菏泽市郓城县2019-2020年七年级下期中数学试卷及答案【最新】

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省菏泽市郓城县2018-2019学年七年级(下)期中数学试卷(解
析版)
一、选择题:每小题2分,共20分
1.(﹣x2)3的结果应为()
A.﹣x5B.x5C.﹣x6D.x6
2.下列计算正确的是()
A.x6÷x2=x3B.(﹣x)2•(﹣x)3=﹣x5
C.(x3)2=x5D.(﹣2x3y2)2=4x8y4
3.如果(4a2﹣3ab2)÷M=﹣4a+3b2,那么单项式M等于()
A.ab B.﹣ab C.﹣a D.﹣b
4.如图,4块完全相同的长方形围成一个正方形.图中阴影部分的面积可以用不同的代数式进行表示,由此能验证的式子是()
A.(a+b)2﹣(a﹣b)2=4ab B.(a+b)2﹣(a2+b2)=2ab
C.(a+b)(a﹣b)=a2﹣b2D.(a﹣b)2+2ab=a2+b2
5.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()
A.相等B.互余C.互补D.互为对顶角
6.将一直角三角尺与两边平行的纸条按如图所示放置,下列结论中不一定成立的是()
A.∠1=∠2 B.∠2=∠4 C.∠2+∠4=90°D.∠4+∠5=180°
7.某地海拔高度h与温度T的关系可用T=21﹣6h来表示(其中温度单位为℃,高度单位为千米),则该地区海拔高度为2000米的山顶上的温度是()
A.15℃B.3℃ C.﹣1179℃D.9℃
8.如图,∠1与∠2是对顶角的是()
A.B.C.D.
9.一蓄水池有水40m3,如果每分钟放出2m3的水,水池里的水量y(m3)与放水时间t(分)有如下关系:
A.y随t的增加而增大
B.放水时为20分钟时,水池中水量为8m3
C.y与t之间的关系式为y=40﹣t
D.放水时为18分钟时,水池中水量为4m3
10.如图所示,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是()
A.第3分时汽车的速度是40千米/时
B.第12分时汽车的速度是0千米/时
C.从第9分到第12分,汽车速度从60千米/时减少到0千米/时
D.从第3分到第6分,汽车行驶了120千米
二、填空题:每小题3分,共30分
11.计算:﹣b3•b2= .
12.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是m.13.若m+n=6,m2﹣n2=18,则(n﹣m)÷2= .
14.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为.
15.如图,由NO⊥l,MO⊥l,可以得出MO与NO重合,其中的理由是.
16.如图所示,已知∠C=100°,若增加一个条件,使得AB∥CD,试写出符合要求的一个条件.
17.如图,已知AB∥CD,若∠A=110°,∠EDA=60°,则∠CDO= .
18.一个梯形的下底长是上底长的5倍,高是4cm,则梯形的面积y与上底x之间的关系式为.
19.日常生活中,“老人”是一个模糊概念.可用“老人系数”表示一个人的老年化程度.“老人系数”的计算方法如下表:
按照这样的规定,“老人系数”为0.6的人的年龄是岁.
20.某型号汽油的数量与相应金额的关系如图所示,那么这种汽油的单价是每升元.
三、解答题:共70分
21.(12分)计算:
(1)(﹣2)7×(﹣2)6
(2)(﹣3x3)2﹣[(2x)2]3
(3)a2m+2÷a2
(4)(3a2b﹣ab2+ab)÷(﹣ab)
22.(6分)计算:
(1)|﹣8|﹣2﹣1+20150﹣2×24÷22
(2)1002×998.
23.(10分)先化简,再求值:
(1)(x﹣2y)2+(x﹣y)(x﹣2y)﹣2(x﹣3y)(x﹣y),其中x=﹣4,y=2.
(2)(a+b)(a﹣b)+(4ab2﹣8a2b2)÷4ab,其中a=2,b=1.
24.(6分)已知:∠AOB
求作:∠A′O′B′使∠A′O′B′=∠AOB(不写作法,保留作图痕迹)
25.(8分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.
