八年级数学下册 2.6 一元一次不等式组同步练习2 (新版)北师大版
北师大版八年级数学下册2.6一元一次不等式组(二)
主备人:王文锦 审核人:王文锦 审批人:王文锦 教师个性化设计、 学 法指导或学生笔记
课题:第 9 课时一元一次不等式组(二)
学习目标: (一)知识认知要求:1.会解由两个或两个以上一元一次不等式组成的不等式 组并能用数轴求得解集;2.总结解一元一次不等式组的步骤及情形。 (二) 能力训练要求: 通过总结解一元一次不等式组的步骤, 培养学生的类比推理能力和不完全归纳能力。 (三) 情感与价值观要求:1.培养学生独立思考的习惯,加强运算的熟练性与准确性.2.培养学 生的合作交流意识与创新意识,为学生在今后生活和学习中更好运用数学作准备。 学习重点:1. 利用数轴,正确求出一元一次不等式的解集。2.巩固解一元一次不等式组. 学习难点:讨论求不等式解集的公共部分中出现的所有情况,并能清晰地阐述自己观点. 第一环节、创设情境,导入新课 活动内容:问题:现有两根木条 a 和 b,a 长 7cm,b 长 3cm,如果要再找一根木条 x,用 这三根木条钉成一个三角形木框,请动手试一试:1.当 x 是 14cm 时,能与 a 和 b 钉成三 角形木框吗?2.当 x 是 9cm 时,能与 a 和 b 钉成三角形木框吗?3.当 x 是 4cm 时,能与 a 和 b 钉成三角形木框吗? 4.在什么条件下,长度为 3cm,7cm,xcm 的三条线段可以围成 三角形? 第二环节、合作交流,探究新知 活动内容:解下列不等式组:
课后反思:
请大家认真观察一下这四组解,你发现了什么?
八年级数学导学案第 9 课时
主备人:王文锦 审核人:王文锦 审批人:王文锦
设 a<b,那么
两个一元一次不等式所组成的不等式组的解集有以下四种情形.
(1)不等式组
x a 的解集是 x>b; x b
北师版八年级下数学2.6一元一次不等式组习题精选2(含答案)
数学2.6习题精选2(含答案)一.选择题(共14小题)2.若使代数式的值在﹣1和2之间,m可以取的整数有()4.(2011•青岛二模)用若干辆载重量为6千克的货车运一批货物,若每辆汽车只装4千克,则剩下18千克货物;.5.(2010•扬州二模)小燕子要在鱼缸里饲养A、B两种观赏鱼.A种观赏鱼的生长温度x℃的范围是15≤x≤28,B6.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍..C D.8.若干个苹果分给x个小孩,如果每人分3个,那么余7个;如果每人分5个,那么最后一人分到的苹果不足59.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1名同学植树的棵数不到8棵.若设同学人数为x人,下列各项能准确的求出同学人数与种植的树木的数量的是().7x+9﹣9(x﹣1)>0 B.7x+9﹣9(x﹣1)<810.(2013•宜昌)地球正面临第六次生物大灭绝,据科学家预测,到2050年,目前的四分之一到一半的物种将会灭绝或濒临灭绝,2012年底,长江江豚数量仅剩约1000头,其数量年平均下降的百分率在13%﹣15%范围内,由此预测,2013年底剩下江豚的数量可能为()头.11.(2007•厦门)小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为69千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈同坐在跷跷板的一端,这时爸爸的一端仍然着地.后来小宝借来一副质量为6千克的哑铃,12.(2013•吴江市模拟)某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到吴江儿童福利院看望孤儿.如果分给每位儿童4盒牛奶,那么剩下28盒牛奶;如果分给每位儿童5盒牛奶,那么最后一位儿童分不到5盒,但14.今年四月份,李大叔收获洋葱30吨,黄瓜13吨.现计划租用甲、乙两种货车共10辆将这两种蔬菜全部运往外地销售,已知一辆甲种货车可装洋葱4吨和黄瓜1吨,一辆乙种货车可装运洋葱和黄瓜各2吨.李大叔租用甲、二.填空题(共4小题)15.已知一个三角形的两边长分别是3cm和4cm,第三边长x是奇数,则x的值是_________.16.不等式﹣1<≤2的整数解为_________.17.一玩具公司在每天工作10小时的机器上制造两种玩具:卫兵和骑兵,造一个卫兵需8秒和8克金属;造一个骑兵需6秒和16克金属,每天可供给的金属量最多只有6.4千克,设卫兵数x个,骑兵数为y个,那么x、y满足的关系式是_________.18.等腰三角形腰和底边长分别为xcm和ycm,周长小于20cm,则x和y必须满足的不等式组为_________.三.解答题(共12小题)19.(2013•自贡)解不等式组:并写出它的所有的整数解.20.(2013•深圳)解下等式组:,并写出其整数解.21.(2012•乐山)解不等式组,并求出它的整数解的和.22.(2013•邵阳)雅安地震后,政府为安置灾民,从某厂调拨了用于搭建板房的板材5600m2和铝材2210m2,计划用这些材料在某安置点搭建甲、乙两种规格的板房共100间,若搭建一间甲型板房或一间乙型板房所需板材和铝材23.(2013•西宁)青海新闻网讯:西宁市为加大向国家环境保护模范城市大步迈进的步伐,积极推进城市绿地、主题公园、休闲场地建设.园林局利用甲种花卉和乙种花卉搭配成A、B两种园艺造型摆放在夏都大道两侧.搭配数A种园艺造型32个,B种园艺造型18个共投入11800元.则A、B两种园艺造型的单价分别是多少元?(2)如果搭配A、B两种园艺造型共50个,某校学生课外小组承接了搭配方案的设计,其中甲种花卉不超过3490盆,乙种花卉不超过2950盆,问符合题意的搭配方案有几种?请你帮忙设计出来.24.(2013•盘锦)端午节期间,某校“慈善小组”筹集到1240元善款,全部用于购买水果和粽子,然后到福利院送给老人,决定购买大枣粽子和普通粽子共20盒,剩下的钱用于购买水果,要求购买水果的钱数不少于180元但不超过240元.