小学经典数学小故事《神秘的数字“2”》

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学经典数学小故事《神秘的数字“2”》对小学经典数学小故事《神秘的数字2》你了解多少呢,看看下文吧,希望您读后可以有所收获!
自从人类产生起,我们的祖先为了自身的生存和社会的发展,在劳动中创造了语言;为了计数,表示多少个劳动产品,又在漫长的社会发展中发明了数字,他们根据人的左右耳,对称的眼睛和一双勤劳的手,两只不畏严寒的足,抽象出了这个隐藏在万事万物背后的特殊数字-2。

其实他们哪里知道这只是2的初次显圣,随着社会的加速发展,它那神奇而特异的功能越来越显示出巨大的威力。

看起来极为变通而简单,却包含着无穷无尽的奥妙。

今天,让我们揭开它那神奇的面纱,看看它的真实面目。

二千多年以前,我国劳动人民为了研究自然变化的规律,便采用了天干,地支,2种顺次成双成对相结合的方法记载年和日,它以六十年(或日)为一个周期。

在自然现象中,天与地一对,阴与阳成双,还有风与雨,雷与电,高与低,长与短,宽与窄,深与浅,大与小,多与少,轻与重,无生命物质与有生命物质,植物与动物等等,它们都是2在不同现象中的化身,也构成了对称式的事物的性质进行比较的不同方式。

在空间中,过两个定点只能确定唯一的一条直线;同一平面内,两条直线只有两种位置关系,它们或者平行或者相交;
平行给人以平稳,宁静,宽广等美感,相交的两条直线中,
如果规定了各自的正方向,原点及各自的单位,则它是一个二维射影坐标系,它能使抽象的射影变换具体化,直观化;如果这两条相交线互相垂直,正方向,原点不变,两条直线上的单位长度相同,那么这两条相交线就摇身一变成了特殊的二维射影坐标系,即二维欧氏空间-笛卡尔坐标系,这是一个多么神圣的十字架啊!它使人类变得越来越聪明,而不像基督教中那种迂腐的十字架,使人们走向岐途与无知。

它巧妙地使平面点集与有序实数对建立了一一对应关系,更使人意想不到的是为代数与几何搭起了鹊桥,使解析几何得以产生和发展,又可建立复平面,使有关的向量的运算变得简单而易行,也为数学的统一美增添了新的风采。

作为自然数中的一个成员-2,在数学天地里都有着别具一格的优点和令人难以捉摸的规律。

它是自然数1的唯一邻居,后继数是第一个奇素数3,后继数的后继数4又是第一个不是素数的偶数,而2却是一个唯一的既是偶数又是质数的自然数。

二加二,二乘以二,二的二次方,神斧天工竟有共同的结果4;一个实数的平方总是非负数,一个正数的平方根总是绝对值相等,符号相反的一对数;两个正数的和除以2称作算术平均数;两个正数的积的平方根称为几何平均数;一个一元二次方程总是有2个根,或实或虚,或等或不等,可由判别式判断。

在这里都有2的神秘影子,它起着某种奇妙的作用,如果成对的自然数的积顺次构成的列12,23,34,,
(n-1)n,,变成由每一项的倒数构成的倒数列1/12,1/23,1/34,1/(n-1)n,,那么要求它的前几项和似乎很困难,但是如果发现每项都有一个共同点,即1/n(n-1)=1/(n-1)-1/n时,那就是每项可以写成分为两个数的倒数之差,这样,前几项和的求法就变得非常简单,其结果为Sn=1-1/n,在这里,2既是秩序美的潜因,又起化繁为简的作用。

在现代社会中,我们采用十进制进行计量,采用六十进制计时,而谁又能想到最有发展前途的是二进制,它只有两个元素0,1,它的四则运算简单而明了,如1+1=10,它与八进制、十进制、十六进制互化极其方便。

数理逻辑就是在二进制的基础上产生的。

逻辑式的化简,解逻辑方程都离不开二进制作向导,如果说没有二进制,那么电子计算机至少不会像今天这样飞速发展,信息时代也不可能在当今的社会中实现,卫星上天也是一句空话。