26.(8分)地表以下岩层的温度与它所处的深度有表中的关系:
(2)岩层的深度h每增加1km,温度t是怎样变化的?试写出岩层的温度t与它的深度h之间的关系式;
(3)估计岩层10km深处的温度是多少.
27.(10分)如图,已知AD⊥BC于点D,EF⊥BC于点F,且AD平分∠BAC.请问:
(1)AD与EF平行吗?为什么?
(2)∠3与∠E相等吗?试说明理由.
28.(10分)已知动点P以每秒2cm的速度沿如图(1)所示的边框按从B→C→D→E→F→A 的路径移动,相应的三角形ABP的面积S(cm2)关于时间t(s)的函数图象如图(2)所示,若AB=6cm,试回答下列问题:
(1)如图(1),BC的长是多少?图形面积是多少?
(2)如图(2),图中的a是多少?b是多少?
2018-2019学年山东省菏泽市郓城县七年级(下)期中数学试卷参考答案与试题解析
一、选择题:每小题2分,共20分
1.(﹣x2)3的结果应为()
A.﹣x5B.x5C.﹣x6D.x6
【考点】幂的乘方与积的乘方.
【分析】根据幂的乘方,底数不变指数相乘,计算后直接选取答案.
【解答】解:(﹣x2)3=﹣x6.故选C.
【点评】本题考查幂的乘方的性质,熟练掌握性质是解题的关键.
2.下列计算正确的是()
A.x6÷x2=x3B.(﹣x)2•(﹣x)3=﹣x5
C.(x3)2=x5D.(﹣2x3y2)2=4x8y4
【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.
【分析】A、原式利用同底数幂的除法法则计算得到结果,即可作出判断;
B、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;
C、原式利用幂的乘方运算法则计算得到结果,即可作出判断;
D、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可作出判断.
【解答】解:A、原式=x4,错误;
B、原式=(﹣x)5=﹣x5,正确;
C、原式=x6,错误;
D、原式=4x6y4,错误,
故选B
【点评】此题考查了同底数幂的乘除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.
3.如果(4a2﹣3ab2)÷M=﹣4a+3b2,那么单项式M等于()
A.ab B.﹣ab C.﹣a D.﹣b
【考点】整式的除法.
【分析】根据除数=被除数÷商,计算即可得到结果.
【解答】解:根据题意得:M=(4a2﹣3ab2)÷(﹣4a+3b2)=﹣a(﹣4a+3b2)÷(﹣4a+3b2)=﹣a,
故选C
【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.
4.如图,4块完全相同的长方形围成一个正方形.图中阴影部分的面积可以用不同的代数式进行表示,由此能验证的式子是()
A.(a+b)2﹣(a﹣b)2=4ab B.(a+b)2﹣(a2+b2)=2ab
C.(a+b)(a﹣b)=a2﹣b2D.(a﹣b)2+2ab=a2+b2
【考点】平方差公式的几何背景.
【分析】根据大正方形的面积减小正方形的面积,可得阴影的面积,可得答案.
【解答】解:阴影的面积(a+b)2﹣(a﹣b)2=4ab,
故选A.
【点评】本题考查了平方差公式的几何背景,大正方形的面积减小正方形的面积是解题关键.
5.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()
A.相等B.互余C.互补D.互为对顶角
【考点】垂线;余角和补角;对顶角、邻补角.
【分析】根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余.
【解答】解:图中,∠2=∠COE(对顶角相等),
又∵AB⊥CD,
∴∠1+∠COE=90°,
∴∠1+∠2=90°,
∴两角互余.
故选:B.
【点评】本题考查了余角和垂线的定义以及对顶角相等的性质.
6.将一直角三角尺与两边平行的纸条按如图所示放置,下列结论中不一定成立的是()
A.∠1=∠2 B.∠2=∠4 C.∠2+∠4=90°D.∠4+∠5=180°
【考点】平行线的性质.
【分析】由于直尺的两边互相平行,故根据平行线的性质即可得出结论.
【解答】解:∵直尺的两边互相平行,
∴∠1=∠2,∠3=∠4,∠4+∠5=180°,
∵三角板的直角顶点在直尺上,
∴∠2+∠4=90°,
∴A,C,D正确.
