PPR管与PVC管有什么区别
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PPR管与PVC管有什么区别?
(观点1:
PVC(聚氯乙烯)同PP-R(聚丙烯)是两种不同材料。
PVC常用作自来水管、电线管、雨水管、下水管。
然而,近年来发现作为PVC热稳定剂的铅盐析出会直接造成饮用水的重金属污染。
凡是使用铅盐稳定剂的PVC管材埋入地下,管子周围的土壤会出现重金属超标现象;用于空中的电线电缆中铅盐随雨水的冲刷也会被带入土壤。
由此可见,含铅的PVC 管材应用将会危害人们的身体健康。
PVC管作为自来水管已被淘汰。
PP-R管材在长期连续工作水压、水温高达95℃情况下,使用寿命可以长达50年,它以卓越的卫生、环保性能和耐热、耐压、耐腐、柔韧抗震等性能而被世界各国所重视,PP-R管材在冷热水输送工程中采用热熔接技术,其综合技术性能和经济指标优于镀锌管、UPVC管、PEX管、聚乙烯管及铝塑复合管,是欧美发达国家给水管道的主导产品之一。
怎样能够简单地鉴别PP-R?取少许PP-R料或PP-R管用打火机点燃,点燃后不发黑且能拉出很长的丝则所用材料为PP-R料,若发黑则肯定不是PP-R料。
目前,市场上存在用PP-B、PP-H甚至PP-C冒充PP-R的现象,敬请用户注意。
装修用的PP-R水管目前市场上,常用的有皮尔沙、中财、伟星、波尔等。
观点2:
PPR是用作进水管饮用水管的,PVC只能用于电线管以及排水管,排污管。
中间的差别就是PVC水管有毒,PPR没有毒。
PPR用做引水管
观点3:
PPR管:作为一种新型的水管材料,PPR管具有得天独厚的优势,它既可以用作冷管,也可以用作热水管,由于其无毒、质轻、耐压、耐腐蚀,正在成为一种推广的材料。
也适用于热水管道,甚至纯净饮用水管道。
PPR管的接口采用热熔技术,管子之间完全融合到了一起,所以一旦安装打压测试通过,不会象铝塑管一样存在时间长了老化漏水现象,而且PPR 管不会结垢。
PVC材料是塑料装饰材料的一种。
PVC是聚氯乙烯材料的简称,是以聚氯乙烯树脂为主要原料,加入适量的抗老化剂、改性剂等,经混炼、压延、真空吸塑等工艺而成的材料。
PVC材料具有轻质、隔热、保温、防潮、阻燃、施工简便等特点。
规格、色彩、图案繁多,极富装饰性,可应用于居室内墙和吊顶的装饰,是塑料类材料中应用最为广泛的装饰材料之一。
观点4:
PVC管是用于给排水,用专业胶水粘接,给排水只能用冷水,不能做热水管用,排水管不能做压力管,电线管中型和重型管可以用弹簧弯,轻型就不可以,PVC管是阻燃材料,施工方便,PPR管承接需要专业热熔器,可以做压力管用但要符合管的压力标准,它可以做热水管,但PPR冷热水管不一样材料,PPR都用于给水管用,它造价高所以用于排水浪费,一般是不做排水用。
pvc:耐燃性强方便施工操作直接用专用胶水粘适合排水工程;
ppr:柔韧性好接口牢固抗压值高耐腐蚀需要专业热熔机械操作!适合给水工程;
观点5:
PPR管正式名为无规共聚聚丙烯管,是目前家装工程中采用最多的一种供水管道。
PPR管的接口采用热熔技术,管子之间完全融合到了一起,所以一旦安装打压测试通过,绝
不会再漏水,可靠度极高。
但这并不是说PPR水管是没有缺陷的水管,耐高温性,耐压性稍差些,长期工作温度不能超过70℃;每段长度有限,且不能弯曲施工,如果管道铺设距离长或者转角处多,在施工中就要用到大量接头;管材便宜但配件价格相对较高。
