BUL45D2G;BUL45D2;中文规格书,Datasheet资料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BUL45D2G
High Speed, High Gain Bipolar NPN Power Transistor
with Integrated Collector−Emitter Diode and Built−in Efficient Antisaturation Network
The BUL45D2G is state−of−art High Speed High gain BiPolar transistor (H2BIP). High dynamic characteristics and lot−to−lot minimum spread (±150 ns on storage time) make it ideally suitable for light ballast applications. Therefore, there is no need to guarantee an h FE window. It’s characteristics make it also suitable for PFC application. Features
•Low Base Drive Requirement
•High Peak DC Current Gain (55 Typical) @ I C = 100 mA •Extremely Low Storage Time Min/Max Guarantees Due to
the H2BIP Structure which Minimizes the Spread •Integrated Collector−Emitter Free Wheeling Diode
•Fully Characterized and Guaranteed Dynamic V CE(sat)
•“6 Sigma” Process Providing Tight and Reproductible Parameter Spreads
•These Devices are Pb−Free and are RoHS Compliant* MAXIMUM RATINGS
Rating Symbol Value Unit Collector−Emitter Sustaining Voltage V CEO400Vdc Collector−Base Breakdown Voltage V CBO700Vdc Collector−Emitter Breakdown Voltage V CES700Vdc Emitter−Base Voltage V EBO12Vdc
Collector Current− Continuous
− Peak (Note 1)
I C
I CM
5
10
Adc
Base Current− Continuous
− Peak (Note 1)
I B
I BM
2
4
Adc
Total Device Dissipation @ T C = 25_C Derate above 25°C P D75
0.6
W
W/_
C
Operating and Storage Temperature T J, T stg−65 to 150_
C
THERMAL CHARACTERISTICS
Characteristics Symbol Max Unit Thermal Resistance, Junction−to−Case R q JC 1.65_C/W Thermal Resistance, Junction−to−Ambient R q JA62.5_C/W Maximum Lead Temperature for Soldering
Purposes 1/8
″ from Case for 5 Seconds
T L260_C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
1.Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%.
*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
POWER TRANSISTOR
5.0 AMPERES,
700 VOLTS, 75 WATTS
TO−220AB
CASE 221A−09
STYLE 1
MARKING DIAGRAM
A= Assembly Location
Y= Year
WW= Work Week
G= Pb−Free Package Device Package Shipping ORDERING INFORMATION
BUL45D2G TO−220
(Pb−Free)
50 Units / Rail
OFF CHARACTERISTICS
Collector−Emitter Sustaining Voltage
(I C = 100 mA, L = 25 mH)
V CEO(sus)400450Vdc
Collector−Base Breakdown Voltage
(I CBO = 1 mA)
V CBO700910Vdc
Emitter−Base Breakdown Voltage
(I EBO = 1 mA)
V EBO1214.1Vdc
Collector Cutoff Current
(V CE = Rated V CEO, I B = 0)
I CEO100m Adc
Collector Cutoff Current(V CE = Rated V CES, V EB = 0)
(V CE = 500 V, V EB = 0)@ T C = 25°C
@ T C = 125°C
@ T C = 125°C
I CES100
500
100
m Adc
Emitter−Cutoff Current
(V EB = 10 Vdc, I C = 0)
I EBO100m Adc ON CHARACTERISTICS
Base−Emitter Saturation Voltage
(I C = 0.8 Adc, I B = 80 mAdc)@ T C = 25°C
@ T C = 125°C V BE(sat)
0.8
0.7
1
0.9
Vdc
(I C = 2 Adc, I B = 0.4 Adc)@ T C = 25°C
@ T C = 125°C 0.89
0.79
1
0.9
Collector−Emitter Saturation Voltage
(I C = 0.8 Adc, I B = 80 mAdc)@ T C = 25°C
@ T C = 125°C V CE(sat)
0.28
0.32
0.4
0.5
Vdc
(I C = 2 Adc, I B = 0.4 Adc)@ T C = 25°C
@ T C = 125°C 0.32
0.38
0.5
0.6
(I C = 0.8 Adc, I B = 40 mAdc)@ T C = 25°C
@ T C = 125°C 0.46
0.62
0.75
1
DC Current Gain
(I C = 0.8 Adc, V CE = 1 Vdc)@ T C = 25°C
@ T C = 125°C h FE
22
20
34
29
—
(I C = 2 Adc, V CE = 1 Vdc)@ T C = 25°C