故选B.
【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等;内错角相等;同旁内角互补.
7.某地海拔高度h与温度T的关系可用T=21﹣6h来表示(其中温度单位为℃,高度单位为千米),则该地区海拔高度为2000米的山顶上的温度是()
A.15℃B.3℃ C.﹣1179℃D.9℃
【考点】函数值.
【分析】首先把2000米化成2千米,然后把h=2代入T=21﹣6h,求出该地区海拔高度为2000米的山顶上的温度是多少即可.
【解答】解:2000米=2千米
h=2时,
T=21﹣6h
=21﹣6×2
=21﹣12
=9(℃)
∴该地区海拔高度为2000米的山顶上的温度是9℃.
故选:D.
【点评】此题主要考查了函数值的含义和求法,要熟练掌握,注意代入法的应用.
8.如图,∠1与∠2是对顶角的是()
A.B.C.D.
【考点】对顶角、邻补角.
【分析】根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角,依次判定即可得出答案.
【解答】解:A、∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角,故A选项错误;
B、∠1与∠2没有公共顶点,不是对顶角,故B选项错误;
C、∠1与∠2的两边互为反向延长线,是对顶角,故C选项正确;
D、∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角,故D选项错误.
故选:C.
【点评】本题主要考查了对顶角的定义,对顶角是相对与两个角而言,是指的两个角的一种位置关系.它是在两直线相交的前提下形成的.
9.一蓄水池有水40m3,如果每分钟放出2m3的水,水池里的水量y(m3)与放水时间t(分)有如下关系:
A.y随t的增加而增大
B.放水时为20分钟时,水池中水量为8m3
C.y与t之间的关系式为y=40﹣t
D.放水时为18分钟时,水池中水量为4m3
【考点】一次函数的应用.
【分析】根据题意可得蓄水量y=40﹣2t,从而进行各选项的判断即可.
【解答】解:A、由题意可知y随t的增大而减小,故本选项错误;
B、放水时问20分钟,水池中水量0,故本选项错误;
C、根据题意可得y=40﹣2t,故本选项错误;
D、放水时间18分钟,水池中水量4m3,故本选项正确;
故选D.
【点评】本题考查了一次函数的应用,解答本题的关键是根据题意确定函数关系式.
10.如图所示,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是()
A.第3分时汽车的速度是40千米/时
B.第12分时汽车的速度是0千米/时
C.从第9分到第12分,汽车速度从60千米/时减少到0千米/时
D.从第3分到第6分,汽车行驶了120千米
【考点】函数的图象.
【分析】根据图象反映的速度与时间的关系,可以计算路程,针对每一个选项,逐一判断.【解答】解:横轴表示时间,纵轴表示速度.
当第3分的时候,对应的速度是40千米/时,故选项A正确;
第12分的时候,对应的速度是0千米/时,故选项B正确;
从第9分到第12分,汽车对应的速度分别是60千米/时,0千米/时,所以汽车的速度从60千米/时减少到0千米/时,故选项C正确.
从第3分到第6分,汽车的速度保持不变,是40千米/时,行驶的路程为40×=2千米,故选项D错误;
综上可得:错误的是D.
故选:D.
【点评】此题主要考查了函数图象,读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.
二、填空题:每小题3分,共30分
11.计算:﹣b3•b2= ﹣b5.
【考点】同底数幂的乘法.
【分析】原式利用同底数幂的乘法法则计算即可得到结果.
【解答】解:原式=﹣b3+2=﹣b5,
故答案为:﹣b5
【点评】此题考查了同底数幂的乘法,熟练掌握运算法则是解本题的关键.
12.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是9.4×10﹣7m.
【考点】科学记数法—表示较小的数.
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【解答】解:0.00000094=9.4×10﹣7;
故答案为:9.4×10﹣7.
【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.
13.若m+n=6,m2﹣n2=18,则(n﹣m)÷2= ﹣1.5 .
【考点】平方差公式.
【分析】先根据平方差公式求出m﹣n,进而求出答案.
