人教版六年级下册数学《期中考试试卷》含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版六年级下册数学《期中考试试卷》
含答案
人教版数学六年级下学期期中测试卷
学校:________ 班级:________ 姓名:________ 成绩:________
一、解答题(共12小题,满分24分)
1.计算:7 ÷ 28 = 25% = 0.25 = 4:16
2.解方程组:
a/b = 6
ab = 7
得到:a = 6.b = 7/6
3.设圆柱体高为h,半径为r,圆锥高为H,半径为R,则有:
πr²h = πR²H + 48
πr²h/3 = πR²H/3
化简可得:H = 4h/3,R = 2r/3
所以圆柱体积为:πr²h = π(3R/2)²(4h/3) = 2πR²H =
2π(4r/3)²(4h/3) = 32πr²h/27
圆锥体积为:πR²H/3 = 32πr²h/81
4.设黄豆种子总数为x,则发芽的黄豆种子数量为0.25x,未发芽的黄豆种子数量为0.75x,发芽的黄豆种子数量与总数
的比为1:4.
5.可以组成的三位数有:358、385、538、583、835、853,其中偶数有4个,组成偶数的可能性为2/3.
6.1月份的平均气温为-2℃,2月份升高了6℃,所以2月
份的平均气温为4℃。
7.设比例为a:b = c:d,则有ad = bc = 1,所以d = c/b。
代入已知的一个外项1.25,可得另一个外项为5/4.
8.甲、乙两队合作1天能完成1/4的工程量,甲队单独做
需要6天完成,乙队单独做需要8天完成。
则甲队和乙队合作需要的天数为:1/(1/4 - 1/6 - 1/8) = 6
9.实际距离为14×xxxxxxx÷ = 560公里。
10.设甲班人数为x,则乙班人数为x - (x/4) = 3x/4,所以
原来乙班与甲班的人数比为3:4.
11.侧面积为πrh = 40π,底面积为πr² = 16π,所以需要的
彩纸面积为56π平方厘米。
12.化简得到:17:5
二、判断题(共5小题,满分5分,每小题1分)
13.错误。
圆锥的体积与底面半径、高度有关,如果底面
半径扩大到原来的3倍,体积也会扩大到原来的27倍。
14.错误。
甲数比乙数少,甲数与乙数的比是3:4.
15.正确。
16.正确。
17.错误。
10万元定期存入银行2年,年利率为0.1%,2
年后本息共计10.2万元。
三、选择题(共5小题,满分5分,每小题1分)
18.选项B。
x/y = 2,不成比例。
19.选项C。
比例尺为1:200,可以满足要求。
20.降价幅度为:(220-120)/220=45.45%。
正确的列式为C。
21.首先需要计算圆柱的半径,可通过展开图得知为4cm。
因此,圆柱的表面积为2πr²+2πrh=2π(4²+4×6)=66π。
答案为C。
22.前项增加16后为8+16=24,后项应该乘2才能保持比值不变。
答案为B。
23.直接计算得:
72÷0.8=90
7-2.8=4.2
48×12.5%=6
0.81÷9=0.09
5.6÷0.07=80
2.7×4×0.25=2.7
3.3×9.9+0.33=32.67
24.首先计算括号内的式子,得到32×0.9+3.6=31.2.因此,整个式子变为58.9-12.42-6.48+7.8÷31.2×40%+0.75×1.5=40.39.答案为40.39.
25.解方程得到2x=100,因此x=50.解比例得到25%x=12-3.75=8.25,因此x=21.答案为50和21.
26.(1)如图所示。
将图①沿着y轴折叠即可得到轴对称
图形。
2)如图所示。
将图②向右平移6格再向上平移1格即可。
3)如图所示。
将图③按2:1的比例放大即可。
4)如图所示。
将图④绕点A逆时针旋转90°即可。
27.(1)不及格的学生人数为200×20%=40人,因此不及
格的占比为40/200=20%。
2)得XXX的同学共有(200-40)×(100-20)%=128人。
3)得优的同学比得良的少20%。
设得良的同学有x人,
则得优的同学有(128-x)人,且(128-x)/(x)=1.2.解得x=51.2,因
此得优的同学有76.8人(向上取整为77人),得良的同学有(200-40-77)=83人。
答案为20%、77人和83人。
二.判断题(共8小题,满分16分)
略。
三.填空题(共8小题,满分16分)
略。
四.计算题(共5小题,满分42分)
23.直接计算得:
72÷0.8=90
7-2.8=4.2
48×12.5%=6
0.81÷9=0.09
5.6÷0.07=80
2.7×4×0.25=2.7
3.3×9.9+0.33=32.67
24.首先计算括号内的式子,得到32×0.9+3.6=31.2.因此,
整个式子变为58.9-12.42-6.48+7.8÷31.2×40%+0.75×1.5=40.39.