@ T C = 125°C 10
7
14
9.5
DIODE CHARACTERISTICS
Forward Diode Voltage
(I EC = 1 Adc)@ T C = 25°C
@ T C = 125°C V EC
1.04
0.7
1.5
V
(I EC = 2 Adc)@ T C = 25°C
@ T C = 125°C
1.2 1.6
(I EC = 0.4 Adc)@ T C = 25°C
@ T C = 125°C 0.85
0.62
1.2
Forward Recovery Time (see Figure 27)
(I F = 1 Adc, di/dt = 10 A/m s)@ T C = 25°C
T fr330ns (I F = 2 Adc, di/dt = 10 A/m s)@ T C = 25°C360
(I F = 0.4 Adc, di/dt = 10 A/m s)@ T C = 25°C320
DYNAMIC CHARACTERISTICS
Current Gain Bandwidth
(I C = 0.5 Adc, V CE = 10 Vdc, f = 1 MHz)
f T13MHz
Output Capacitance
(V CB = 10 Vdc, I E = 0, f = 1 MHz)
C ob5075pF
Input Capacitance
(V EB = 8 Vdc)
C ib340500pF DYNAMIC SATURATION VOLTAGE
Dynamic Saturation Voltage:
Determined 1 m s and 3 m s respectively after rising I B1 reaches 90% of final I B1
I C = 1 A
I B1 = 100 mA
V CC = 300 V
@ 1 m s@ T C = 25°C
@ T C = 125°C
V CE(dsat) 3.7
9.4
V
@ 3 m s@ T C = 25°C
@ T C = 125°C
0.35
2.7
V
I C = 2 A
I B1 = 0.8 A
V CC = 300 V
@ 1 m s@ T C = 25°C
@ T C = 125°C
3.9
12
V
@ 3 m s@ T C = 25°C
@ T C = 125°C
0.4
1.5
V
SWITCHING CHARACTERISTICS: Resistive Load (D.C. ≤ 10%, Pulse Width = 20 m s)
Turn−on Time
I C = 2 Adc, I B1 = 0.4 Adc
I B2 = 1 Adc
V CC = 300 Vdc @ T C = 25°C
@ T C = 125°C
t on90
105
150ns
Turn−off Time@ T C = 25°C
@ T C = 125°C t off 1.15
1.5
1.3m s
Turn−on Time
I C = 2 Adc, I B1 = 0.4 Adc
I B2 = 0.4 Adc
V CC = 300 Vdc @ T C = 25°C
@ T C = 125°C
t on90
110
150ns
Turn−off Time@ T C = 25°C
@ T C = 125°C t off 2.1
3.1
2.4m s
SWITCHING CHARACTERISTICS: Inductive Load (V clamp = 300 V, V CC = 15 V, L = 200 m H)
Fall Time
I C = 1 Adc
I B1 = 100 mAdc
I B2 = 500 mAdc @ T C = 25°C
@ T C = 125°C
t f90
93
150ns
Storage Time@ T C = 25°C
@ T C = 125°C t s0.72
1.05
0.9m s
Crossover Time@ T C = 25°C
@ T C = 125°C t c95
95
150ns
Fall Time
I C = 2 Adc
I B1 = 0.4 Adc
I B2 = 0.4 Adc @ T C = 25°C
@ T C = 125°C
t f80
105
150ns
Storage Time@ T C = 25°C
@ T C = 125°C t s 1.95
2.9
2.25m s
Crossover Time@ T C = 25°C
@ T C = 125°C t c225
450
300ns
Figure 1. DC Current Gain @ 1 Volt 100
806040
200
I C , COLLECTOR CURRENT (AMPS)
h F E
, D C C U R R E N
T G
A I N
Figure 2. DC Current Gain @ 5 Volt
100
8060
40
200I C , COLLECTOR CURRENT (AMPS)
h F E , D C C U R R E N T G A I N
Figure 3. Collector Saturation Region 4
2
0I B , BASE CURRENT (AMPS)
Figure 4. Collector −Emitter Saturation Voltage
10
1
0.1I C , COLLECTOR CURRENT (AMPS)
V C E , V O L T A G E (V O L T S )
V C E , V O L T A G E (V O L T S )
3
1
Figure 5. Collector −Emitter Saturation Voltage 10
1
0.1I C , COLLECTOR CURRENT (AMPS)
Figure 6. Collector −Emitter Saturation Voltage
10
1
0.1I C , COLLECTOR CURRENT (AMPS)
V C E , V O L T A G E (V O L T S )
V C E , V O L T A G E (V O L T S )
Figure 7. Base −Emitter Saturation Region 10
1
0.1
I C
, COLLECTOR CURRENT (AMPS)
Figure 8. Base −Emitter Saturation Region
10
1
0.1
I C , COLLECTOR CURRENT (AMPS)
V B E , V O L T A G E (V O L T S )
V B E , V O L T A G E (V O L T S )
Figure 9. Base −Emitter Saturation Region 10
1
0.1I C , COLLECTOR CURRENT (AMPS)
Figure 10. Forward Diode Voltage
10
1
0.1REVERSE EMITTER-COLLECTOR CURRENT (AMPS)
V B E , V O L T A G E (V O L T S )
F O R W A R D D I O D E V O L T A
G E (V O L T S )
Figure 11. Capacitance 1000
10
1
V R , REVERSE VOLTAGE (VOLTS)