【解答】解:∵(m+n)(m﹣n)=m2﹣n2,
∴6(m﹣n)=18,
∴m﹣n=3,
∴n﹣m=﹣3,
∴(n﹣m)÷2=﹣3÷2=﹣1.5.
故答案为﹣1.5.
【点评】本题考查了平方差公式,解决本题的关键是熟记平方差公式.
14.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为(6a+15)cm2.
【考点】图形的剪拼.
【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.
【解答】解:矩形的面积为:
(a+4)2﹣(a+1)2
=(a2+8a+16)﹣(a2+2a+1)
=a2+8a+16﹣a2﹣2a﹣1
=6a+15.
故答案为:(6a+15)cm2,
【点评】此题考查了图形的剪拼,关键是根据题意列出式子,运用完全平方公式进行计算,要熟记公式.
15.如图,由NO⊥l,MO⊥l,可以得出MO与NO重合,其中的理由是同一平面内,经过一点有且只有一条直线与已知直线垂直.
【考点】垂线.
【分析】利用平面内,经过一点有且只有一条直线与已知直线垂直,进行填空即可.
【解答】解:∵直线OM、ON都经过一个点O,且都垂直于l,
∴MO与NO重合,
故答案为同一平面内,经过一点有且只有一条直线与已知直线垂直.
【点评】本题考查了垂线,理解“垂直的定义”、“两点确定一条直线”、“垂线段最短”
及“经过一点有且只有一条直线与已知直线垂直”的含义是解答本题的关键.
16.如图所示,已知∠C=100°,若增加一个条件,使得AB∥CD,试写出符合要求的一个条件∠BEC=80°等,答案不是唯一.
【考点】平行线的判定.
【分析】欲证AB∥CD,在图中发现AB、CD被一直线所截,且已知一同旁内角∠C=100°,故可按同旁内角互补两直线平行补充条件.
【解答】解:∵∠C=100°,
要使AB∥CD,
则要∠BEC=180°﹣100°=80°(同旁内角互补两直线平行).
【点评】解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养“执果索图”的思维方式与能力.
17.如图,已知AB∥CD,若∠A=110°,∠EDA=60°,则∠CDO= 50°.
【考点】平行线的性质.
【分析】根据平行线的性质可得∠ADC=180°﹣∠A=70°,然后根据平角的定义即可得到结论.
【解答】解:∵AB∥CD,
∴∠ADC=180°﹣∠A=70°,
∵∠EDA=60°,
∴∠CDO=180°﹣60°﹣70°=50°,
故答案为:50°.
【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.
18.一个梯形的下底长是上底长的5倍,高是4cm,则梯形的面积y与上底x之间的关系式
为 y=12x . 【考点】函数关系式.
【分析】根据梯形的面积=(上底+下底)×高,即可列出关系式. 【解答】解:∵梯形的下底长是上底长的5倍, ∴下底长为5x ,
∴梯形的面积y=(x+5x )×4=12x ; 故答案为:y=12x .
【点评】本题考查了函数关系式的知识,属于基础题,掌握梯形的面积公式是解题关键.
19.日常生活中,“老人”是一个模糊概念.可用“老人系数”表示一个人的老年化程度.“老人系数”的计算方法如下表:
的人的年龄是 72 岁. 【考点】函数的表示方法.
【分析】根据所给的函数关系式所对应的自变量的取值范围,发现:当y=0.6时,在60<x <80之间,所以将y 的值代入对应的函数解析式即可求得函数的值. 【解答】解:设人的年龄为x 岁, ∵“老人系数”为0.6, ∴由表得60<x <80, 即
=0.6,解得,x=72,
故“老人系数”为0.6的人的年龄是72岁.
【点评】考查了函数的表示方法,能够根据所给的函数的值,结合各个函数关系式所对应的自变量的取值范围,确定其对应的函数关系式,再代入计算.
20.某型号汽油的数量与相应金额的关系如图所示,那么这种汽油的单价是每升 5.09 元.
【考点】函数的图象.
【分析】根据图象知道100升油花费了509元,由此即可求出这种汽油的单价.
【解答】解:单价=509÷100=5.09元.
故答案为:5.09.