答案为40.39.
25.解方程得到2x=100,因此x=50.解比例得到25%x=12-3.75=8.25,因此x=21.答案为50和21.
26.(1)如图所示。
将图①沿着y轴折叠即可得到轴对称
图形。
2)如图所示。
将图②向右平移6格再向上平移1格即可。
3)如图所示。
将图③按2:1的比例放大即可。
4)如图所示。
将图④绕点A逆时针旋转90°即可。
27.(1)不及格的学生人数为200×20%=40人,因此不及格的占比为40/200=20%。
2)得XXX的同学共有(200-40)×(100-20)%=128人。
3)得优的同学比得良的少20%。
设得良的同学有x人,则得优的同学有(128-x)人,且(128-x)/(x)=1.2.解得x=51.2,因此得优的同学有76.8人(向上取整为77人),得良的同学有(200-40-77)=83人。
答案为20%、77人和83人。
五.应用题(共5小题,满分25分,每小题5分)
28.(1)第一周看了全书的20%,即400×20%=80页。
第二周看了全书的1/4,即400×1/4=100页。
两周一共看了
80+100=180页。
2)第二周比第一周多看了100-80=20页。
答案为180和20.
29.实际距离为3.4×xxxxxxx=xxxxxxxx米=千米。
答案为.
30.绳子的长度为10×树干的周长,因此树干的周长为
12.56/10=1.256米。
树干的横截面积为(1.256/2)²π=0.985平方米。
答案为0.985.
31.圆柱的体积为πr²h=π×10²×20=2000π立方厘米。
圆锥的体积为1/3πr²h=1/3π×3²×20=60π/3=20π立方厘米。
因此,铅锤
从水中取出后,水面下降的高度为20π/2000π=0.01米=1厘米。
答案为1.
32.设新购图书的数量为x本,则童话书的数量为x+8本。
因此,x+x+8=120,解得x=56,因此童话书的数量为56+8=64本。
答案为64.
1.【分析】将25%转化为分数并化简,分子、分母都乘2,得到1/4.将25%转化为除法,得到1÷4,再将被除数和除数都
乘7,得到7÷28.将25%转化为比,得到1:4,将比的前后项都乘4,得到4:16.将25%转化为小数,将小数点向左移动两位
并去掉百分号,得到0.25.
解答】答案为:28,2,16,0.25.
点评】此题考查对除法、小数、分数、百分数、比之间关系和转化的掌握和应用。
2.【分析】判断两个相关联的量之间成什么比例,需要看这两个量是对应的比值一定,还是对应的乘积一定。
如果比值一定,则成正比例;如果乘积一定,则成反比例。
解答】因为a÷b=6,是商一定,所以a和b成正比例;ab=7,是乘积一定,所以a和b成反比例。
点评】此题考查对成正、反比例的辨识和判断。
3.【分析】等底等高的圆柱体积是圆锥体积的3倍,因此它们的体积差除以2就是圆锥的体积,用圆锥的体积乘3就是圆柱的体积。
解答】圆柱的体积是72立方厘米,圆锥的体积是24立方厘米。
点评】此题考查对等底等高的圆柱与圆锥之间体积关系的掌握和应用。
4.【分析】将种子总数看成单位“1”,发芽率只有25%,则未发芽的占75%。
发芽的黄豆种子数量与种子总数的比是25%:1.将未发芽的百分比除以发芽种子的百分比,化简后得到答案。
解答】发芽的黄豆种子数量与种子总数的比是1:4,未发
芽的黄豆种子数量是发芽种子数量的3倍。
点评】此题考查对百分数、比的应用和化简的掌握和应用。
5.本题要求计算由三个数字(3、5、8)组成的三位数中,偶数的可能性。
首先列出所有不同的三位数,即358、385、538、583、835、853,共6个。
其中有2个是偶数,所以偶数的可能性为2/6=1/3.
6.本题要求计算某市2月份的平均气温,已知1月份的平
均气温为-2℃。
根据负数的定义,-2℃表示气温比0℃低2℃。
因此,2月份的平均气温比1月份高6℃,即-2℃+6℃=4℃。
7.本题要求计算比例中的一个外项。
根据比例的基本性质,两个内项的积等于两个外项的积。
已知两个内项的积为1,因
此两个外项的积也为1.另一个外项就是1除以1.25,即0.8.
8.本题要求计算完成一项工程所需的时间。
假设工程的工
作量为1个单位,乙队的工作效率为x,甲队的工作效率为y,那么乙队单独完成这项工程所需的时间为1/x。
根据题意,有
x=y+0.5y=1.5y,代入计算得到1/x=9天。
9.本题要求计算玉田到沈阳的实际距离。
根据比例尺,1厘米表示xxxxxxxx厘米,因此14厘米表示
14*xxxxxxxx=xxxxxxxx0厘米。
将其转换为千米,即xxxxxxxx0/=7840千米。
因此,玉田到沈阳的实际距离为560千米。
10.分析:将甲班人数调入乙班后,两班人数相等,说明甲班人数比乙班人数多甲班人数的2倍。
将甲班人数看作单位“1”,则乙班人数是甲班人数的(1-2)。
根据题意,进行比即可得出乙班与甲班人数的比为3:5.