从综合性能上来讲,PPR管是目前性价比较高的管材,所以成为家装水管改造的首选材料。
市面上销售的PPR管主要有两种颜色,白色(如皮尔萨)和灰色(如白蝶、日科),为什么会有这个区别,经销商的回答是所用原材料PPR粒子的不同造成的。
一般在水电改造中,原有的水管都会更换,家装公司和商家在建议装修者安装PPR管时全部选用热水管,即使是流经冷水的地方也用热水管。
他们的说法是由于热水管的各项技术参数要高于冷水管,且价格相差不大,所以水路改造都用热水管。
另一个事实是即使你想买冷水管市面上也很难买到,因为冷水管仅供应工装市场,不供应家装市场。
管径 PPR管的管径可以从16mm到160mm,家装中用到的主要是20mm,25mm两种(分别俗称4分管、6分管),其中4分管用到的更多些。
聚丙烯,是由丙烯聚合而制得的一种热塑性树脂。
按甲基排列位置分为等规聚丙烯(isotactic polypropylene)、无规聚丙烯(atactic polypropylene)和间规聚丙烯(syndiotactic polypropylene)三种。
甲基排列在分子主链的同一侧称等规聚丙烯,若甲基无秩序的排列在分子主链的两侧称无规聚丙烯,当甲基交替排列在分子主链的两侧称间规聚丙烯。
一般工业生产的聚丙烯树脂中,等规结构含量约为95%,其余为无规或间规聚丙烯。
工业产品以等规物为主要成分。
聚丙烯也包括丙烯与少量乙烯的共聚物在内。
通常为半透明无色固体,无臭无毒。
由于结构规整而高度结晶化,故熔点可高达167℃。
耐热、耐腐蚀,制品可用蒸汽消毒是其突出优点。
密度小,是最轻的通用塑料。
缺点是耐低温冲击性差,较易老化,但可分别通过改性予以克服。
共聚物型的PP材料有较低的热变形温度(100℃)、低透明度、低光泽度、低刚性,但是有更强的抗冲击强度,PP的冲击强度随着乙烯含量的增加而增大。
PP的维卡软化温度为150℃。
由于结晶度较高,这种材料的表面刚度和抗划痕特性很好。
PP不存在环境应力开裂问题。
PP的熔体质量流动速率(MFR)通常在1~100。
低MFR的PP材料抗冲击特性较好但延展强度较低。
对于相同MFR的材料,共聚型的抗冲强度比均聚型的要高。
由于结晶,PP的收缩率相当高,一般为1.6~2.0%。
物理性能
聚丙烯结构图3D模型
聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0. 90--"0. 91g/cm3,是目前所有塑料中最轻的品种之一。
它对水特别稳定,在水中的吸水率仅为0. 01%,分子量约8万一15万。
成型性好,但因收缩率大(为1%~2.5%).厚壁制品易凹陷,对一些尺寸精度较高零件,很难于达到要求,制品表面光泽好
力学性能
聚丙烯的结晶度高,结构规整,因而具有优良的力学性能。
聚丙烯力学性能的绝对值高于聚乙烯,但在塑料材料中仍属于偏低的品种,其拉伸强度仅可达到30 MPa或稍高的水
平。
等规指数较大的聚丙烯具有较高的拉伸强度,但随等规指数的提高,材料的冲击强度有所下降,但下降至某一数值后不再变化。
温度和加载速率对聚丙烯的韧性影响很大。
当温度高于玻璃化温度时,冲击破坏呈韧性断裂,低于玻璃化温度呈脆性断裂,且冲击强度值大幅度下降。
提高加载速率,可使韧性断裂向脆性断裂转变的温度上升。