已知大枣粽子比普通粽子每盒贵15元,若用300元恰好可以买到2盒大枣粽子和4盒普通粽子.(1)请求出两种口味的粽子每盒的价格;(2)设买大枣粽子x盒,买水果共用了w元.①请求出w关于x的函数关系式;‚②求出购买两种粽子的可能方案,并说明哪一种方案使购买水果的钱数最多.25.(2013•攀枝花)某文具店准备购进甲,乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?26.(2013•黄冈)为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资,现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表:27.(2013•黑龙江)为了落实党中央提出的“惠民政策”,我市今年计划开发建设A、B两种户型的“廉租房”共40套.投入资金不超过200万元,又不低于198万元.开发建设办公室预算:一套A型“廉租房”的造价为5.2万元,一套B 型“廉租房”的造价为4.8万元.(1)请问有几种开发建设方案?(2)哪种建设方案投入资金最少?最少资金是多少万元?(3)在(2)的方案下,为了让更多的人享受到“惠民”政策,开发建设办公室决定通过缩小“廉租房”的面积来降低造价、节省资金.每套A户型“廉租房”的造价降低0.7万元,每套B户型“廉租房”的造价降低0.3万元,将节省下来的资金全部用于再次开发建设缩小面积后的“廉租房”,如果同时建设A、B两种户型,请你直接写出再次开发建设的方案.28.(2012•贵港)某公司决定利用仅有的349个甲种部件和295个乙种部件组装A、B两种型号的简易板房共50套捐赠给灾区.已知组装一套A型号简易板房需要甲种部件8个和乙种部件4个,组装一套B型号简易板房需要甲种部件5个和乙种部件9个.(1)该公司组装A、B两种型号的简易板房时,共有多少种组装方案?(2)若组装A、B两种型号的简易板房所需费用分别为每套200元和180元,问最少总组装费用是多少元?并写出总组装费用最少时的组装方案.29.(2012•阜新)某仓库有甲种货物360吨,乙种货物290吨,计划用A、B两种共50辆货车运往外地.已知一辆A种货车的运费需0.5万元,一辆B种货车的运费需0.8万元.(1)设A种货车为x辆,运输这批货物的总运费为y万元,试写出y与x的关系表达式;(2)若一辆A种货车能装载甲种货物9吨和乙种货物3吨;一辆B种货车能装载甲种货物6吨和乙种货物8吨.按此要求安排A,B两种货车运送这批货物,有哪几种运输方案?请设计出来;(3)试说明哪种方案总运费最少?最少运费是多少万元?30.(2012•本溪)某商店购进甲、乙两种型号的滑板车,共花费13000元,所购进甲型车的数量不少于乙型车数量的二倍,但不超过乙型车数量的三倍.现已知甲型车每辆进价200元,乙型车每辆进价400元,设商店购进乙型车x辆.(1)商店有哪几种购车方案?(2)若商店将购进的甲、乙两种型号的滑板车全部售出,并且销售甲型车每辆获得利润70元,销售乙型车每辆获得利润50元,写出此商店销售这两种滑板车所获得的总利润y(元)与购进乙型车的辆数x(辆)之间的函数关系式?并求出商店购进乙型车多少辆时所获得的利润最大?数学2.6习题精选2(含答案)参考答案与试题解析一.选择题(共14小题)2.若使代数式的值在﹣1和2之间,m可以取的整数有()>﹣,<<,,4.(2011•青岛二模)用若干辆载重量为6千克的货车运一批货物,若每辆汽车只装4千克,则剩下18千克货物;.5.(2010•扬州二模)小燕子要在鱼缸里饲养A、B两种观赏鱼.A种观赏鱼的生长温度x℃的范围是15≤x≤28,B6.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍.∴列的不等式组为:.C D.解:根据题意得:8.若干个苹果分给x个小孩,如果每人分3个,那么余7个;如果每人分5个,那么最后一人分到的苹果不足59.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1名同学植树的∴可列不等式组为:10.(2013•宜昌)地球正面临第六次生物大灭绝,据科学家预测,到2050年,目前的四分之一到一半的物种将会灭绝或濒临灭绝,2012年底,长江江豚数量仅剩约1000头,其数量年平均下降的百分率在13%﹣15%范围内,由此预测,2013年底剩下江豚的数量可能为()头.11.(2007•厦门)小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为69千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈同坐在跷跷板的一端,这时爸爸的一端仍然着地.后来小宝借来一副质量为6千克的哑铃,12.(2013•吴江市模拟)某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到吴江儿童福利院看望孤儿.如果分给每位儿童4盒牛奶,那么剩下28盒牛奶;如果分给每位儿童5盒牛奶,那么最后一位儿童分不到5盒,但依题意得:>的取值范围是<14.今年四月份,李大叔收获洋葱30吨,黄瓜13吨.现计划租用甲、乙两种货车共10辆将这两种蔬菜全部运往外地销售,已知一辆甲种货车可装洋葱4吨和黄瓜1吨,一辆乙种货车可装运洋葱和黄瓜各2吨.李大叔租用甲、依题意得:解这个不等式组得二.填空题(共4小题)15.已知一个三角形的两边长分别是3cm和4cm,第三边长x是奇数,则x的值是3或5.16.不等式﹣1<≤2的整数解为﹣2,﹣1,0,1,2.<化为不等式组>﹣①,≤17.一玩具公司在每天工作10小时的机器上制造两种玩具:卫兵和骑兵,造一个卫兵需8秒和8克金属;造一个骑兵需6秒和16克金属,每天可供给的金属量最多只有6.4千克,设卫兵数x个,骑兵数为y个,那么x、y满足的关系式是8x+6y≤36000,8x+16y≤6400.18.