解答:原来乙班与甲班的人数比是3:5.
点评:解答此题的关键是判断出单位“1”,转化为同一单位“1”下进行比,然后化为最简整数比即可。
11.分析:由于笔筒是无盖的圆柱体,因此可以利用圆柱的表面积公式S=2πrh+2πr²来计算所需面积。
代入数据计算即可得出至少需要301.44平方厘米的面积。
解答:至少需要301.44平方厘米。
点评:此题主要考查圆柱的表面积公式、圆柱的侧面积公式的灵活运用,关键是熟记公式。
12.分析:(1)根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(除外)比值不变,进而把比化成最简比。
(2)用比的前项除以后项,所得的商即为比值。
根据这两个方法,可以得出题目中给出的两个比的最简比和比值。
解答:25:27;3.4.
点评:此题主要考查了化简比和求比值的方法,另外还要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数、小数或分数。
13.分析:根据圆锥的体积公式V=1/3πr²h,圆锥的底面半径扩大到原来的3倍,它的底面积就扩大到原来的9倍,高不变,圆锥的体积就扩大到原来的27倍。
因此,圆锥的底面半径扩大到原来的3倍高不变,它的体积不会保持不变,而是会扩大到原来的27倍。
所以这种说法是错误的。
解答:×。
点评:此题主要考查圆锥体积公式的灵活运用,以及因数与积的变化规律的应用。
14.分析:将乙数看作单位“1”,则甲数是乙数的(1-
1/2)=1/2.据此利用比的意义可以得出甲数与乙数的比为1:2,
而不是原题中的2:3.
解答:×。
点评:用乙数表示出甲数,再据比的意义进行解答。
注意题目中可能存在的误导性信息。
15.经分析得出,将一个三角形按比例2:1放大后,虽然
三条边的长度扩大了,但是角度的大小只和两边叉开的大小有关,与边长无关,因此角度不变。
16.平年有365天,闰年有366天,将闰年的366天看作
抽屉,在400天中能放下1个完整的闰年和34天。
因为平均
每天有一个学生过生日,所以至少有两个学生的生日是同一天,符合抽屉原理。
17.已知本金是10万元,利率是0.1%,时间是2年,根据本息公式:本息=本金+本金×利率×时间,可得到本息为元。
因此,2年后妈妈可取出本息共元。
18.根据题目中给出的四个式子,可以判断出:A式中x
和y成正比例,B式中x和y成反比例,C式中x和y成正比例,D式中x和y不成比例。
因此,选项D为正确答案。
这道题考察的是辨识成正、反比例的量,需要通过对应的比值或乘积来判断。
19.分析:题目给出实际长度为长50米、宽38米,而图
纸上的距离为长30厘米、宽25厘米,因此需要计算比例尺。
根据图上距离:实际距离=比例尺的公式,可以得到长和宽的
比例尺分别为1:167和1:152,综合起来选择1:200比较合适。
解答:选D。
20.分析:题目要求求出现价比原价降低了百分之几,可
以将原价看成单位“1”,然后用原价减去现价,得到降低的钱数,再用降低的钱数除以原价即可。
解答:(220-120)÷220
≈ 45.5%,答案为降低了45.5%。
选C。
21.分析:题目给出了圆柱的展开图,可以看出底面直径
为6厘米,高为8厘米。
根据圆柱的表面积公式,可以得到表面积等于侧面积加上底面积的两倍,而圆柱的侧面积可以用底面周长乘以高来计算,底面积可以用圆的面积公式计算。
解答:
3.14×6×8+3.14×(6÷2)^2×2=207.24(平方厘米),或
π×6×8+π×(6÷2)^2×2=66π(平方厘米),答案为66π平方厘米。
选C。
22.分析:题目给出了8:9的比,要求将前项增加16后
比值不变,因此需要将后项也乘以一个相同的数。
根据比的性质,可以得到前项乘以3后,后项也应该乘以3,即27-9=18,因此后项增加了18.解答:选C。
23.分析:题目给出了一个三角形,要求求出它的面积。
可以使用海伦公式,也可以使用底边和高来计算。
解答:使用底边和高计算,底边为8厘米,高为6厘米,面积为(8×6)
÷2=24平方厘米。
选B。
分析】可以将原文中的符号和数字之间的空格删除,使得格式更加规范。
同时,可以将一些计算步骤的说明改为简洁的计算式,提高文章的可读性。
23.【分析】根据小数、分数和百分数的计算法则进行加
减乘除运算即可。
注意48×12.5%可以变形为6×8×12.5%,
2.7×4×0.25可以根据乘法结合律简便计算,