聚丙烯具有优异的抗弯曲疲劳性,其制品在常温下可弯折106次而不损坏。
但在室温和低温下,由于本身的分子结构规整度高,所以抗冲击强度较差。
聚丙烯最突出的性能就是抗弯曲疲劳性,俗称百折胶。
热性能
聚丙烯具有良好的耐热性,制品能在100℃以上温度进行消毒灭菌,在不受外力的条件下,150℃也不变形。
脆化温度为-35℃,在低于-35℃会发生脆化,耐寒性不如聚乙烯。
对于聚丙烯玻璃化温度的报道值有一18qC, 0qC, 5℃等,这也是由于人们采用不同试样,其中所含晶相与无定形相的比例不同,使分子链中无定形部分链长不同所致。
聚丙烯的熔融温度比聚乙烯约提高40一50%,约为164一170℃, 100%等规度聚丙烯熔点为176℃。
化学稳定性
聚丙烯的化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它各种化学试剂都比较稳定,但低分子量的脂肪烃、芳香烃和氯化烃等能使聚丙烯软化和溶胀,同时它的化学稳定性随结晶度的增加还有所提高,所以聚丙烯适合制作各种化工管道和配件,防腐蚀效果良好。
电性能
它有较高的介电系数,且随温度的上升,可以用来制作受热的电器绝缘制品。
它的击穿电压也很高,适合用作电器配件等。
抗电压、耐电弧性好,但静电度高,与铜接触易老化。
耐候性
聚丙烯对紫外线很敏感,加入氧化锌、硫代二丙酸二月桂酯、炭黑或类似的乳白填料等可以改善其耐老化性能。
疏水参数计算参考值(XlogP):3.32、氢键供体数量:03、氢键受体数量:34、可旋转化学键数量:15、互变异构体数量:6、拓扑分子极性表面积(TPSA):29.5避免强氧化剂,氯,高锰酸钾密闭,阴凉干燥处保存,确保有良好的通风。
特点
无毒、无味,密度小,强度、刚度、硬度耐热性均优于低压聚乙烯,可在100℃左右使用。
具有良好的介电性能和高频绝缘性且不受湿度影响,但低温时变脆,不耐磨、易老化。
适于制作一般机械零件、耐腐蚀零件和绝缘零件。
常见的酸、碱等有机溶剂对它几乎不起作用,可用于食具。
聚丙烯具有许多优良特性:
1、相对密度小,仅为0.89-0.91,是塑料中最轻的品种之一。
2、良好的力学性能,除耐冲击性外,其他力学性能均比聚乙烯好,成型加工性能好。
3、具有较高的耐热性,连续使用温度可达110-120℃。
4、化学性能好,几乎不吸水,与绝大多数化学药品不反应。
5、质地纯净,无毒性。
6、电绝缘性好。
7、聚丙烯制品的透明性比高密度聚乙烯制品的透明性好。
它有很多优点但也有缺点:
1、制品耐寒性差,低温冲击强度低。
2、制品在使用中易受光、热和氧的作用而老化。
3、着色性不好。
4、易燃烧。
5、韧性不好,静电度高,染色性、印刷性和黏合性差。
改性
接枝改性
20世纪90年代初,美国提出先进的固相接枝改性法,现已开发出相关产品,如伊士曼公司生产的氯化改性pp(mcpp)树脂,在我国市场每吨售价高达50多万元。
改性pp(mpp)和mcpp作为特种pp专用料,大大扩展了pp的应用范围,具有极大的经济效益。
采用固相接枝法对等规pp进行改性得到mpp,然后对mpp进行氯化即可获得mcpp固体粉状树脂。
氯化改性后的树脂附着力强,接伸模量提高,易于与其他树脂共混;而且由于改性使pp的结晶受到破坏,极性增加,从而可溶于某些溶剂,制得不同浓度的mcpp溶液。
mpp的用途主要有四个方面。
一是提高工程塑料的耐冲击性能。