等腰三角形腰和底边长分别为xcm和ycm,周长小于20cm,则x和y必须满足的不等式组为.解:根据题意,得三.解答题(共12小题)19.(2013•自贡)解不等式组:并写出它的所有的整数解.,20.(2013•深圳)解下等式组:,并写出其整数解.>﹣,<21.(2012•乐山)解不等式组,并求出它的整数解的和.22.(2013•邵阳)雅安地震后,政府为安置灾民,从某厂调拨了用于搭建板房的板材5600m2和铝材2210m2,计划用这些材料在某安置点搭建甲、乙两种规格的板房共100间,若搭建一间甲型板房或一间乙型板房所需板材和铝材请你根据以上信息,设计出甲、乙两种板房的搭建方案.23.(2013•西宁)青海新闻网讯:西宁市为加大向国家环境保护模范城市大步迈进的步伐,积极推进城市绿地、主题公园、休闲场地建设.园林局利用甲种花卉和乙种花卉搭配成A、B两种园艺造型摆放在夏都大道两侧.搭配数A种园艺造型32个,B种园艺造型18个共投入11800元.则A、B两种园艺造型的单价分别是多少元?(2)如果搭配A、B两种园艺造型共50个,某校学生课外小组承接了搭配方案的设计,其中甲种花卉不超过3490盆,乙种花卉不超过2950盆,问符合题意的搭配方案有几种?请你帮忙设计出来.,,24.(2013•盘锦)端午节期间,某校“慈善小组”筹集到1240元善款,全部用于购买水果和粽子,然后到福利院送给老人,决定购买大枣粽子和普通粽子共20盒,剩下的钱用于购买水果,要求购买水果的钱数不少于180元但不超过240元.已知大枣粽子比普通粽子每盒贵15元,若用300元恰好可以买到2盒大枣粽子和4盒普通粽子.(1)请求出两种口味的粽子每盒的价格;(2)设买大枣粽子x盒,买水果共用了w元.①请求出w关于x的函数关系式;‚②求出购买两种粽子的可能方案,并说明哪一种方案使购买水果的钱数最多.,.10,66,25.(2013•攀枝花)某文具店准备购进甲,乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?,26.(2013•黄冈)为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资,现准备租用甲、乙两种货车,如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.27.(2013•黑龙江)为了落实党中央提出的“惠民政策”,我市今年计划开发建设A、B两种户型的“廉租房”共40套.投入资金不超过200万元,又不低于198万元.开发建设办公室预算:一套A型“廉租房”的造价为5.2万元,一套B 型“廉租房”的造价为4.8万元.(1)请问有几种开发建设方案?(2)哪种建设方案投入资金最少?最少资金是多少万元?(3)在(2)的方案下,为了让更多的人享受到“惠民”政策,开发建设办公室决定通过缩小“廉租房”的面积来降低造价、节省资金.每套A户型“廉租房”的造价降低0.7万元,每套B户型“廉租房”的造价降低0.3万元,将节省下来的资金全部用于再次开发建设缩小面积后的“廉租房”,如果同时建设A、B两种户型,请你直接写出再次开发建设的方案.28.(2012•贵港)某公司决定利用仅有的349个甲种部件和295个乙种部件组装A、B两种型号的简易板房共50套捐赠给灾区.已知组装一套A型号简易板房需要甲种部件8个和乙种部件4个,组装一套B型号简易板房需要甲种部件5个和乙种部件9个.(1)该公司组装A、B两种型号的简易板房时,共有多少种组装方案?(2)若组装A、B两种型号的简易板房所需费用分别为每套200元和180元,问最少总组装费用是多少元?并写出总组装费用最少时的组装方案.29.(2012•阜新)某仓库有甲种货物360吨,乙种货物290吨,计划用A、B两种共50辆货车运往外地.已知一辆A种货车的运费需0.5万元,一辆B种货车的运费需0.8万元.(1)设A种货车为x辆,运输这批货物的总运费为y万元,试写出y与x的关系表达式;(2)若一辆A种货车能装载甲种货物9吨和乙种货物3吨;一辆B种货车能装载甲种货物6吨和乙种货物8吨.按此要求安排A,B两种货车运送这批货物,有哪几种运输方案?请设计出来;(3)试说明哪种方案总运费最少?最少运费是多少万元?30.(2012•本溪)某商店购进甲、乙两种型号的滑板车,共花费13000元,所购进甲型车的数量不少于乙型车数量的二倍,但不超过乙型车数量的三倍.现已知甲型车每辆进价200元,乙型车每辆进价400元,设商店购进乙型车x辆.(1)商店有哪几种购车方案?(2)若商店将购进的甲、乙两种型号的滑板车全部售出,并且销售甲型车每辆获得利润70元,销售乙型车每辆获得利润50元,写出此商店销售这两种滑板车所获得的总利润y(元)与购进乙型车的辆数x(辆)之间的函数关系式?并求出商店购进乙型车多少辆时所获得的利润最大?辆.则甲型是:辆.根据所购进甲型车的数量不少于乙型车数量辆.,是正整数.×。
2021-2022学年度初中数学北师大版八年级下册第二章第六节 一元一次不等式组 同步练习
初中数学北师大版八年级下册第二章第六节一元一次不等式组同步练习一、单选题1.下列不等式组中,无解的是()A.{x<2x<−3B.{x<2x>−3C.{x>2x>−3D.{x>2x<−32.已知关于x的不等式组的{x−a≥b2x−a<2b+1解集为3≤x<5,则ba的值为()A.﹣2B.−12C.﹣4D.﹣143.若不等式组{x<1x<m的解为x<m,则m的取值范围为()A.m≤1B.m=1C.m≥1D.m<14.定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[3.2]=3,[2]=2,[-2.3]=-3.如果[x−12]=2,则x的取值范围是()A.5≤x≤7B.5<x≤7C.5<x<7D.5≤x<75.定义一种运算:a∗b={a,a≥bb,a<b,则不等式(2x+1)∗(2−x)>3的解集是()A.x>1或x<13B.−1<x<13C.x>1或x<−1D.x>13或x<−16.