【点评】本题主要考查数形结合,根据图象信息利用等量关系:单价=总价÷数量即可求出结果.
三、解答题:共70分
21.(12分)(2016春•郓城县期中)计算:
(1)(﹣2)7×(﹣2)6
(2)(﹣3x3)2﹣[(2x)2]3
(3)a2m+2÷a2
(4)(3a2b﹣ab2+ab)÷(﹣ab)
【考点】整式的混合运算.
【分析】(1)根据同底数幂的乘法可以解答本题;
(2)根据积的乘方、合并同类项可以解答本题;
(3)根据同底数幂的除法可以解答本题;
(4)根据多项式除以单项式可以解答本题.
【解答】解:(1)(﹣2)7×(﹣2)6
=(﹣2)7+6
=(﹣2)13;
(2)(﹣3x3)2﹣[(2x)2]3
=9x6﹣(4x2)3
=9x6﹣64x6
=﹣55x6;
(3)a2m+2÷a2
=a2m;
(4)(3a2b﹣ab2+ab)÷(﹣ab)
=﹣3a2b÷+ab2÷﹣÷
=﹣6a+2b﹣1.
【点评】本体考查整式的混合运算,解题的关键是明确整式的混合运算的计算方法.
22.计算:
(1)|﹣8|﹣2﹣1+20150﹣2×24÷22
(2)1002×998.
【考点】平方差公式;零指数幂;负整数指数幂.
【分析】(1)原式利用绝对值的代数意义,零指数幂、负整数幂法则,以及同底数幂的乘除法则计算即可得到结果;
(2)原式变形后,利用平方差公式计算即可得到结果.
【解答】解:(1)原式=8﹣+1﹣8=;
(2)原式=(1000+2)×(1000﹣2)=10002﹣22=999996.
【点评】此题考查了平方差公式,以及实数的运算,熟练掌握运算法则是解本题的关键.23.(10分)(2016春•郓城县期中)先化简,再求值:
(1)(x﹣2y)2+(x﹣y)(x﹣2y)﹣2(x﹣3y)(x﹣y),其中x=﹣4,y=2.
(2)(a+b)(a﹣b)+(4ab2﹣8a2b2)÷4ab,其中a=2,b=1.
【考点】整式的混合运算—化简求值.
【分析】(1)先将原式展开,然后合并同类项并化简,再将x=﹣4,y=2代入化简后的式子即可解答本题;
(2)先将原式展开并化简,再将a=2,b=1代入化简后的式子即可解答本题.
【解答】解:(1)(x﹣2y)2+(x﹣y)(x﹣2y)﹣2(x﹣3y)(x﹣y)
=(x﹣2y)(x﹣2y+x﹣y)﹣2(x﹣3y)(x﹣y)
=(x﹣2y)(2x﹣3y)﹣2(x﹣3y)(x﹣y)
=2x2﹣7xy+6y2﹣2x2+8xy﹣6y2
当x=﹣4,y=2时,原式=(﹣4)×;
(2))(a+b)(a﹣b)+(4ab2﹣8a2b2)÷4ab
=a2﹣b2+b﹣2ab,
当a=2,b=1时,原式=22﹣12+1﹣2×2×1=4﹣1+1﹣4=0.
【点评】本题考查整式的混合运算﹣化简求值,解题的关键是明确整式的混合运算的计算方法.
24.已知:∠AOB
求作:∠A′O′B′使∠A′O′B′=∠AOB(不写作法,保留作图痕迹)
【考点】作图—基本作图.
【分析】先作射线O′B′,然后以点O为圆心,以任意长为半径,画弧分别与OA、OB相交于点E、F,以O′为圆心,以相同的长度为半径画弧与OB′相交于点E′,再以点E′为圆心,以EF的长度为半径画弧,与前弧相交于点F′,过点O′、F′作射OA′,则∠A′O′B′即为所求.
【解答】解:如图所示,∠A′O′B′就是所要求作的角.
【点评】本题主要考查了作一个角等于已知角,是基本作图,需熟练掌握.
25.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.
【考点】平行线的判定.
【分析】首先利用平行线的性质以及角平分线的性质得到满足关于AD∥BC的条件,内错角∠2和∠E相等,得出结论.