用mpp作相容剂,制得的pp与其他塑料的共混物冲击强度提高2~3倍,可用作抗冲击壳体材料;二是exfer塑料公司开发的dexpro合金,即为聚酰胺和pp在相容剂存在下的合金,现已商品化;三是用作热塑料粉末涂料,用于金属底材表面,起到防腐和抵抗化学药品的作用。
日本nozagl-giz 牌号产品就是pp与尼龙的合金材料,具有较高的耐化学药品和耐油性能,尤其是具有极佳的耐氯化钾性能三是提高pp填料的粘合性。
mpp的引入可提高填料与pp的相容性,改善复合材料的性能,提高材料的整体热稳定性和局部抗热能力;四是mpp也应用于自由基活性废料的固化。
此外,mpp还可用于提高pp纤维的可染色性和塑料制品的可装饰,制造可蒸煮的包装材料等。
从市场上看,每年国内pp的总需求量在350多万吨,其中pp专用料在100万吨以上。
接枝法改性pp需求量以10万吨/年级计,主要用于:与其他聚合物材料如尼龙、聚碳酸酯、橡胶等共混,制备新型高分子材料;加入填料如无机粉体、玻璃纤维、天然纤维等,制备高强度pp;进一步加工产品,用于粉末涂料、液体涂料等。
目前我国等规pp固相接枝改性方法尚属空白,没有此类产品投入市场,所需空缺主要依靠进口,德国赫司特公司在我国推广的改性pp产品售价为15000~18000元/吨。
mcpp的用途主要有:一是用于制备塑料制品用底漆和塑料表面装饰涂料的附着力促进剂,特别是轿车保险杠、轮毂盖、电视机机壳等民用与工业用塑料器具的涂装;二是大量用作塑料表面印刷油墨树脂;三是用作防腐涂料树脂,用于钢屠、铝材等材料重防腐领域。
mcpp树脂车用塑料件表面涂装需求量为500吨/年以上,金属表面防腐涂料领域需求量超过20万吨,在印刷油墨方面,市场需求量在500吨/年以上。
广州珠江电化厂采用固相悬浮氯化法生产未改性氯化pp,生产能力达到30000吨/年,产品十分畅销,售价为35000元/吨左右。
美国伊士曼公司生产的mcpp固体物料,国内售价高达500000元/吨,50%的mcpp的溶液售价则达270000元/吨左右。
pp改性产品作为pp的功能化产品,可大大拓宽pp的应用领域,有着广泛的市场和应用前景,值得大力开发。
共聚改性
共聚改性是指采用催化剂,以丙烯单体为主在聚合阶段进行的改性。
丙烯单体与其它烯烃类单体进行共聚合可以提高聚丙烯的低温韧性,冲击性能,透明性和加工流动性。
例如在丙烯、乙烯共聚得到的聚合物中,由于乙烯和丙烯链段的无规则分布使得物的结晶度降低。
嵌段共聚2%-3%的乙烯单体可制得乙丙共聚橡胶,可耐-30℃的低温冲击。
当乙烯含量达到30%时则成为无规共聚物,具有结晶度低,冲击性能好,透明性好等特点。
聚丙烯共聚物的生产方法按照催化剂的不同可分为两种,一种是茂金属催化剂,一种是改进的Ziegler-Natta高效催化剂。
茂金属催化剂与Ziegler-Natta催化剂相比它只有一个活性中心,而Ziegler-Natta催化剂有多个活性位点。
使用茂金属催化剂能够比较精确的控制分子量及其分布,共聚单体含量及其在聚合物分子链上的分布和结晶结构。
Ziegler-Natta 催化剂应用于PP的共聚改性其优点是生产工艺简单、能耗低、能够改善大分子的成核性,提高聚合物的性能。
交联改性
聚丙烯的交联改性是提高聚丙烯热变形温度的有效方法,也能提高聚丙烯的力学性能,交联改性主要有辐射交联法和化学交联法。