已知某程序如图所示,规定:从“输入实数x”到“结果是否大于95”为一次操作,如果该程序进行了两次操作停止,那么实数x的取值范围是()A.x>23B.11≤x≤23C.23<x≤47D.x≤477.若关于x的一元次不等式组{−2x+3m4≤2x2x+7≤4(x+1)的解集为x≥32,且关于y的方程3y−2=2m−(5−3y)2的解为非负整数,则符合条件的所有整数m的积为()A.2B.7C.11D.108.目前,我国已获批上市4款自主研发的新冠疫苗.某生物制药公司计划生产制造A、B两种疫苗共40万支,已知生产每支A疫苗需甲种原料8mg,乙种原料5mg;生产每支B疫苗需甲种原料4mg,乙种原料9mg.公司现有甲种原料4kg,乙种原料3kg,设计划生产A疫苗x支,下列符合题意的不等式组是( )A .{8x +5(400000−x)≤40000004x +9(400000−x)≤3000000B .{5x +9(400000−x)≤40000008x +4(400000−x)≤3000000C .{8x +4(400000−x)≤40000005x +9(400000−x)≤3000000D .{8x +9(400000−x)≤40000005x +4(400000−x)≤3000000二、填空题9.不等式组 {5x +4>3xx−12≤2x−15 的解是 .10.已知关于 x 的不等式组 {5−3x ≥−1,a −2x <0无解,则 a 的取值范围是 . 11.三个数3, 1-a ,1-2a 在数轴上从左到右依次排列,且以这三个数为边长能构成三角形,则a 的取值范围为12.在某种药品的说明书上的部分内容是“用法用量:每天 30~60mg ,分2~3次服用”.则一次服用这种药品的剂量 x 的范围是 mg .13.对于任意实数,m ,n ,定义一种运算: m※n =mn −m −n +72 ,请根据上述定义解决问题:若关于x 的不等式 a <(12※x)<7 的解集中只有一个整数解,则实数a 的取值范围是 .14.若点 P 的坐标为 (x−15,2x −10) ,其中 x 满足不等式组 {5x −10≥2(x +1)12x −1≤7−32x ,则点 P 在第 象限.15.令 a 、b 两数中较大的数记作 max|a ,b|,如 max|2,3|=3,已知 k 为正整数且使不等式 max|2k+1,﹣k+5|≤5 成立,则 k 的值是 .16. 12月是成都奶油巧克力草莓大丰收的季节,重庆渝北海领开展“水果一带一路”活动,成都顺丰快递公司出动所有车辆分12月25,26日两批往重庆运输现摘草莓.该公司共有A ,B ,C 三种车型,其中A 型车数量占公司车辆总数的一半,B 型车数量与C 型车数量相等.25日安排A 型车数量的一半,B 型车数量的 13 ,C 型车数量的 34 进行运输,且25日A ,B ,C 三种车型每辆车载货量分别为10吨,15吨,20吨,则25日刚好运完所有草莓重量的一半.26日安排剩下的所有车辆完成剩下的所有草莓的运输,且26日A ,B ,C 三种车型每辆载货量分别不超过14吨,27吨,24吨.26日B 型车实际载货量为26日A 型车每辆实际载货量的 32.已知同型货车每辆的实际载货量相等,A ,B ,C 三种车型每辆车26日运输成本分别为100元/吨,200元/吨,75元/吨,则26日运输时,一辆A 型车、一辆B 型车,一辆C 型车总的运输成本至多为 元.三、解答题17.解不等式组: {6(23x −2)<x −31−x2−2⩽x 并把解集在数轴上表示出来.18.已知a ,b ,c 是△ABC 的三边长,若b =2a ﹣1,c =a+5,且△ABC 的周长不超过20cm ,求a 的范围.19.x 取哪些正整数值时,不等式 5x +2>3(x −1) 与 2x−13≤3x+16 都成立?20.已知关于x ,y 的方程满足方程组 {3x +2y =m +1 ①2x +y =m −1 ② ,(Ⅰ)若 x-y=2 ,求m 的值;(Ⅱ)若x ,y ,m 均为非负数,求m 的取值范围,并化简式子|m −3|+|m −5| ;(Ⅲ)在(Ⅱ)的条件下求 s =2x −3y +m 的最小值及最大值.四、综合题21.疫情期间,为满足市民的防护需求,某医药公司想要购买A 、B 两种口罩.在进行市场调研时发现:A 型口罩比B 型口罩每件进价多了10元.用68000元购买A 型口罩的件数是用32000元购买B 型口罩件数的2倍.(1)A 、B 型口罩进价分别为每件多少元?(2)若该公司计划购买A 、B 型口罩共200件,其中A 型口罩的件数不大于B 型口罩的件数,且用于购买A 型口罩的钱数多于购买B 型口罩的钱数.设购买A 型口罩x 件,则符合条件的进货方案共多少种?(件数均为整数,不用列出方案)22.2010年6月5日是第38个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”.为了响应节能减排的号召,某品牌汽车4S 店准备购进A 型(电动汽车)和B 型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求.市场营销人员经过市场调查得到如下信息:(1)若经营者的购买资金不少于576万元且不多于600万元,则有哪几种进车方案?(2)在(1)的前提下,如果你是经营者,并且所进的汽车能全部售出,你会选择哪种进车方案才能使获得的利润最大?最大利润是多少?(3)假设每台电动汽车每公里的用电费用为0.65元,且两种汽车最大行驶里程均为30万公里,那么从节约资金的角度,你做为一名购车者,将会选购哪一种型号的汽车?并说明理由.23.对实数x 、y ,我们定义一种新运算:F (x ,y ) =ax +by (其中a ,b 为常数).例如:F (2,3) =2a +3b ,F (2, −3 ) =2a −3b .已知F (1,1)=2,F (1, −1 )=0. (1)则 a = , b = ;(2)若方程组 {F(x,−y)=4m −3F(x,2y)=−5m 的解中,x 是非正数,y 是负数: ①求m 的取值范围;②若 2x ⋅4y =2n ,求n 的最小值;(3)若关于x 的不等式组 {F(3x,0)>−2cF(−2x,0)≥−3c恰好有3个整数解,求c 的取值范围.24.