小学阶段简便计算及练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲运算定律与简便计算简单应用
(一)加减法运算定律
1.加法交换律
定义:两个加数交换位置,和不变
字母表示:a
=
a+
+
b
b
例如:16+23=23+16 546+78=78+546
2.加法结合律
定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)
+
a+
=
b
+
+
(c
(
)
b
a
c
注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:
(1)63+16+84 (2)76+15+24 (3)140+639+860
举一反三:
(1)46+67+54 (2)680+485+120 (3)155+657+245
3.减法交换律、结合律
注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b
-
=
-
a-
-
a
b
c
c
例2.简便计算:198-75-98
减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)
-
=
-
-
a+
a
(c
b
b
c
例3.简便计算:(1)369-45-155 (2)896-580-120
4.拆分、凑整法简便计算
拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…
凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…
注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
例4.计算下式,能简便的进行简便计算:
随堂练习:计算下式,怎么简便怎么计算
(1)730+895+170 (2)820-456+280 (3)900-456-244
(4)89+997 (5)103-60 (6)458+996
(7)876-580+220 (8)997+840+260 (9)956-197-56
(二)乘除法运算定律
1.乘法交换律
定义:交换两个因数的位置,积不变。
字母表示:a
⨯
a⨯
=
b
b
例如:85×18=18×85 23×88=88×23
2.乘法结合律
定义:先乘前两个数,或者先乘后两个数,积不变。
字母表示:)
⨯
a⨯
=
⨯
⨯
b
(
)
(c
b
a
c
乘法结合律的应用基于要熟练掌握一些相乘后积为整十、整百、整千的数。
例如:25×4=100, 2.5×4=10,0.25×4=1, 25×0.4=10, 0.25×0.4=0.1 125×8=1000, 12.5×8=100, 1.25×8=10, 0.125×8=1,…
例5.简便计算:(1)0.25×9×4 (2)2.5×12 (3)12.5×56
举一反三:简便计算
(1)24×17×0.4 (2)125×33×0.8 (3)32×0.25×12.5(4)24×2.5×12.5 (5)48×125×0.63 (6)2.5×15×16
3.乘法分配律
定义:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
字母表示:c
c
a⨯
b
+
a
=
(
⨯)
+
a
⨯
b
c
b
a
c
(,或者是c
a⨯
b
+)
+
⨯
⨯
=
简便计算中乘法分配律及其逆运算是运用最广泛的一个,一个要掌握它和它的逆运算。
例6.简便计算:(1)125×(8+16)(2)150×63+36×150+150 (3)12×36+120×4.2+1.2×220 (4)33×13+33×79+33×12
简便计算(二)——加减乘除综合简便计算
除了乘法分配律经常单独使用外,大多数的简便计算都同时包括了加减法、乘除法的运算定
律率,看下面例题:
例7.利用乘法分配律计算:(1)88×(12+15)(2)46×(35+56)
例8.简便计算:(1)97×15 (2)102×99 (3)35×8+35×6-4×35
例9.简便计算:
(1)4.8×100.1 (2)5.7×99.9 (3)53.9×23.6+40.5×23.6+23.6×5.6
例10.简便计算:(1)1.25×2.5×32 (2)600÷2.5÷40 (3)25×64×12.5
例11.简便计算:(1)17×62+17×31+12×17 (2)8.3×36+56.7×36+36×34.1+36
例12.简便计算:
(1)16×56-16×13+16×61-16×5 (2)43×23+18×23-23×9+4.81×230
随堂练习:简便计算
(1)63+71+37+29 (2)85-17+15-33 (3)34+72-43-57+28 (4)99×85 (5)103×26 (6)97×15+15×4 (7)25×32×125 (8)64×2.5×12.5 (9)26×(5+8)
(10)22×46+22×59-22×2 (11)17.5×46.3+17.5×54.7-17.5 (12)26×35+2.6×450+260×1.9+26×3 (13)8.2×470-82×13+820×6.8
课堂练习:简便计算
(1)36×84+36×15+36 (2)6.9×170+17×28+1.7×30
(3)71×15+15×22+15×12 (4)26×19+26×56+27×26
4.除法交换律、结合律
类似于加减法的运算定律,除法的交换律和结合律是由乘法的运算定律率衍生出来的。
除法交换律:从被除数里面连续除以两个数,交换这两个除数的位置商不变。
字母表示:b
=
÷
÷
÷
c
c
a÷
a
b
例13.简便计算:1000÷25÷8
除法结合律:从被除数里面连续除以两个数,等于被除数除以这两个数的积。
字母表示:)
÷
=
(c
÷
a⨯
÷
b
b
a
c
例14.简便计算:100÷2.5÷4
举一反三:简便计算
(1)80÷5÷4 (2)100÷1.25÷8 (3)100÷8÷2.5
课后作业:
用简便方法计算
(1)(155+356)+(345+144)(2)978-156-244
(3)24×25 (4)99×3(5)103×37
(9)13×57+13×32+13×13 (10)104×45-958-142
一、运算定律及性质
1、加法交换律:a+b=b+a
2、加法结合律:(a+b)+c=a+(b+c)
2、乘法交换律:a×b=b×a4、乘法结合律:(a×b)×c=a×(b×c)
5、乘法分配律:(a+b)×c=a×c+b×c
6、减法的性质:a-b-c=a-(b+c)
7、除法的性质:a÷b÷c=a÷(b×c)
二、怎样简便就怎样计算