辐射交联是在高能射线的作用下聚丙烯分子链产生自由基进而进行交联反应。
化学交联一般是在PP中加入过氧化物作为引发剂,同时加入助交联剂实现交联反应。
聚丙烯的交联改性过程中降解和交联反应同时存在,采用辐射交联时交联效率比较低,而采用化学交联时一般都是通过加入带有不饱和键的助交联体系促进交联反应。
共混改性
共混改性是一种简单而有效的改性方法,将其它塑料,橡胶或热塑性弹性体与PP共混可制被兼具这些聚合物性质的高分子合金。
聚丙烯的共混改性可以改进聚合物的耐低温冲击性、透明度、着色性、抗静电性等。
由于共混改性具有操作简单、生产周期短、适合批量生产等优点,使其发展十分迅速。
常用于聚丙烯共混改性的高聚物有聚乙烯(PE)、聚酰胺(PA)、乙丙橡胶(EPR)、三元乙丙橡胶(EPDM)、顺丁橡胶(ER)、苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)、乙烯-醋酸乙烯共聚物(EVA)等。
EPDM、SBS、EVA等弹性体与PP共混后,材料中的弹性体微粒能够吸收部分冲击能量,并作为应力集中剂来诱发和抑制裂纹增长,使PP由脆性断裂转变为延性断裂,使其冲击强度大幅度提升,有效改善PP的韧性。
PA、ABS 等刚性聚合物与PP共混则可以在增韧的同时保证材料的强度和刚性。
但是由于这类刚性聚合物都是极性聚合物,与PP的相容性较差,在改性时必须加入合适的增容体系。
采用相容剂技术和反应性共混技术对PP进行共混改性是当前PP共混改性发展的主要特点。
它能在保证共混材料具有一定的拉伸强度和弯曲强度的前提下大幅度提高PP耐冲击
性。
相容剂在共混体系中可以改善两相界面黏结状况,有利于实现微观多相体系的稳定,而宏观上是均匀的结构状态。
反应型相容剂除具有一般相容剂的功效外,在共混过程中还能在两相之间产生分子链接,显著提高共混材料性能。
PP/弹性体二元共混体系虽有很好的韧性效果,但往往降低了材料的强度和刚度,耐热性能也有所降低。
在二元共混体系中加入有增容作用或协同效应的物质,形成多元共混体系,则其综合性能可得到进一步提高。
为了提高增韧PP的硬度、热变形温度及尺寸稳定性,可使用经偶联剂活化处理的填料或增强材料进行补强。
例如采用弹性体/无机刚性粒子/PP三元复合增韧体系实现PP的增韧增强,提高材料的综合性能,并且具有较低的成本。
汽车领域
2003年,我国汽车产量为440多万辆,已位居世界第四,同比增长36.6%。
据美国ESM WerWide报道:“2008年中国汽车产量将超过600万辆,2015将超过日本,跃居世界第二位”。
这个预言已经被打破,2010年中国汽车产销量双超1800万辆,超过美国1700万辆,成为汽车工业历史上名副其实的全球第一。
汽车工业的发展离不开汽车塑料化的进程,目前我国工程塑料的自给率不足16%。
据中国工程塑料协会预测,2005年我国工程塑料需求增长率为15%,2010年约为10%,需求量将从2000年的44万t增长到2010年的140万t。
我国汽车制造业对工程塑料需求量增长迅速,到2010年总用量将达到94万t(以塑料用量占汽车重量的5%~10%计)。
PP用于汽车工业具有较强的竞争力,但因其模量和耐热性较低,冲击强度较差,因此不能直接用作汽车配件,轿车中使用的均为改性PP产品,其耐热性可由80℃提高到145℃~150℃,并能承受高温750~1000h后不老化,不龟裂。
