().(A)2986 (B)2858 (C)2672 (D)2754CD BA5. 在序列20170……中,从第5个数字开始,每个数字都是前面4个数字和的个位数,这样的序列可以一直写下去.那么从第5个数字开始,该序列中一定不会出现的数组是( ). (A )8615(B )2016(C )4023(D )20176. 从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有( )种填法使得方框中话是正确的.(A )1(B )2(C )3(D )4二、填空题 (每小题 10 分, 共40分)7. 若15322.254553923444741A ⎛⎫-⨯÷+=⎪ ⎪ ⎪+ ⎪⎝⎭,那么A 的值是________. 8. 右图中,“华罗庚金杯”五个汉字分别代表1—5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有 ________种情况使得这五个和恰为五个连续自然数.9. 右图中,ABCD 是平行四边形,E 为CD 的中点,AE 和BD 的交点为F ,AC 和BE 的交点为H ,AC 和BD 的交点为G ,四边形EHGF 的面积是15平方厘米,则ABCD 的面积是__________平方厘米.10. 若2017,1029与725除以d 的余数均为r ,那么d r -的最大值是________.第二十届华罗庚金杯少年数学邀请赛这句话里有( )个数大于1,有( )个数大于2,有( )个数大于3,有( )个数大于4. 罗华庚金 杯决赛试题B (小学高年级组)一、填空题(每小题10份,共80分)1. 计算:8184157.628.814.48012552⨯+⨯-⨯+=________.2. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.7. 见右图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角形DOE 的面积为________.8. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.二、解答下列各题(每题10分,共40分,要求写出简要过程)9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为,5,y x 的长方体(,x y 为整数),余下部分的体积为120,求x 和y .yx515411. 圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈.不算起始点旗子位置,则甲正好在旗子位置追上乙多少次?12. 两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后多得2分者胜.两人的得分总和都是31分,一人赢了第一局并且赢得了比赛,那么第二局的比分共有多少种可能?三、解答下列各题(每小题15分,共30分,要求写出详细过程)13. 如右图所示,点M 是平行四边形ABCD 的边CD 上的一点,且2:1: MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G .若三角形FCG 的面积与三角形MED 的面积之差为13cm 2,求平行四边形ABCD 的面积.14. 设“一家之言”、“言扬行举”、“举世皆知”、“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数.如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?第十八届华罗庚金杯少年数学邀请赛 初赛试题C (小学高年级组) (时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn=+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ).(A )1243 (B )1343 (C )4025 (D )40292. 甲、乙、丙三位同学都把25克糖放入100克水中混合成糖水, 然后他们又分别做了以下事情:最终,( )得到的糖水最甜.