正方体展开图的11种情况
正方体11种平面展开图口诀
正方体的11种平面展开图
正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。
口诀:需背诵
正方体:中间四个面,上下各一面(6种摆法-141)
中间三个面,一二隔河见(3种摆法-132/231)
中间二个面,楼梯天天见(1种摆法-222)
中间没有面,三三连一线(1种摆法-33)
“田”“凹”“7”应弃之
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。
口诀:中间四个面,上下各一面(上下面随便放)
第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。
口诀:中间三个面,一二隔河见(二三位置是固定的)
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。
口诀:中间二个面,楼梯天天见
第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。
口诀:中间没有面,三三连一线(1种摆法-33)。
正方体11种平面展开图(精心整理)
正方体的11种平面展开图
正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。
口诀:需背诵
正方体:中间四个面,上下各一面(6种摆法-141)
中间三个面,一二隔河见(3种摆法-132/231)
中间二个面,楼梯天天见(1种摆法-222)
中间没有面,三三连一线(1种摆法-33)
“田”“凹”应弃之
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。
口诀:中间四个面,上下各一面(上下面随便放)
第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。
口诀:中间三个面,一二隔河见(二三位置是固定的)
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。
口诀:中间二个面,楼梯天天见
第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。
中间没有面,三三连一线(1种摆法-33)。
正方体11种平面展开图(精心整理)
正方体的11种平面展开图
正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。
口诀:需背诵
正方体:中间四个面,上下各一面(6种摆法-141)
中间三个面,一二隔河见(3种摆法-132/231)
中间二个面,楼梯天天见(1种摆法-222)
中间没有面,三三连一线(1种摆法-33)
“田”“凹”应弃之
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。
口诀:中间四个面,上下各一面(上下面随便放)
第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。
口诀:中间三个面,一二隔河见(二三位置是固定的)
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。
口诀:中间二个面,楼梯天天见
第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。
中间没有面,三三连一线(1种摆法-33)。
正方体11种平面展开图
正方体的11种平面展开图正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。
第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。
第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。
注:①将长方体、正方体展开:无论怎么剪,都要剪7条棱。
②“隔”的原理:相对的面如果在同一行或同一排,中间一定只隔一个面;相对的面如果不在同一行或同一排,中间可以隔着一些面。
③长方体、正方体中各面的关系:相对、相邻。
每个面都有1个相对的面,4个相邻的面。
注:立体图中相对的面在展开图中符合“隔”的原理,而相邻的面在展开图中不符合“隔”的原理。
④长方体、正方体中最多可以同时看到三个面,且这三个面都是相邻的面。
⑤要区分好是从“立体图”到“展开图”,还是从“展开图”到“立体图”:互逆正方体、长方体展开图⑥长方体(不包含正方体)最多有1组相对的面是正方形;当有2组相对的面是正方形时,长方体就变成了正方体(特殊的长方体)。
长方体(不包含正方体)的6个面中,最多有4个面的面积相等;12条棱中,最多有8条棱长度相等。
(即2个相对的面是正方形,其余四个面变为完全相同的长方形。
)⑦正方体的棱长扩大a倍:棱长和扩大a倍,表面积扩大a2倍,体积扩大a3倍。
(给出其中一个,要能将其余的都求出来)⑧常见的平方、立方(需熟记在心)12=1 22=4 32=9 42=16 52= 25 62=36 72=49 82=64 92=81 ……13=1 23=8 33=27 43=64 53= 125 63=216 ……。
正方体展开全图11种情况
三 棱 锥
四棱锥
五棱锥
正方体展开图
“一四一” 型
“二三一” 型
“三三” 型
“二二二” 型
第一类(6种):中间四连方,两侧各有一个。
展开1
第一类(6种):中间四连方,两侧各有一个。
展开2
第一类(6种):中间四连方,两侧各有一个。
展开3
第一类(6种):中间四连方,两侧各有一各有一个。
展开5
第一类(6种):中间四连方,两侧各有一个。
展开6
第二类(3种):中间三连方,两侧各有一、二个。
展开7
第二类(3种):中间三连方,两侧各有一、二个。
展开8
第二类(3种):中间三连方,两侧各有一、二个。
展开9
展开10
第三类(1种):中间二连方,两侧各有二个。
相间的两个小正方形(中间隔着一个小正方形)是正方体的 两个对面,如图6中的A面和B面;“Z”字两端处的小正方形 是正方体的对面,如图7、图8的A面和B面.