据报道,日本丰田公司推出的新一代具有高取向结晶性的聚丙烯HEHCPP产品,可以作为汽车仪表板、保险杠,比以TPO 为原料生产的同类产品成本降低30%,改性PP用作汽车配件具有十分广阔的开发前景。
增强型
增强聚丙烯(reinforced polypropylene)是聚丙烯与玻璃纤维或有机纤维、石棉、或无机填料(滑石粉、碳酸钙)的混合物。
通常采用加入玻璃纤维、粉体添加剂或弹性体的方法对PP进行改性。
加入30%的玻璃纤维可以使收缩率降到0.7%。
均聚物型和共聚物型的PP 材料都具有优良的抗吸湿性、抗酸碱腐蚀性、抗溶解性。
然而,它对芳香烃(如苯)溶剂、氯化烃(四氯化碳)溶剂等没有抵抗力。
PP也不象PE那样在高温下仍具有抗氧化性。
一般工业用的玻璃纤维增强聚丙烯中含10~30%的纤维。
由于含有玻璃纤维而具有良好的耐热性和尺寸稳定性。
增强聚丙烯主要用于制造各种机械零件,主要包括汽车风扇、空调风扇、净水器滤瓶,在电器行业可用于各类家电外观件替代ABS、HIPS,广泛用于冰箱顶盖、空调底座、足浴器等。
水处理专用聚丙烯随着人们生活水平的提高,中国地区对水质的要求越来越高,净水器行业蓬勃发展,据统计,仅华东地区的净水器厂家多达100多家,博禄)化工在中国地区的工厂针对开发了玻纤增强PP北欧(,矿物增强PP,以适应产业的需求。
技术
填充改性
填充改性是在塑料中添加相对廉价的非金属矿粉体材料或其它材料,从而降低制品的原材料成本,同时还可以改善塑料材料某些性能,比如刚性、硬度和耐热性等。
通常使用的非矿粉体材料有碳酸钙(轻钙、重钙)、滑石粉、云母粉、高岭土、硅灰石粉、氢氧化铝、氢氧化镁或水镁石粉、沉淀硫酸钡或重晶石粉等。
填料种类改性效果
碳酸钙(重钙、轻钙)增量降低成本、提高抗冲击性能、改善印刷性
滑石粉(片状)增量降低成本、提高刚性和耐热性、提高尺寸稳定性
云母粉(片状)显著提高刚性和耐热性,提高尺寸稳定性和耐高温蠕变性
煅烧高岭土提高电绝缘性
硅灰石(针状)有一定增强效果、提高表面硬度
沉淀硫酸钡(重晶石粉)提高制品表面光泽、增大材料密度
氢氧化铝、氢氧化镁(水镁石粉)作为阻燃剂使用,达到填充、阻燃、消烟三重效果炭黑制作导电塑料,达到永久抗静电效果,提高耐光照老化性
金属粉末制作导电塑料,达到永久抗静电效果
木粉降低成本、有利资源再生利用
石墨、二硫化钼、聚四氟乙烯提高润滑性、减小摩擦力
空心玻璃微球与实心聚丙烯相比,抗压缩性能和抗热蠕变性能相当,密度为670~820 kg/m ,导热系数为0.15—0.18 W/(m·K)。
复合聚丙烯保温材料能够在3 000 m水深、140℃服役环境下长期进行使用。
以北欧化工公司(Borealis)生产的Borcoat聚丙烯保温材料为基础的多层保温结构,是一种良好的深水输送高温流体保温体系。
填充改性中也存在填料在聚丙烯基体中的分布、分散是否均匀的问题,同时填料颗粒表面需经适当处理才能与非极性聚丙烯的分子有较好的亲合性。
填料的表面处理方法及处理剂的选择是决定填充改性成败的关键。
填充改性PP生产工艺,其主机都是混炼型挤出机,可以根据不同的需要采用不同的螺杆形式。
通常情况下多采用单螺杆挤出机或双波状螺杆挤出机或双波状螺杆挤出机,只有在特殊专用料的生产上采用双螺杆机挤出机,不过对用碳酸钙填充或滑石粉填充、选用单螺杆或双波状螺杆挤出设备完全可以实现。
共混