3.3×9.9+0.33可以
变形为3.3×9.9+3.3×0.1,再根据乘法分配律简便计算。
解答】解:
72÷0.8=90
7-2.8=4.2
48×12.5%=6×8×12.5%=0.09
2.7×4×0.25=2.7
5.6÷0.07=80
3.3×9.9+0.33=33
点评】考查了小数、分数和百分数的加减乘除运算,关键是熟练掌握计算法则正确进行计算。
24.【分析】(1)运用减法的性质进行简算;(2)将除法化为乘法,再运用乘法的分配律进行简算;(3)先算小括号里的减法,再算中括号里的乘法,然后算中括号里的加法,最后算括号外的除法;(4)运用乘法的分配律进行简算。
解答】解:(1)58.9-12.42-6.48=40
2)(4÷3-7÷4)×36=(16-21)×36=13
0.4×40%+0.75×13×36=0.4×0.4+0.75×468=352.2÷9=39.1333≈39.13
3)7.8÷[32×(1-
0.35)+3.6]=7.8÷[32×0.65+3.6]=7.8÷23.2=0.3362≈0.34
4)0.8x=2.4×12=28.8
x=28.8÷0.8=36
点评】考查了运算定律与简便运算,四则混合运算。
注意运算顺序和运算法则,灵活运用所学的运算定律简便计算。
25.【分析】(1)先化简方程的左边,变成x=,再把方
程两边同时除以5即可;(2)先将方程的两边同时减去3.75,再同时除以0.25即可;(3)先根据比例的性质把比例方程转
化成简易方程,再把方程的两边同时除以3即可;(4)先根
据比例的性质把比例方程转化成简易方程,再把方程的两边同时除以0.8即可。
解答】解:(1)2x+3x=5x=25
x=25÷5=5
2)25%x+3.75=12
0.25x=8.25
x=8.25÷0.25=33
3)x:15=21:35
x=21×15÷35=9
4)5x:8=3:4
x=3×8÷5=4.8
点评】考查了方程与比例的解法,需要注意化简式子和运用基本的数学性质。
2)设这本书的总页数为x,则根据题意可列出方程:2×(x÷5)+5=x,化简得x=25,即这本书的总页数为25页.解答】解:(1)设这本书的总页数为x,则两周看的页数为0.2x+0.3,根据百分数乘法,得到单位“1”看的页数为(0.2x+0.3)×100%=20x+30%;
答:单位“1”看的页数是总页数的20x+30%.
2)2×(25÷5)+5=25;
答:这本书的总页数为25页.
点评】此题考查了学生对百分数的理解和应用,以及解方程的方法和技巧.在解方程时,要注意化简方程,移项变号时要注意符号的变化.
2.两周看书的页数
本题要求计算两周看书的页数,其中第一周看了400页,第二周比第一周多看了20%的页数。
首先需要计算出第二周比第一周多看了多少页,即400×20%=80页。
然后将两周看书的总页数计算出来,即400+80=480页。
因此,两周一共看了480页。
29.实际距离的计算
本题给出了一个比例尺和图上的距离,要求计算出实际距离。
根据“图上距离÷比例尺=实际距离”的公式,可以得到实际距离为3.4÷xxxxxxx=0.千米。
将其换算为千米,即
0.×1000=0.68千米。
因此,上海到杭州的实际距离是0.68千米。
30.树干横截面的计算
本题给出了一棵树的绳长和圆的面积公式,要求计算出树干的横截面。
首先需要计算出树的周长,即12.56÷10=1.256米。
然后根据圆的周长公式,可以得到树的半径为0.2米。
最后,根据圆的面积公式,可以得到树干的横截面为
3.14×0.04=0.1256平方米。
因此,这棵树的树干的横截面大约是0.1256平方米。
31.水面下降的计算
本题给出了一个圆锥形铅锤和一个圆柱形玻璃杯,要求计算在铅锤放入玻璃杯中后,杯里的水面下降了多少厘米。
首先需要计算出铅锤的体积,即
3.14×(6÷2)²×20÷3.14×(20÷2)²=188.4÷314=0.6厘米³。
然后将铅锤的体积除以玻璃杯的底面积,即
0.6÷3.14×(10÷2)²=0.6÷78.5=0.厘米。
因此,杯里的水将下降0.厘米。
32.童话书的计算
本题给出了一个关于新购图书和童话书的关系式,要求计算童话书的本数。
已知新购图书的本数为120本,童话书的本数为新购图书本数×(20%-12%)+8本。
将数值代入计算,即120×(20%-12%)+8=98本。
因此,童话书有98本。