(A )甲 (B )乙 (C )丙 (D )乙和丙3. 一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米,下滑1米的时间是向上爬3米所用时间的三分之一. 8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为( )分钟. (A )22 (B )20 (C )17 (D )164. 已知正整数A 分解质因数可以写成γβα532⨯⨯=A , 其中α、β、γ 是自然数. 如果A的二分之一是完全平方数, A 的三分之一是完全立方数, A 的五分之一是某个自然数的五再加入50克含糖率20%的糖水.再加入20克糖和30克水.再加入100克糖与水的比是2:3的糖水.次方, 那么γβα++ 的最小值是( ).(A )10 (B )17 (C )23 (D )315. 今有甲、乙两个大小相同的正三角形, 各画出了一条两边中点的连线. 如图, 甲、乙位置左右对称, 但甲、乙内部所画线段的位置不对称. 从图中所示的位置开始, 甲向右水平移动, 直至两个三角形重叠后再离开. 在移动过程中的每个位置, 甲与乙所组成的图形中都有若干个三角形. 那么在三角形个数最多的位置, 图形中有( )个三角形.(A )9 (B )10 (C )11 (D )126. 从1~11这11个整数中任意取出6个数, 则下列结论正确的有( )个.① 其中必有两个数互质;② 其中必有一个数是其中另一个数的倍数; ③ 其中必有一个数的2倍是其中另一个数的倍数. (A )3 (B )2 (C )1 (D )0 二、填空题 (每小题 10 分, 满分40分)7. 有四个人去书店买书, 每人买了4本不同的书, 且每两个人恰有2本书相同, 那么这4个人至少买了_______种书. .8. 每天, 小明上学都要经过一段平路AB 、一段上坡路BC和一段下坡路 CD (如右图). 已知AB :BC :CD = 1:2:1, 并且小明在平路、上坡路、下坡路上的速度比为3:2:4. 那么小明上学与放学回家所用的时间比是 .9.黑板上有11个1, 22个2, 33个3, 44个4. 做以下操作: 每次擦掉3个不同的数字,并且把没擦掉的第四种数字多写2个. 例如: 某次操作擦掉1个1, 1个2, 1个3, 那就再写上2个4. 经过若干次操作后, 黑板上只剩下3个数字, 而且无法继续进行操作, 那么最后剩下的三个数字的乘积是.10.如右图, 正方形ABCD被分成了面积相同的8个三角形, 如果DG = 5, 那么正方形ABCD面积是.第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)(时间: 2015年12月12日10:00—11:00)一、选择题 (每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 算式个个2016201699999999⨯的结果中含有( )个数字0. (A )2017 (B )2016 (C )2015 (D )20142. 已知A , B 两地相距300米.甲、乙两人同时分别从A , B 两地出发, 相向而行, 在距A 地140米处相遇; 如果乙每秒多行1米, 则两人相遇处距B 地180米.那么乙原来的速度是每秒( )米.(A )532 (B )542(C )3 (D )513 3. 在一个七位整数中, 任何三个连续排列的数字都构成一个能被11或13整除的三位数, 则这个七位数最大是( ).(A )9981733 (B )9884737 (C )9978137 (D )98717734. 将1, 2, 3, 4, 5, 6, 7, 8这8个数排成一行, 使得8的两边各数之和相等, 那么共有( )种不同的排法.(A )1152 (B )864 (C )576 (D )2885. 在等腰梯形ABCD 中, AB 平行于CD , 6=AB , 14=CD , AEC ∠是直角, CE CB =, 则2AE 等于( ).(A )84 (B )80 (C )75 (D )646. 