某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y (个)与甲品牌文具盒的数量x (个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.(1)根据图象,求y与x之间的函数关系式;(2)求甲、乙两种品牌的文具盒进货单价;(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?答案解析部分1.D2.A3.A4.D5.C6.C7.D8.C9.-2<x≤310.a≥411.−3<a<−212.10≤x≤3013.6≤a<13214.四15.2或116.540017.解:解不等式①,得:x<3,解不等式②,得:x≥﹣1,则不等式组的解集为﹣1≤x<3,将不等式组的解集表示在数轴上如下:18.解:由题意得:{a+5<2a−1+aa+5+a+2a−1≤20,解得3<a≤4.∴a的取值范围为3<a≤419.解:解不等式5x+2>3(x−1)得:5x+2>3x−3x >−52解不等式 2x−13≤3x+16得:2(2x −1)≤3x +1 4x −2≤3x +1x ≤3∴ −52<x ≤3∴符合条件的正整数值有1、2、3 20.解:(Ⅰ) {3x +2y =m +1 ①2x +y =m −1 ②①-②×2得: −x =−m +3 得: x =m −3 2m −6+y =m −1③ 把③代入②2m-6+y=m-1 y =−m +5④把③和④代入 x −y =2 , m-3+m-5=2, m =5 , ∴ 的值为5.(Ⅱ)∵x ,y ,m 均为非负数,{m −3≥0−m +5≥0m ≥0∴3≤m ≤5∴|m −3|+|m −5| . =m-3+5-m , =2.(Ⅲ)把 x=m-3 y=-m+5, x −y =2 代入 s =2x −3y +m , ∴ s=2x-3y+m , =2(m-3 )-3(-m+5)+m =6m-21 ∵ 3≤m≤5 , ∴-3≤6m -21≤9∴−3≤s ≤9 .答: s =2x −3y +m 的最小值为-3,最大值为9.21.(1)解:设B 型口罩每件的进价为y 元,则A 型口罩每件的进价为(y+10)元 依题意得: 68000y+10 =2×32000y 解得:y =160经检验,y =160是原方程的解,且符合题意∴y+10=170.答:A 型口罩每件的进价为170元,B 型口罩每件的进价为160元; (2)解:设购买A 型口罩x 件,则购买B 型口罩(200﹣x )件 依题意得: {x ≤200−x170x >160(200−x) 解得:963233<x≤100又∵x 为正整数,∴x 可以取97,98,99,100, ∴符合条件的进货方案共4种.22.(1)解:设A 型汽车购进x 辆,则B 型汽车购进(16﹣x )辆.根据题意得: {30x +42(16−x)≤60030x +42(16−x)≥576 , 解得:6≤x≤8. ∵x 为整数, ∴x 取6、7、8. ∴有三种购进方案:(2)解:设总利润为w 万元.根据题意得:W =(32﹣30)x+(45﹣42)(16﹣x ) =﹣x+48. ∵﹣1<0,∴w 随x 的增大而减小,∴当x =6时,w 有最大值,W 最大=﹣6+48=42(万元).∴当购进A 型车6辆,B 型车10辆时,可获得最大利润,最大利润是42万元. (3)解:设电动汽车行驶的里程为a 万公里.当32+0.65a =45时,解得:a =20<30. ∴选购太阳能汽车比较合算.23.(1)1;1(2)解:①原式= {x −y =4m −3x +2y =−5m ,解得: {x =m −2y =1−3m , ∵x 是非正数,y 是负数,∴{m −2≤01−3m <0,解得: 13<m ≤2 ;②原式整理为: 2x ⋅22y =2n ,∴x +2y =n ,即 m −2+2(1−3m)=n , 整理得: n =−5m ,∴当 m 取最大值2时,此时 n 的值最小, 最小值为: n =−5×2=−10 ;(3)解:不等式组整理为: {3x >−2c−2x ≥−3c, 解得: −23c <x ≤32c ,∵不等式组恰好有3个整数解,∴2<32c −(23c)≤3 ,解得:1213<c ≤1813.24.(1)解:设y 与x 之间的函数关系式为y=kx+b ,由函数图象,得 {50k +b =250200k +b =100,解得: {k =−1b =300. ∴y 与x 之间的函数关系式为y=﹣x+300. (2)解:∵y=﹣x+300,∴当x=120时,y=180.设甲品牌进货单价是a 元,则乙品牌的进货单价是2a 元,由题意,得 120a+180×2a=7200,解得:a=15, ∴乙品牌的进货单价是30元.答:甲、乙两种品牌的文具盒进货单价分别为15元,30元.(3)解:设甲品牌进货m 个,则乙品牌的进货(﹣m+300)个,由题意,得{15m +30(−m +300)≤63004m +9(−m +300)≥1795,解得:180≤m≤181.∵m 为整数,∴m=180,181. ∴共有两种进货方案:方案1:甲品牌进货180个,则乙品牌的进货120个;方案2:甲品牌进货181个,则乙品牌的进货119个.设两种品牌的文具盒全部售出后获得的利润为W元,由题意,得W=4m+9(﹣m+300)=﹣5m+2700.∵k=﹣5<0,∴W随m的增大而减小.∴m=180时,W最大=1800元.。
2023学年北师大版八年级数学下册《2-6解一元一次不等式组》同步能力达标测评(附答案)