355+260+140+245 102×99 2×125 645-180-245 382×101-382
4×60×50×8 35×8+35×6-4×35 125×32 25×46 101×56 1022-478-422 987-(287+135) 478-256-144 672-36+64
36+64-36+64 487-287-139-61 500-257-34-143 2000-368-132 129×101—129 149×69—149+149×3256×51+56×48+56125×25×3224×25
简便计算题集
26×39+61×26356×9-56×9 99×55+55 78×101-78 52×76+47×76+76 134×56-134+45×134 48×52×2-4×48 25×23×(40+4)999×999+1999
184+98 695+202 864-199 738-301 380+476+120 (569+468)+(432+131)
256-147-53 373-129+29 189-(89+74) 456-(256-36)
720÷16÷5 630÷42 7.2÷2.5
158+262+138 375+219+381+225 5001-247-1021-232 (181+2564)+2719
378+44+114+242+222 276+228+353+219 (375+1034)+(966+125) (2130+783+270)+1017
99+999+9999+99999 7755-(2187+755) 2214+638+286 3065-738-1065
899+344 2357-183-317-357 2365-1086-214 497-299 2370+1995
138×25×4 (13×125)×(3×8) (12+24+80)×50 704×25
25×32×125 32×(25+125) 88×125 102×76 58×98
178×101-178 84×36+64×84 75×99+2×75 83×102-83×2
98×199 123×18-123×3+85×123 50×(34×4)×3 25×(24+16)
178×99+178 79×42+79+79×57 7300÷25÷4 8100÷4÷75
16800÷120 30100÷2100 32000÷400 49700÷700
1248÷24 3150÷15 4800÷25 21500÷125
158+262+138
375+219+381+225
5001-247-1021-232
(181+2564)+2719
378+44+114+242+222
276+228+353+219
(375+1034)+(966+125)
(2130+783+270)+1017
99+999+9999+99999
7755-(2187+755)
2214+638+286
3065-738-1065
899+344
2357-183-317-357
2365-1086-214
2.73 + 0.89 + 1.27 4.37 + 0.28 + 1.63 + 5.72
10 - 0.432 - 2.568 9.3 - 5.26 - 2.74 13.4-(3.4+5.2)
14.9-(5.2+4.9) 18.32 - 5.47 - 4.32 17.29 - 5.28 - 6.29
25 × 6.8 × 0.04 0.25 × 32 × 0.125 6.4 × 1.25 × 12.5
0.45 × 201 0.58 × 10.1 50.2 × 99 4.7 × 9.9
3.28 × 5.7 + 6.72 × 5.7 2.1 × 99 + 2.1 1.7 × 9.9 + 0.17
23 × 0.1 + 2.3 × 9.9 0.18 +4.26 -0.18 +4.26
0.58 ×1.3 ÷ 0.58 ×1.3 7.3 ÷4 +2.7 × 0.25 3.75 × 0.5 - 2.75 ÷ 2
5.26 × 0.125 + 2.74 ÷ 8
6.3 ÷ 1.8 9.5 ÷(1.9 × 8)
12.8 ÷ (0.4 × 1.6)930 ÷ 0.6 ÷5 63.4 ÷ 2.5 ÷ 0.4
(7.7 + 1.54)÷ 0.7(11.7 + 9.9)÷ 0.9
6.9+4.8+3.1 15.89+(6.75-5.89)
7.85+2.34-0.85+4.66
35.6-1.8-15.6-7.2 13.75-(3.75+6.48) 47.8-7.45+2.55
4.8×100.1 4.2×99 56.5×9.9+56.5
5.4×11-5.4
3.83×
4.56+3.83×
5.44 7.09×10.8-0.8×7.09 3.65×4.7-3
6.5×0.37 13.7×0.25-3.7÷4 10.7×16.1-1.1×10.7 +10.7 ×5 4.9÷1.4
3.9÷(1.3×5) 63.4÷2.5÷0.4 (7.7+1.4)÷0.7
(12.5-0.05)×8 2.75×29-1.75×29
0.63+117+1.37+11
4 8.48—2.61-1.39 9.42-(1.36+2.42) 5.59—(2.82—3.41)
12.74-8
1+2.26-9.875 2.3×1.5×2 3.5×1.8 5.4÷4.5÷0.2
95×0.75+43×94 (1514 -21
11)×105 (125+191)×12+197 (20+74)× 107 1312×1+13
12 37×(73+283) (32+74)÷4 (2413+1613)÷16
13 (271-361)÷91 83÷117+85÷117 (21+157)÷5
7 81÷14+17× 141 0.575×19+1.9×4.25 9.6—1÷3—3
2 1283+195+7.625 98×[43-(107-0.25)] 21÷[(443-321)÷22
1] [2-(11.9-8.4×13
1)]÷1.3 1.25×4.1+12.5×0.32+0.125×27 8922971157-- 127283.11253++ 24.55
425426.354⨯++⨯ )(125.087917-⨯ 24613121⨯++)( 9
56625.6943833-+- 92546543544÷-+⨯)( 62.713
9338.121346+++ 25.44
3443475.475.4⨯++⨯ 25×2×1.25×4×5×8 84×0.25+16÷4 57.1521
193212243.14+++ )()(12717417311253--- 5
134145134855⨯+÷+⨯ 39.371151171411511717
1463.6014⨯-⨯+⨯+⨯。