采用机械的办法,在已经生成的聚合物中加入其它聚合物,使其性能发生变化称之为共混改性。
改性效果改性用添加物
提高抗低温冲击性乙丙橡胶、EPDM、POE、EVA、SBS
提高透明性LDPE、乙丙橡胶、POE
提高着色性聚酰胺、聚氨酯、聚丙烯酰胺、聚丙烯酸酯、聚酯、聚偏二氯乙烯
提高气密性(气体阻隔性)聚酰胺、聚偏二氯乙烯
改进抗静电性聚乙烯醇
在共混改性中必须注意不同聚合物之间的相容性,在相容性较差的两种聚合物共混时,
往往需要加入分别和两种聚合物相容性都好的第三组分,称之为相容剂。
例如聚丙烯和尼龙-6的相容性极差,单*机械的力量不能把二者混匀,此时如加入少许已经接枝有顺丁烯二酸酐的聚丙烯,由于顺丁烯二酸酐与尼龙-6的酰胺基团可发生化学反应,就可以大大改善聚丙烯和尼龙-6的相容性。
共混改性中需注意的是只有形成不完全相容的多相体系,同时又能使两种聚合物达到相互均匀分散时,才能达到预期的改性效果。
增强改性PP
纤维状材料加入到塑料中,可以显著提高塑料材料的强度,故称之为增强改性。
大径厚比的材料可以显著提高塑料材料的弯曲模量(刚性),也可以将其称之为增强改性。
玻璃纤维是主要的增强材料,可以显著提高PP塑料的拉伸强度。
玻纤含量一般不超过40%,一般认为在纤维长度大于0.2mm时有改性效果,其玻纤的直径在十几个微米时效果较好。
玻纤含量增大时,增强PP的加工流动性相应下降,但仍属流动性较好的塑料。
由于玻纤增强PP可以提高机械强度和耐热性,且玻纤增强PP的耐水蒸汽性、耐化学腐蚀性和耐蠕变性都很好,在许多场合可以作为工程塑料使用,如风扇叶片、暖风机格栅、叶轮泵、灯罩、电炉和加热器外壳等等。
鉴定
通过红外光谱(FTIR)方法可以很容易鉴定出是否为聚丙烯,以及区分出均聚、共聚和无规聚丙烯。
日常最简单的辨别方法是在无色火焰(例如打火机,酒精灯)上燃烧,样品会持续燃烧,有烟,火焰呈现黄色,并带有热机油的味道。
常见级别
一、均聚PP-聚丙烯[size=-1]Homo-polymer polypropylene,简称PPH聚丙烯PP的均聚物简称PPH,是单一丙烯单体的聚合物。
聚丙烯(PP)作为热塑塑料聚合物于1957年开始商品化生产,是有规立构聚合物中的第一个。
其历史意义更体现在,它一直是增长最快的主要热塑性塑料,2004年它的全国总产量达到300万吨。
它在热塑性塑料领域内有十分广泛的应用,特别是在纤维和长丝、薄膜挤压、注塑加工等方面。
二、PP共聚物,Polypropylene Copolymer,简称PPC,是丙烯单体与乙烯单体的共聚物;按照乙烯单体在分子链上的分布方式,共聚PP可以分为无规共聚物(PPR)和嵌段共聚物(PPB)两种。
PPR的刚性好,但耐冲击性不好,尤其耐低温冲击性更不好,耐蠕变性差。
PPB的耐冲击性好,但耐蠕变性和PPR一样差。
PPR的耐冲击性和耐蠕变性则都好。
三、CPP膜-聚丙烯CPP是”Casting Polypropylene“的简称,即聚丙烯流涎薄膜。
是通过熔体流涎、骤冷生产的一种无拉伸、非定向的平挤薄膜。
它不经过BOPP中的纵向拉伸和横向拉伸两个过程,直接流涎成产品宽度。
工程用聚丙烯纤维
分为聚丙烯单丝纤维和聚丙烯网状纤维。
聚丙烯网状纤维以改性聚丙烯为原料,经挤出、拉伸、成网、表面改性处理、短切等工序加工而成的高强度束状单丝或者网状有机纤维,其固有的耐强酸,耐强碱,弱导热性,。