100
Figure 12. BVCER = f(ICER)
1000700400R BE (W )
B V
C E R (V O L T S )
900800600
500
Figure 13. Resistive Switch Time, t on
1000
400
I C , COLLECTOR CURRENT (AMPS)
t , T I
M E (n s )
800
600
200
Figure 14. Resistive Switch Time, t off
I C , COLLECTOR CURRENT (AMPS)
t , T I M E ( s )
μFigure 15. Inductive Storage Time,
t si @ I C /I B = 5
4
2
I C , COLLECTOR CURRENT (AMPS)
31
t , T I M E ( s )
μFigure 16. Inductive Storage Time,
t si @ I C /I B = 10
I C , COLLECTOR CURRENT (AMPS)
t , T I M E ( s )
μt , T I M E (n s )
Figure 17. Inductive Switching,
t c & t fi @ I C /I B = 5
600200
I C , COLLECTOR CURRENT (AMPS)
400300100500Figure 18. Inductive Switching,
t fi @ I C /I B = 10
t , T I M E (n s )
400
200
4
I C , COLLECTOR CURRENT (AMPS)
300100
1500
I C , COLLECTOR CURRENT (AMPS)
Figure 19. Inductive Switching,
t c @ I C /I B = 10
5
2
h FE , FORCED GAIN
431000t
, T I M E (n s )
500
, S T O R A G E T I M E
(t s i μs )
Figure 20. Inductive Storage Time
Figure 21. Inductive Fall Time 450
50h FE , FORCED GAIN
Figure 22. Inductive Crossover Time
14004000
h FE , FORCED GAIN
1000600200
350t f i , F A L L T I M E (n s )
t c , C R O S S O V E R T I M E (n s )
250
150
800Figure 23. Inductive Storage Time, t si
3000
0I C , COLLECTOR CURRENT (AMPS)
2000t , T I M E (n s )
1000
Figure 24. Forward Recovery Time t fr
360
300
I F , FORWARD CURRENT (AMP)
t f r , F O R W A R D R E C O V E R Y T I M E (n s )
340
320
1200
Figure 25. Dynamic Saturation
Voltage Measurements
TIME
Figure 26. Inductive Switching Measurements
10
4
TIME
86
297531Figure 27. t fr Measurements
V I
Table 1. Inductive Load Switching Drive Circuit
V (BR)CEO(sus)L = 10 mH R B2 = ∞
V CC = 20 Volts I C(pk) = 100 mA
Inductive Switching L = 200 m H R B2 = 0
V CC = 15 Volts R B1 selected for desired I B1RBSOA L = 500 m H R B2 = 0
V CC = 15 Volts R B1 selected for desired I
B1
m F
I C PEAK
V CE
I B
Figure 28. Forward Bias Safe Operating Area 1000.01
V CE , COLLECTOR-EMITTER VOLTAGE (VOLTS)
Figure 29. Reverse Bias Safe Operating Area
630
V CE , COLLECTOR-EMITTER VOLTAGE (VOLTS)
1
0.1
I C , C O L L E C T O R C U R R E N T (A M P S )
I C , C O L L E C T O R C U R R E N T (A M P S )
254TYPICAL CHARACTERISTICS
10
1
TYPICAL CHARACTERISTICS
Figure 30. Forward Bias Power Derating
10
T C , CASE TEMPERATURE (°C)
0.8
P O W E R D E R A T I N G F A C T O R
0.6
0.4
0.2There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I C −V CE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 28 is based on T C = 25°C; T J(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when T C > 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 28 may be found at any case temperature by using the appropriate curve on Figure 30.
T J(pk) may be calculated from the data in Figure 31. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn −off with the base to emitter junction reverse biased. The safe level is specified as a reverse biased safe operating area (Figure 29). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode.
TYPICAL THERMAL RESPONSE
Figure 31. Typical Thermal Response (Z q JC (t)) for BUL45D2
1
0.01
t, TIME (ms)
0.1
r (t ), T R A N S I E N T T H E R M A L R E S I S T A N C E (N O R M A L I Z E D )
分销商库存信息:
ONSEMI
BUL45D2G BUL45D2。