从自然数1,2,32015,2016,,中, 任意取n 个不同的数, 要求总能在这n 个不同的数中找到5个数, 它们的数字和相等. 那么n 的最小值等于( ). (A )109 (B )110 (C )111 (D )112 二、填空题 (每小题 10 分, 共40分)7. 两个正方形的面积之差为2016平方厘米, 如果这样的一对正方形的边长都是整数厘米, 那么满足上述条件的所有正方形共有 对.8. 如下图, O , P , M 是线段AB 上的三个点, AB AO 54=, AB BP 32=, M 是AB 的中点, 且2=OM , 那么PM 长为 .9. 设q 是一个平方数. 如果2-q 和2+q 都是质数, 就称q 为P 型平方数. 例如, 9就是一个P 型平方数.那么小于1000的最大P 型平方数是 .10. 有一个等腰梯形的纸片, 上底长度为2015, 下底长度为2016. 用该纸片剪出一些等腰梯形, 要求剪出的梯形的两个底边分别在原来梯形的底边上, 剪出的梯形的两个锐角等于原来梯形的锐角, 则最多可以剪出 个同样的等腰梯形.第十七届华罗庚金杯少年数学邀请赛初赛试题A(小学高年级组)一、选择题1、计算:19+⨯+-=[(0.8)24]7.6(___)514(A)30 (B)40 (C)50 (D)602、以平面上4个点为端点连接线段,形成的图形中最多可以有()个三角形。
华罗庚金杯赛数学试题与答案[第1至15届]
华罗庚金杯赛数学试题与答案[第1至15届]目录第1届华罗庚金杯赛数学试题与答案 (1)第2届华罗庚金杯赛数学试题与答案 (6)第3届华罗庚金杯赛数学试题与答案 (14)第4届华罗庚金杯赛数学试题与答案 (21)第5届华罗庚金杯赛数学试题与答案 (26)第6届华罗庚金杯赛数学试题与答案 (31)第7届华杯赛初赛试题及解答 (38)第8届华杯赛初赛试题及解答 (41)第9届华杯赛初赛试题及解答 (45)第10届华杯赛初赛试题及解答 (49)第11届华杯赛初赛试题及解答 (53)第12届华杯赛初赛试题及解答 (60)第13届华杯赛少年邀请赛初赛摸拟试卷 (64)第14届华罗庚金杯少年数学邀请赛 (66)第15届华杯赛决赛真题及答案解析 (68)第1届华罗庚金杯赛数学试题与答案1、甲班和乙班共83人,乙班和丙班共86人,丙班和丁班共88人。
问甲班和丁班共多少人?2、一笔奖金分一等奖、二等奖、三等奖,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍。
如果评一、二、三等奖各两人,那么每个一等奖的奖金是308元;如果一个一等奖,两个二等奖,三个三等奖,那么一等奖的奖金是多少元?3、一个长方形,被两条直线分成四个长方形,其中三个的面积是20亩、25亩和30亩。
问另一个长方形的面积是多少亩?4、在一条公路上,每隔一百公里有一个仓库,共有五个仓库。
一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的。
现在想把所有的货物集中存放在一个仓库里,如果每吨货物运输一公里需要0.5元的运费,那么最少要花多少运费才行?5、有一个数,除以3余数是2,除以4余数是1。
问这个数除以12余数是几?6、四个一样的长方形和一个小的正方形(如图)拼成了一个大正方形。
大正方形的面积是49平方米,小正方形的面积是4平方米。
问长方形的短边长度是几米?7、有两条纸带,一条长21厘米,一条长13厘米,把两条纸带剪下同样长的一段以后,发现短纸带剩下的长度是长纸带的长度的八分之十三。
第11~14届全国华罗庚金杯少年数学邀请赛决赛试题1
第十一届全国"华罗庚金杯"少年数学邀请赛决赛试题一、填空。
1.计算:2.图1a是一个长方形,其中阴影部分由一副面积为1的七巧板拼成(如图1b),那么这个长方形的面积是()。
3.有甲、乙、丙、丁四支球队参加的足球循环赛,每两队都要赛一场,胜者得3分,负者得0分,如果踢平,两队各得1分。
现在甲、乙和丙分别得7分、1分和6分,已知甲和乙踢平,那么丁得()分。
4.图2中,小黑格表示网络的结点,结点之间的连线表示它们有网线相联。
连线标注的数字表示该段网线单位时间内可以通过的最大信息量。
现在从结点A向结点B传递信息,那么单位时间内传递的最大信息量是()。