可见2的某些规律给人们带来了多么有意义的启示和灵感,更为数学迷宫笼罩了一层神妙而朦胧的面纱。

2在代数的世界里留下了神奇的足迹。

有一位数学家风趣地说像评演员一样,如果在中学数学里评最佳定理,我就选勾股定理,二次三项式根的定理和棣莫佛定理。

在这里二次三项式,勾股定理,棣莫佛定理都显现着2的光彩。

勾股定理的整数解是最为独特的、典型的。

因为对于an+bn=cn的不定方程,当n3时,找不到任何一组整数解,在这里2是神
秘的荣幸者。

棣莫佛定理是复数知识中最重要的定理,这里实部、虚部,复平面上的数组,都蕴含着2的本质。

二次三项式根的定理确实是一个引人注目,运用最多的定理,即就是二次三项式以及与之有关联的一元二次函数,一元二次方程,一元二次不等式,也是整个中学数学的重要核心内容之一,各类考试无把它作为命题的重要内容。

我国数学家杨乐,曾在一次讲话中专门论述了为什么二次三项式的内容受到
高考命题的青睐,可见二次三项式及其影响极为深远,人们对其爱好不同寻常,进而人们对2产生了更加神秘而奇特的想象。

二元二次方程,几乎占据了中学解析几何中大部分内容,圆、椭圆、双曲线、抛物线等,它们的方程是二次方程,它们通称为二次曲线,这些曲线都是简洁的二元二次方程。

二次曲线漂亮优美,二元二次方程对称优美。

而其中的2则更为蕴意深刻,奇美无比了。

在数学王国里,二项式定理是一个完美的定理。

我们说以
2成双,成双为对,成对才能闪耀对称的光辉,而二项式定理的展开式就显现出了奇美对称的特点。

从杨辉三角上看就会显明地看到这种美的形式的壮丽,然而,一分为二是一种认识事物的观点,而一个线段可以一分为二,我国古代就有人研究数列的极限问题,最典型的问题就是一日之棰,日取其半,万世不揭。

在各门学科中,许多问题常归结为二个方面或两个问题,而且多数都在某种意义上具有对立而又统一的关系。

一方面的存在而往往是另一方面存在的前提。

离开了其中一方,另一方就无从谈起。

在哲学上,对立统一规律是宇宙中最为普通的规律,它正是二和一的深奥组合,它囊括万物,包罗万象,是照耀人类社会不断发展的一盏明灯;量变与质变又是事物
发展变化的基本规律;事物总是在矛盾中发展的,它有共性与个性,主要与次要之分;同一矛盾也有主要方面和次要方面之分;感性认识与理性认识都有是认识的两个深浅不同的阶段;在事物发展变化中,内因起着决定作用,外因通过内因起作用;主观与客观也是一对矛盾关系。

美学上存在着真与假、善与恶、美与丑,总是有着对立面的两个方面。

物理学上有宏观与微观、引力与斥力、作用与反作用力、电场与磁场、正电荷与负电荷之分,伟大的物理学家爱因斯坦的相对论也有狭义与广义之分。

医学上也有中医与西医,内科与外科之分,生物学有同化与异化之分,化学上有有机物与无机物、金属与非金属、化合与分解、树枝的聚合与石油的裂化等。

在语言文学上则更是不胜枚举,就拿方位词来说有上下、左右、前后、内外之分。

这些事物中,都无不存在两个方面,可见2处处存在,时时出现,2以某种天使般的能耐使事物显示出对称统一、和谐美的特征。

2给了我们许许多多的深刻启示,使人类不断开创了美好的
世界,然而它仍然是神秘的,也许它还会有更多的严谨和均衡的内在美尚未被人发现,这就给我们留下了探索神秘的完美的目标和追求的信心。

单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。

让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话
空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。

这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。

与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。

金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。

”于是看,宋元时期小学教师被称为“老师”有案可稽。

清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。

可见,“教师”一说是比较晚的事了。

如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。

辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。

上文是小学经典数学小故事《神秘的数字2》,希望文章对您有所帮助!。

相关文档
最新文档