A
A
B
A
B
图6
图7
B
图8
图9
例3.(2005河南)如图9,一个正方体的每个面上都写有 一个汉字,其平面展开图如图9所示,那么在该正方体中, 和“超”相对的字是 .
A
B
变形:如图有一长方体房间,在房间内一角A 处有一只小虫,它想到房间的另一角 B处去吃食物,它采取怎样的行走路线最近?
A
B
一、一线不过四
是指在正方体展开图中,一条直线上的小正方形不会 超过四个,如图1、图2都不是正方体的展开图.
图1
图2
例1.(2004连云港)下面每个图片都是由6个大小相同的 正方形组成,其中不能折成正方体的是( )
正方体11种折叠方法
探究正方体的展开图
将一个正方体的表面沿某些棱剪开,展成一个平面,共有哪些不同的图形呢?只从本质上讲,有以下三类共11种。
一、“141型”(共6种)
特点:这类展开图中,最长的一行(或一列)有4个正方形(图1~图6)。
理解:有4个面直线相连,其余2个面分别在“直线”两旁,位置任意。
二、“231型”与“33型”(共4种)
特点:这类展开图中,最长的一行(或一列)有3个正方形(如图7~图10)。
理解:在“231型”中,“3”所在的行(列)必须在中间,“2”、“1”所在行(列)分属两边(前后不分),且“2”与“3”同向,“1”可以放在“3”的任意一个正方形格旁边,这种情况共有3种,而“33型”只有1种。
三、“222型”(只有1种)
特点:展开图中,最多只有2个面直线相连(图11)。
评注:⑴将上面11个图中的任意一个,旋转一定角度或翻过来,看上去都与原图似有不同,但这只是图形放置的位置或方式不同。
实际上,它与原图能够完全重合,不能算作一个独立的新图,而从上面11个图中任取两个,不论怎样操作(旋转、翻折、平移等),它们都不可能完全重合,即彼此是独立的、不同的图形。
⑵对于由大小一样的六个正方形通过边对齐相连组成的平面图,如果图中含有“一”字型、“7”字型、“田”字型、“凹”字型,就一定不能折成正方体。
概括地说,只要不符合上述“141”、“231”和“33”、“222”的特点,就不能折成正方体。
如图12,如果将其看作“231”型,那么,无论怎么看,“2”和“3”都不是同向,故不能折成正方体。
其实,它属于“123”(或“321”)型。
正方体的11种展开图
正方体的11种展开图
正方体有11种平面展开图,不可谓不多,那么,我们该如何理解掌握这11种正方体的平面展
开图呢?正方体的平面展开图有11种之多,不容易记牢记全.为了更好的记忆掌握,我们可以把这11种展开图分成4类,只要把握各类的特征,就容易记忆了.
第一类:中间四连方,两侧各一个,共6种。
第二类:中间三连方,两侧各一、二个,共3种。
第三类:中间二连方,两侧各两个,只有1种。
第四类:两排各3个,也只有1种。
对正方体表面展开图的11种情况,为加深记忆,可编成如下口诀:
一四一呈6种,一三二有3种,二二二与三三各1种,展开图共有11种.
1.“141型”,中间一行4个作侧面,上下两个各作为上下底面,•共有6种基本图形。
2.“132型”,中间3个作侧面,共3种基本图形。
3.“222型”,两行只能有1个正方形相连。
4.“33型”,两行只能有1个正方形相连。
(当132型、 222型时要注意不能出现田字形)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据视图判断正方体的个数
正视图左视图俯视图明白吧?
你要把三个结合起来看
首先看俯视图,对一共有几列(就是几堆)有一个直观的认识
正试图,可以判断正方向上的竖排个数
这时候对照左视图,左方向上的竖排个数与正方向上相比,可以首先比出哪一排是空着的
同样,正视图与俯视图相比,可以比较出哪一列是空着的……
再不断的比较中,你必须在脑子里进行空间想象,建立模型,有时候比较一次会发生混乱,为了短暂记忆,你必须进行多次的重复比较,从而的出一个更加直观的认识
当然,如果你的空间想象能力不好的话,还有一个方法,先画出一个假设各个位置都满的正方体,再通过比较不断的删减其中的立方体,这样就免去了空间想象的时候得复杂与……呃……头痛
正方体展开图(11种情况)。