2022-2023学年北师大版八年级数学下册《2.6一元一次不等式组——解一元一次不等式组》同步能力达标测评(附答案)(共20小题,每小题6分,满分120分)1.解不等式组:.2.解不等式组,并将解集在数轴上表示出来.3.求不等式组的正整数解.4.解不等式组:,并求出所有整数解的和.5.解不等式组,并写出它的所有非负整数解.6.解不等式组:.请结合题意填空,完成本题的解答.(1)解不等式(1),得;(2)解不等式(2),得;(3)把不等式(1)和(2)的解集在数轴上表示出来;(4)原不等式组的解集为.7.在平面直角坐标系中,已知点M(a+1,2a﹣4).根据下列条件回答问题:(1)当点M在x轴,y轴上时,分别求出点M的坐标;(2)当点M在第四象限的角平分线上时,求a的值;(3)若经过点M,N(b+1,4)的直线与x轴平行,且MN=5,求点M,N的坐标.8.解不等式组.(1)将不等式组的解集在数轴上表示出来;(2)求出最小整数解与最大整数解的和.9.已知方程组的解中,x为非正数,y为负数(1)求a的取值范围;(2)当a为何整数时,不等式2ax﹣x>2a﹣1的解集为x<1?(直接写出答案)10.若方程组的解满足﹣1<x+y<1,求k的取值范围.11.已知方程组,当m为何值时,x>y且2x<3y,并化简|3m+2|﹣|m﹣5|.12.若不等式组的解集为1≤x≤5.求方程ax+3b=0的解.13.已知关于a,b的方程组.(1)若原方程组的解也是二元一次方程2a﹣3b=7的一个解,求m的值;(2)若原方程组的解a,b满足a+2b<12,求不等式组的解集.14.已知方程组的解x≤0,y<0.(1)求a的取值范围;(2)化简|a﹣3|+|a+4|;(3)在a的取值范围中,a为何整数时,不等式2ax+x>2a+1的解为x<1?15.阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解:因为x﹣y=2,所以y+2=x.又因为x>1,所以y+2>1,所以y>﹣1.又y<0,所以﹣1<y<0⋯⋯①.同理得:1<x<2⋯⋯②由①+②得﹣1+1<y+x<0+2,所以x+y的取值范围是0<x+y<2.请按照上述方法,完成下列问题:(1)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是多少.(2)已知关于x,y的方程组的解都为正数.①求a的取值范围;②已知a﹣b=4,求a+b的取值范围.16.已知关于x、y的方程组(实数m是常数).(1)若x+y=1,求实数m的值;(2)若﹣1<x﹣y<5,求m的取值范围;(3)若不等式2x≥a﹣1的解包含第(2)中的m的所有整数解,求a的取值范围.17.已知关于x、y的方程组的解满足x≤0,y<0.(1)用含m的代数式分别表示x和y;(2)求m的取值范围;(3)在m的取值范围内,是否存在一个整数使不等式2mx﹣1<2m﹣x的解集为x>1.若不存在,请说明理由,若存在,请求出这样的整数值m.18.【发现问题】已知,求4x+5y的值.在求解这个题目时发现可以不解方程组,将①×2﹣②,就可以直接求出4x+5y的值.【分析问题】爱思考的小明同学为了得到这种解题方法的通用方式,发现可以将①×m+②×n,可得(3m+2n)x+(2m﹣n)y=4m+6n.令等式左边(3m+2n)x+(2m﹣n)y=4x+5y,比较系数可得,求得.【解决问题】(1)对于方程组,利用上述方法,求3x+6y的值;【迁移应用】(2)已知,求x﹣3y的取值范围.19.自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:<0;>0等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则>0;若a<0,b<0,则>0;(2)若a>0,b<0,则<0;若a<0,b>0,则<0.反之:(1)若>0,则或.(2)若<0,则或.(3)根据上述规律,求不等式>0的解集.(4)试求不等式<3的解集.20.阅读以下例题:解不等式:(x+4)(x﹣1)>0,解:①当x+4>0,则x﹣1>0,即可以写成:,解不等式组得:.②当若x+4<0,则x﹣1<0,即可以写成:,解不等式组得:.综合以上两种情况:不等式解集:x>1或x<﹣4.以上解法的依据为:当ab>0,则a>0,b>0或a>0,b>0.(1)若ab<0,则a>0,b0或a<0,b0.(2)请你模仿例题的解法,解不等式:①(x+2)(x﹣3)>0;②(x+1)(x﹣2)<0.参考答案1.解:由3x﹣4>11得:x>5,由5(x+1)>4x得:x>﹣5,∴不等式组的解集为x>5.2.解:,解:解不等式①,得x>﹣2.解不等式②,得x≤3,把不等式①和②的解集在数轴上表示出来:所以原不等式组解集为﹣2<x≤3.3.解:,解不等式①得:x>﹣2,解不等式②得:x≤5,∴不等式组的解集为:﹣2<x≤5,其中正整数解是1,2,3,4,5.4.解:由2+x>7﹣4x,得:x>1,由x<,得:x<4,则不等式组的解集为1<x<4,所有整数解的和为2+3=5.5.解:,解不等式①得,x≤1,解不等式②得,x>﹣3,所以不等式组的解集是﹣3<x≤1,所以不等式组的非负整数解是0、1.故答案为:0、1.6.解:,解不等式①,得x>﹣2;解不等式②,得x≤﹣1;并把不等式①,②解集在数轴上表示出来;原不等式组的解集为﹣2<x≤﹣1.故答案为:x>﹣2;x≤﹣1;﹣2<x≤﹣1.7.解:(1)若M(a+1,2a﹣4)在x轴上,则2a﹣4=0,∴a=2,∴M(3,0),若M(a+1,2a﹣4)在y轴上,则a+1=0,∴a=﹣1,∴M(0,﹣6),∴M在x轴上,M的坐标是(3,0);M在y轴上,M的坐标是(0,﹣6);(2)∵M(a+1,2a﹣4)在第四象限的角平分线上,∴(a+1)+(2a﹣4)=0,解得a=1,∴a的值为1;(3)∵经过点M(a+1,2a﹣4),N(b+1,4)的直线与x轴平行,∴2a﹣4=4,解得a=4,∴M(5,4),∵MN=5,∴|b+1﹣5|=5,解得b=9或b=﹣1,∴N(10,4)或N(0,4).8.解:(1)解不等式①,得:x>﹣4,解不等式②,得:x≤2,则不等式组的解集为﹣4<x≤2,将不等式组的解集表示在数轴上如下:(2)该不等式的最小整数解为﹣3,最大整数解为2,所以最小整数解与最大整数解的和为﹣3+2=﹣1.9.