5.先写出一个两位数62,接着在62右端写这两个数字的和为8,得到628,再写末两位数字2和8的和10,得到62810,用上述方法得到一个有2006位的整数:628101123……,则这个整数的数字之和是()。
6.智慧老人到小明的年级访问,小明说他们年级共一百多同学。
老人请同学们按三人一行排队,结果多出一人,按五人一行排队,结果多出二人,按七人一行排队,结果多出一人,老人说我知道你们年级的人数应该是()人。
7.如图3所示,点B是线段AD的中点,由A,B,C,D四个点所构成的所有线段的长度均为整数,若这些线段的长度之和为10500,则线段AB的长度是()。
8.100个非0自然数的和等于2006,那么它们的最大公约数最大可能值是()。
二、解答下列各题,要求写出简要过程。
(每题10分,共40分)9.如图4,圆O中直径Ab与CD互相垂直,AB=10厘米。
以C为圆心,CA为半径画弧AEB。
求月牙形ADBEA(阴影部分)的面积?10.甲、乙和丙三只蚂蚁爬行的速度之比是8:6:5,它们沿一个圆圈从同一点同时同向爬行,当它们首次同时回到出发点时,就结束爬行。
问蚂蚁甲追上蚂蚁乙一共多少次?(包括结束时刻)。
11.如图5,ABCD是矩形,BC=6cm,AB=10cm,AC和BD是对角线。
华杯赛1-15届的真题和答案
=11111111110000000000-1111111111=111111111088888888889 于是有 10 个数字是奇数。 12.【解】10 根筷子,可能 8 根黑,1 根白,1 根黄,其中没有颜色不同的两双筷子。 如果取 11 根,那么由于 11>3,其中必有两根同色组成一双,不妨设这一双是黑色的,去掉 这两根,余下 9 根,其中黑色的至多 6(=8-2)根,因而白、黄两色的筷子至少有 3(=9-6) 根,3 根中必有 2 根同色组成一双。这样就得到颜色不同的两双筷子。所以至少要取 11 根。 13.【解】菜地的 3 倍和麦地的 2 倍是 13× 6 公顷。菜地的 2 倍和麦地的 3 倍是 12× 6 公顷, 因此菜地与麦地共:(13× 6+12× 6)÷ (3+2)=30(公顷), 菜地是 13× 6-30× 2=18(公顷)。 14. 【解】71427 被 7 除,余数是 6,19 被 7 除,余数是 5,所以 71427× 19 被 7 除,余数就 是 6× 5 被 7 除所得的余数 2。 15.【解】从第一次记录到第十二次记录,相隔十一次,共 5× 11=55(小时)。时针转一圈是 12 小时,55 除以 12 余数是 7,9-7=2 答:时针指向 2。 16.【解】因为电车每隔 5 分钟发出一辆,15 分钟走完全程。骑车人在乙站看到的电车是 15 分钟以前发出的,可以推算出,他从乙站出发的时候,第四辆电车正从甲站出发骑车人从乙 站到甲站的这段时间里,甲站发出的电车是从第 4 辆到第 12 辆。电车共发出 9 辆,共有 8 个 间隔。于是:5× 8=40(分) 。 17.【解】小数点后第 7 位应尽可能大,因此应将圈点点在 8 上,新的循环小数是 。
18.【解】三个背包分别装 8.5 千克、6 千克与 4 千克,4 千克、3 千克与 2 千克,这时最重 的背包装了 lO 千克。 另一方面最重的包放重量不少于 10 千克:8.5 千克必须单放(否则这一包的重量超过 10)6 千 克如果与 2 千克放在一起, 剩下的重量超过 10, 如果与 3 千克放在一起, 剩下的重量等于 10。 所以最重的背包装 10 千克。 19.【解】从第一排与第二排看,五个小纸片的长等于三个小纸片的长加三个小纸片的宽, 也就是说,二个小纸片的长等于三个小纸片的宽。 已知小纸片的宽是 12 厘米,于是小纸片的长是:12× 3÷ 2=18(厘米), 阴影部分是三个正方形,边长正好是小纸片的长与宽的差:18-12=6 于是,阴影部分的面积是:6× 6× 3=108(平方厘米)。
初一数学历年“华罗庚杯”竞赛试题
初一数学试题集
初一数学
历年“华罗庚杯”竞赛试题
(由我爱我家整理)
二〇〇九年九月十六日
第一届全国“华罗庚金杯”少年数学邀请赛决赛一试试题(初一组)
[初一组]第一届“华杯赛”数学第2试答案
第二届全国“华罗庚金杯”少年数学邀请赛决赛一试试题(初一组)