【解答】证明:∵AE平分∠BAD,
∴∠1=∠2,
∵AB∥CD,∠CFE=∠E,
∴∠1=∠CFE=∠E,
∴∠2=∠E,
∴AD∥BC.
【点评】本题考查角平分线的性质以及平行线的判定定理.
26.地表以下岩层的温度与它所处的深度有表中的关系:
(2)岩层的深度h每增加1km,温度t是怎样变化的?试写出岩层的温度t与它的深度h之间的关系式;
(3)估计岩层10km深处的温度是多少.
【考点】函数关系式;常量与变量.
【分析】(1)直接利用常量与变量的关系得出自变量和因变量;
(2)利用表格中数据进而得出答案;
(3)直接利用(2)中函数关系式得出t的值.
【解答】解:(1)上表反映了岩层的深度h(km)与岩层的温度t(℃)之间的关系;
其中岩层深度h(km)是自变量,岩层的温度t(℃)是因变量;
(2)岩层的深度h每增加1km,温度t上升35℃,
关系式:t=55+35(h﹣1)=35h+20;
(3)当h=10km时,t=35×10+20=370(℃).
【点评】此题主要考查了函数关系式以及常量与变量,正确得出函数关系式是解题关键.
27.(10分)(2016春•郓城县期中)如图,已知AD⊥BC于点D,EF⊥BC于点F,且AD平分∠BAC.请问:
(1)AD与EF平行吗?为什么?
(2)∠3与∠E相等吗?试说明理由.
【考点】平行线的判定.
【分析】(1)根据垂直的定义可得∠EFD=∠ADC=90°,再根据同位角相等,两直线平行解答;
(2)根据两直线平行,同位角相等可得∠1=∠E,两直线平行,内错角相等可得∠2=∠3,根据角平分线的定义可得∠1=∠2,最后等量代换即可得证.
【解答】解:(1)AD∥EF.
理由如下:∵AD⊥BC,EF⊥BC,
∴∠EFD=∠ADC=90°,
∴AD∥EF;
(2)∠3=∠E.
理由如下:∵AD∥EF,
∴∠1=∠E,∠2=∠3,
∵AD平分∠BAC,
∴∠1=∠2,
∴∠3=∠E.
【点评】本题考查了平行线的判定,平行线的性质,垂线的定义,是基础题,熟记判定方法与性质是解题的关键.
28.(10分)(2016春•郓城县期中)已知动点P以每秒2cm的速度沿如图(1)所示的边框按从B→C→D→E→F→A的路径移动,相应的三角形ABP的面积S(cm2)关于时间t(s)的函数图象如图(2)所示,若AB=6cm,试回答下列问题:
(1)如图(1),BC的长是多少?图形面积是多少?
(2)如图(2),图中的a是多少?b是多少?
【考点】动点问题的函数图象.
【分析】(1)先根据图形中所得的移动时间,计算BC、CD、DE的长,再根据EF、AF的长求得相应的时间,最后计算图形的面积;
(2)先根据a是点P移动4s时△ABP的面积,求得a的值,再根据b为点P走完全程的时间,求得b的值.
【解答】解:(1)由图得,点P在BC上移动了4s,故BC=2×4=8(cm)
点P在CD上移动了2s,故CD=2×2=4(cm)
点P在DE上移动了3s,故DE=2×3=6(cm)
由EF=AB﹣CD=6﹣4=2cm可得,点P在EF上移动了1(s)
由AF=BC+DE=8+6=14cm,可得点P在FA上移动了7(s)
∴图形面积=14×6﹣4×6=84﹣24=60(cm2)
故BC的长为8cm,图形面积为60cm2;
(2)由图得,a是点P移动4s时△ABP的面积
∴a=×6×8=24(cm2)
b为点P走完全程的时间:9+1+7=17(s)
故图中的a是24,b是17.
【点评】本题主要考查了动点问题的函数图象,解决问题的关键是深刻理解动点的函数图象
所代表的实际意义,理解动点的完整运动过程,从函数图象中获取相关的信息进行计算.21。

相关文档
最新文档