解:(1)由方程组,得,∵x为非正数,y为负数,∴,解得,﹣2<a≤3,即a的取值范围是﹣2<a≤3;(2)由不等式2ax﹣x>2a﹣1,得(2a﹣1)x>2a﹣1,∵不等式2ax﹣x>2a﹣1的解集为x<1,∴2a﹣1<0,得a<0.5,又∵﹣2<a≤3且a为整数,∴a=﹣1,0,即a的值是﹣1或0.10.解:①+②得:4x+4y=k+4∴x+y=,而﹣1<x+y<1∴﹣1<<1,∴﹣8<k<0.11.解:,②×2﹣①得:x=m﹣3③,将③代入②得:y=﹣m+5,∴得,∵x>y且2x<3y,∴,解得,4<m<,∴|3m+2|﹣|m﹣5|=3m+2﹣(5﹣m)=4m﹣3.12.解:,解不等式①得:,解不等式②得:x≤1﹣a,∵不等式组的解集为:1≤x≤5,∴,解得,∴﹣4x+3×2=0,解得.13.解:(1)解方程组得,根据题意知2(3m+2)﹣3(m+1)=7,解得:m=2;(2)由题意知3m+2+2(m+1)<12,解得:m<,解不等式x﹣m<0,得:x<m,解不等式4x+3>2x﹣1,得:x>﹣2,若m≤﹣2,则不等式组无解,若﹣2,则不等式组的解集为﹣2<x<m.14.解:(1),①+②得:2x=﹣6+2a,即x=﹣3+a,①﹣②得:2y=﹣7﹣a﹣1﹣3a,即y=﹣4﹣2a,根据题意得:,解得:﹣2<a≤3;(2)∵﹣2<a≤3,∴a﹣3≤0,a+4>0,则原式=3﹣a+a+4=7;(3)不等式变形得:(2a+1)x>2a+1,由解集为x<1,得到2a+1<0,解得:a<﹣,则满足题意的a为﹣1.15.解:(1)∵x﹣y=3,∴x=y+3,∵x>2,∴y+3>2,∴y>﹣1,又∵y<1,∴﹣1<y<1①,同理可得2<x<4②,由①+②得:﹣1+2<x+y<1+4,∴x+y的取值范围为1<x+y<5(2)解:①解方程组,得,∵该方程组的解都是正数,∴x>0,y>0,∴,解不等式组得:a>1,∴a的取值范围为:a>1;②∵a﹣b=4,∴a=b+4,∵a>1①,∴b+4>1,∴b>﹣3②,∴①+②得a+b>1﹣3,∴a+b的取值范围为a+b>﹣2.16.解:(1),由①+②得:3x+3y=6m+1,即3(x+y)=6m+1,∴,∵x+y=1,∴,解得:;(2),由①﹣②得:x﹣y=2m﹣1,∵﹣1<x﹣y<5,∴﹣1<2m﹣1<5,解得:0<m<3;(3)2x≥a﹣1,解得:,∵不等式2x≥a﹣1的解包含第(2)中的m的所有整数解,∴,解得:a≤3.17.解:(1),①+②得2x=2m﹣6,所以,x=m﹣3;①﹣②得2y=﹣4m﹣8,所以,y=﹣2m﹣4,故含m的代数式分别表示x和y为;(2)∵x≤0,y<0,∴,解得﹣2<m≤3;(3)不等式变形为:(2m+1)x<2m+1,∵原不等式的解集是x>1,∴2m+1<0,∴m<﹣,又∵﹣2<m≤3∴﹣2<m<﹣,∵m为整数,∴m=﹣1.18.解:(1)将①×m+②×n,可得(7m+9n)x+(4m+3n)y=2m+n,令等式左边(7m+9n)x+(4m+3n)y=3x+6y,比较系数可得,解得,∴3x+6y=2m+n=6﹣2=4;(2)令,将①×m+②×n,可得(2m+3n)x+(m+2n)y,令(2m+3n)x+(m+2n)y=x﹣3y,比较系数可得,解得,∴①×11为11<22x+11y<33③,②×(﹣7)为﹣28<﹣21x﹣14y<﹣14④,∴③+④得﹣17<x﹣3y<19.19.解:(2)∵<0,∴或,故答案为:,;(3)∵>0,∴①或②,解不等式组①得:不等式组无解;解不等式组②得:﹣<x<3,∴>0的解集是﹣<x<3;(4)<3,整理得:﹣3<0,即<0,所以①或②,解不等式组①得:x>4,解不等式组②得:x<1,所以不等式<3的解集是x>4或x<1.20.解:(1)若ab<0,则a>0,b<0或a<0,b>0.故答案为:<;>;(2)①∵(x+2)(x﹣3)>0,∴或,解得x>3或x<3;②∵(x+1)(x﹣2)<0,∴或,解得﹣1<x<2.。
八年数学下册第2章一元一次不等式与一元一次不等式组达标测试卷新版北师大版
第二章达标测试卷一、选择题(每题3分,共30分)1.现有以下数学表达式:①-3<0;②4x +3y >0;③x =3;④x 2+xy +y 2;⑤x ≠5;⑥x +2>y +3.其中不等式有( )A .5个B .4个C .3个D .1个 2.若3x <-3y ,则下列不等式中一定成立的是( )A .x +y >0B .x -y >0C .x +y <0D .x -y <0 3.不等式5x ≤-10的解集在数轴上表示为( )4.如图,直线y =kx +b 交坐标轴于A ,B 两点,则不等式kx +b >0的解集是( )A .x >-2B .x >3C .x <-2D .x <3 5.下列说法中,错误的是( )A .不等式x <2的正整数解只有一个B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x >-3D .不等式x <10的整数解有无数个 6.实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .|a -c |>|b -c |B .-a <cC .a +c >b +cD .a b <c b7.使不等式x -2≥2与3x -10<8同时成立的x 的整数值是( ) A .3,4 B .4,5 C .3,4,5 D .不存在8.已知点P (2a -1,1-a )在第一象限,则a 的取值范围在数轴上表示正确的是( )9.不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),12x -1≤7-32x 的所有非负整数解的和是( ) A .10 B .7 C .6 D .010.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的数量为( )A .13B .14C .15D .16 二、填空题(每题3分,共30分)11.