第二届全国“华罗庚金杯”少年数学邀请赛决赛一试试题参考答案(初一组)
第二届全国“华罗庚金杯”少年数学邀请赛决赛二试试题(初一组)
第二届全国“华罗庚金杯”少年数学邀请赛决赛二试试题参考答案(初一组)
第三届全国“华罗庚金杯”少年数学邀请赛决赛一试试题参考答案(初一组)
[初一组]第三届“华杯赛”数学第1试答案
第三届全国“华罗庚金杯”少年数学邀请赛决赛二试试题(初一组)
第三届全国“华罗庚金杯”少年数学邀请赛决赛二试试题参考答案(初一组)
[初一组]第四届“华杯赛”数学第1试
第四届全国“华罗庚金杯”少年数学邀请赛决赛一试试题参考答案
第四届全国“华罗庚金杯”少年数学邀请赛决赛二试试题(初一组)
第四届全国“华罗庚金杯”少年数学邀请赛决赛二试试题参考答案(初一组)
第五届全国“华罗庚金杯”少年数学邀请赛决赛一试试题(初一组)
第五届全国“华罗庚金杯”少年数学邀请赛决赛一试试题参考答案(初一组)
[初一组]第五届“华杯赛”数学第2试
第五届全国“华罗庚金杯”少年数学邀请赛决赛二试试题参考答案(初一组)
[初一组]第六届“华杯赛”数学第1试答案
[初一组]第六届“华杯赛”数学第2试。
第十一届华罗庚金杯少年数学邀请赛初赛
第十一届华罗庚金杯少年数学邀请赛初赛试题解答(小学组)一、选择题题号 1 2 3 4 5 6 答案D C A D B B 说明:1 如图1所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD . 取AB 的中点M 和BC 的中点N ,剪掉MBN 得五边形AMNCD . 则将折迭的五边形AMNCD 纸片展开铺平后的图形是( ).答:选(D ). 解:考察空间想象力.如图1a ,实际是逆向想象操作过程;2 共有( )个质因子.(A ) 4 (B ) 5 (C ) 6 (D ) 7图1a 图1答:选(C ).解:因为200800620061000200620061001(21759)(71113)=⨯+=⨯=⨯⨯⨯⨯⨯. 3 奶奶告诉小明:“2006年共有53个星期日”. 聪敏的小明立刻告诉奶奶:2007年的元旦一定是( ).(A )星期一 (B )星期二 (C )星期六 (D )星期日答. (A).解:2006年有365天,而365 = 7×52 +1, 又已知2006年有53个星期天. 只能元旦是星期天,且12月31日也是星期日,所以,2007年的元旦是星期一. 4 如图2,长方形ABCD 中AB ︰BC = 5︰4. 位于A点的第一只蚂蚁按A D C B A →→→→的方向,位于C 点的第二只蚂蚁按C D A B C →→→→的方向同时出发,分别沿着长方形的边爬行. 如果两只蚂蚁第一次在B 点相遇,则两只蚂蚁第二次相遇在( )边上.(A ) AB (B ) BC (C ) CD (D ) DA答:选(D ).解:如图2a ,长方形ABCD 中AB ︰BC = 5︰4.将AB ,CD 边各5等分,BC ,DA 边各4等分. 设每份长度为a .由于两只蚂蚁第一次在B 点相遇,所以第一只蚂蚁走5a ,第二只蚂蚁走4a . 接下来,第一只蚂蚁由B 走到E 点时,第二只蚂蚁由B 走到F 点,再接下来,当第一只蚂蚁由E 走到G 点时,第二只蚂蚁由F 也走到G ,这时,两只蚂蚁第二次相遇在DA 边上..5 图3中ABCD 是个直角梯形(90DAB ABC ∠=∠=). 以AD 为边向外作长方形ADEF ,其面积为6.36平方厘米. 连接BE 交AD于P ,再连接PC . 则图中阴影部分的面积是 图 2图2a图3( )平方厘米.(A )6.36 (B )3.18(C )2.12 (D )1.59答:选(B ). 解:如图3a 连接AE ,BD . 因为AD//BC ,则PDC PDB S S ∆∆=,又AB//ED ,则EAD EBD S S ∆∆=. 所以EPD PDC EPD PDB S S S S S ∆∆∆∆=+=+阴影EBD EAD S S ∆∆== 11 6.36 3.1822ADEF S ==⨯=(平方厘米). 说明:答案和直角梯形形状无关,可以让BC 边趋近AD 边,至到和AD 边重合,此时,EB 是ADEF 的对角线,所以,阴影部分的面积是ADEF 面积的一半,等于3.18平方厘. 米.6 五位同学扮成奥运会吉祥物福娃贝贝、晶晶、欢欢、迎迎和妮妮, 排成一排表演节目. 如果贝贝和妮妮不相邻, 共有( )种不同的排法.(A) 48 (B) 72 (C) 96 (D) 120答. 选(B).解:贝贝在左、妮妮在右相邻时的排法有4×3×2×1=24种, 贝贝在右、妮妮在左相邻时的排法也有4×3×2×1=24种, 总的排法5×4×3×2×1=120种. 所以贝贝和妮妮不相邻的排法是 120 - 2×24 = 72种.二、A 组填空题题号7 8 9 10 答案 35 23 226.084 7 在右边算式中,汉字“第、十、一、届、华、杯、赛”代表1,2,3,4,5,6,7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立.则“第、十、一、届、华、杯、赛”所图3a代表的7个数字的和等于 .答: 35.解:根据加法规则,“第=1”. “届 + 赛 = 6 ”或“届 + 赛 = 16”. 若“届+ 赛 = 6”,只能是“届”、“赛”分别等于2或4,此时“一 + 杯 = 10”只能“一”、“杯”分别为3或7. 此时“十 + 华 = 9”,“十”、“华”分别只能取(1,8),(2,7),(3,6),(4,5).但1,2,3,4均已被取用,不能再取.所以,“届+ 赛 = 6”填不出来,只能是“届 + 赛 = 16”. 这时“届”、“赛”只能分别取值9和7.这时只能是“一 + 杯 +1 = 10”且“十 + 华 +1= 10”,也就是“一+ 杯 = 9”同时“十 + 华 = 9”. 所以它们可以分别在(3,6),(4,5)两组中取值.因此“第、十、一、届、华、杯、赛”所代表的7个数字的和等于1+9+9+16=35.【说明】算式中,有3次进位,所以2+6+3×9=35。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一届全国“华罗庚金杯”少年数学邀请赛初赛试卷
(小学组)
一、选择题以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后面的圆括号内(每小题6分)
1.如图1所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折
压平,得到小正方形ABCD。
取AB的中点M和BC的中点N,减掉△MBN得五边形AMNCD。
则将折叠的五边形AMNCD纸片展开铺平后的图形是()。
2.2008006共有()个质因数。
A. 4
B. 5
C. 6
D. 7
3.奶奶告诉小明:“2006年共有53个星期日”。
聪敏的小明立刻告诉奶奶:2007年的元旦一定是()。
A. 星期一
B. 星期二
C. 星期六
D. 星期日
4.如图2,长方形ABCD中AB:BC=5:4,位于A点的第一只
蚂蚁按A—B—C—D—A的方向,位于C点的第二只蚂蚁按C
—B—A—D—C的方向同时出发,分别沿着长方形的边爬行。
如果两只蚂蚁第一次在B点相遇,则两只蚂蚁第二次相遇在
()边上。
A. AB
B. BC
C. CD
D. DA
5.图3中ABCD是个直角梯形(∠DAB=∠ABC=90o)。
以AD为一边向外作长方形ADEF,其面积为6.36平方厘
米,连接BE交AD于P,再连接PC。
则图中阴影部分的
面积是()平方厘米。
A. 6.36
B. 3.18
C. 2.12
D. 1.59
6.五位同学扮成奥运会吉祥物福娃贝贝、晶晶、欢欢、
迎迎和妮妮,排成一排表演节目。
如果贝贝和妮妮不相
邻,共有()种不同的排法。
A. 48
B. 72
C. 96
D. 120
二、A组填空题(每小题8分)
7.在算式
第十一届
+华杯赛
2006
中,汉字“第、十、一、届、华、杯、赛”代表1,2,3,4,5,6,7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立。
则“第、十、一、届、华、杯、赛”所代表的7个数字的和等于()。
8.全班50个学生,每人恰有三角板或直尺中的一种,28人有直尺,有三角板的人中,男生是14人,若已知全班共有女生31人,那么有直尺的女生有()人。
9.图4是一个直圆柱形状的玻璃杯,一个长为12厘米的直棒
状细吸管(不考虑吸管粗细)放在玻璃杯内。
当吸管一端接触
圆柱下底面时,另一端沿吸管最少可露出上底面边缘2厘米,
最多能露出4厘米。
则这个玻璃杯的容积为()立方厘米。
(取л=3.14)(提示:直角三角形中“勾6、股8、弦10)
10.有5个黑色和白色棋子围成一圈,规定:
将同色的和相邻的两个棋子之间放入一个白
色棋子,在异色的和相邻的两个棋子之间放入
一个黑色棋子,然后将原来的5个棋子拿掉。
如果从图5-(1)的初始状态开始依照上述规
定操作下去,对于圆圈上呈现5个棋子的情况,
圆圈上黑子最多能有()个。
三、B组填空题(每题两个空,每个空4分)
11.李大爷用一批化肥给承包的麦田施肥。
若每亩施6千克,则缺少化肥300千克;若每亩施5千克,则余下化肥200千克。
那么李大爷共承包了麦田()亩,这批化肥有()千克。
12.将从1开始的到103的连续奇数依次写成一个多位数:
a=13579111315171921……9799101103。
则数a共有()位,数a除以9的余数是()。
13.自制的一幅玩具牌共计52张(含4种牌:红桃、红方、黑桃、黑梅。
每种牌都有1点、2点、……、13点牌各一张)。
洗好后背面朝上放好。
一次至少抽取()张牌,才能保证其中必定有2张牌的点数和颜色都相同。
如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取()张牌。
14.图6中有()个正方形,有()个三角形。
第十一届全国“华罗庚金杯”少年数学邀请赛
初赛试题答案(小学组)
(2006年3月18日11:30)
一、选择题(每小题6分,满分36分)
二、A组填空题(每小题8分,满分32分)
三、B组填空题(每小题两个空,每个空4分,每小题8分,满分32分)
【详细解答】
一、选择题
1.D
2.C 2008006=2×7×11×13×17×59
3.A 2006年12月31日是星期日,2007年元旦是星期一
4.D 第二只蚂蚁爬4K与第一只蚂蚁在B点相遇。
再爬8K即在DA边上与第一只蚂蚁第二次相遇。
5.B S阴=S△PDE +S△PDC =S△PDE+ S△PDB= S△BDE=(ED×EF)/2=S四边形ADE F/2=
6.36/2=3.18
6.B 2×3×3×2×1+3×2×3×2×1=72,贝贝在两端和不在两端。
二、A组填空题
7. 35 2+6+9×3=35 进位一次各位数字之和减少9
8. 23 有三角形的50-28=22人,有三角板的女生22-14=8人,有直尺的女生31-8=23人。
9. 226.08 AB=6,π×(6/2)^2×8=226.08
10. 4
三、B组填空题
11. 500,2700 (300+200)÷(6-5)=500,6×500-300=2700
12. 101,4
①5个一位奇数占5位,45个两位奇数占90位,两个三位奇数占6位,5+90+6=10 1位;
②一位奇数的各位数字之和被9除余7,两位奇数的各位数字之和被9整除,两个三位奇数被9除的余数是6,数a被9除的余数是4。
13. 27,37
①先取红色的1点至13点各一张,再取黑色的1点至13点各1张,再取任意1张,即13+13+1=27(张);
②先取不能被3整除的(13-4)X4=36(张),再任取1张能被3整除的即可
14. 95,155
①边长是1,2,3,4,5,6的正方形有6X6+5X5+4X4+3X3+2X2+1X1=(6×7×13)/6=91(个),对角线长是2的正方形有4个,共95个。
②直角边为1的三角形有36×2=72(个);斜边长是2的三角形,1-6行依次有4+4+4+3+1+4=20(个),1-6列依次3+3+3+2+3+3=17(个),共20+17=37(个);直角边长是2的1-2行8个,2-3行6个,3-4行2个,4-5行8个,5-6行6个,共8+6+2+8+6=30(个);直角边长是3的1-3行4个,3-5行2个,4-6行4个,共4+2+4=10(个);斜边长是4的1-4行1个,2-5行2个,4-5行1个,共1+2+1=4(个);直角边长是4的3-6行2个。
共72+37+30+10+4+2=155(个)。