若x >y ,则-3x +2________-3y +2(填“<”或“>”). 12.若(m -2)x|m -1|-3>6是关于x 的一元一次不等式,则m =________.13.小明借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,设以后几天里每天读x 页,所列不等式为____________________. 14.已知关于x 的不等式(a -1)x >4的解集是x <4a -1,则a 的取值范围是____________. 15.函数y =mx +n 和函数y =kx 在同一坐标系中的图象如图所示,则关于x 的不等式mx +n >kx 的解集是____________.16.已知关于x 的不等式2x -a >-3的解集如图所示,则a 的值是________.17.不等式组⎩⎪⎨⎪⎧3x +10>0,163x -10<4x 的最小整数解是________.18.对于x ,y 定义一种新运算“*”:x *y =3x -2y ,等式右边是通常的减法和乘法运算,如2*5=3×2-2×5=-4,那么(x +1)*(x -1)≥5的解集是__________.19.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,则实数a 的取值范围是__________.20.游泳池的水质要求三次检验的PH 的平均值不小于7.2,且不大于7.8,前两次检验,PH 的读数分别为7.4和7.9,要使水质合格,设第三次检验的PH 的值为x ,则x 的取值范围是____________. 三、解答题(21题8分,26题12分,其余每题10分,共60分) 21.解不等式2(x +2)3≤7(x -1)6-1,并把解集在数轴上表示出来.22.解不等式组⎩⎪⎨⎪⎧4(x +1)≤7x +10,x -5<x -83,并写出它的所有非负整数解.23.若关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =30-a ,3x +y =50+a 的解都是非负数,求a 的取值范围.24.已知关于x 的不等式组⎩⎪⎨⎪⎧5x +1>3(x -1),12x ≤8-32x +2a 恰好有两个整数解,求实数a 的取值范围. 25.如图,一次函数y 1=kx -2和y 2=-3x +b 的图象相交于点A (2,-1). (1)求k ,b 的值.(2)利用图象求出:当x 取何值时,y 1≥y 2. (3)利用图象求出:当x 取何值时,y 1>0且y 2<0.26.为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每名老师带队14名学生,则还剩10名学生没老师带;若每名老师带队15名学生,就有1名老师少带6名学生.现有甲、乙两种大型客车,它们的载客量和租金如下表所示:客车类型 甲型客车 乙型客车 载客量/(人/辆) 35 30 租金/(元/辆)400320学校计划此次研学活动的租金总费用不超过3 000元,为安全起见,每辆客车上至少要有2名老师. (1)参加此次研学活动的老师和学生各有多少名?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为________辆. (3)学校共有几种租车方案?最少租车费用是多少?答案一、1.B 2.C 3.C 4.A 5.C 6.A 7.B 8.C 9.A 点拨:⎩⎪⎨⎪⎧5x +2>3(x -1),①12x -1≤7-32x .② 解不等式①得x >-2.5, 解不等式②得x ≤4,∴不等式组的解集为-2.5<x ≤4,∴不等式组的所有非负整数解是0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10. 故选A. 10.C 点拨:设小华要答对x 题.10x +(-5)×(20-x )>120, 10x -100+5x >120. 15x >220,解得x >443,因为x 必须为整数,所以x 的最小值为15,即小华得分要超过120分,他至少要答对15题. 二、11.< 12.0 13.2×5+(10-2)x ≥7214.a <1 15.x <-1 16.1 17.-3 18.x ≥0 19.a ≤-1 20.6.3≤x ≤8.1三、21.解:去分母,得4(x +2)≤7(x -1)-6.去括号,得4x +8≤7x -7-6. 移项、合并同类项,得-3x ≤-21. 系数化为1,得x ≥7. 解集在数轴上表示如图所示.22.解:⎩⎪⎨⎪⎧4(x +1)≤7x +10,①x -5<x -83.② 由①得x ≥-2,由②得x <72,∴不等式组的解集为-2≤x <72.∴不等式组的所有非负整数解为0,1,2,3.23.解:解方程组,得⎩⎪⎨⎪⎧x =10+a ,y =20-2a .依题意有⎩⎪⎨⎪⎧10+a ≥0,20-2a ≥0,解得-10≤a ≤10.24.解:解5x +1>3(x -1),得x >-2;解12x ≤8-32x +2a ,得x ≤4+a . 则不等式组的解集是-2<x ≤4+a . ∵不等式组恰好有两个整数解, ∴0≤4+a <1.解得-4≤a <-3. 25.解:(1)将A 点的坐标代入y 1=kx -2,得2k -2=-1,即k =12.将A 点的坐标代入y 2=-3x +b ,得-6+b =-1,即b =5. (2)从图象可以看出:当x ≥2时,y 1≥y 2.(3)直线y 1=12x -2与x 轴的交点坐标为(4,0),直线y 2=-3x +5与x 轴的交点坐标为⎝ ⎛⎭⎪⎫53,0. 从图象可以看出:当x >4时,y 1>0;当x >53时,y 2<0,∴当x >4时,y 1>0且y 2<0.26.解:(1)设参加此次研学活动的老师有x 名,根据题意得:14x +10=15x -6,解得x =16,14x +10=14×16+10=234.答:参加此次研学活动的老师有16名,学生有234名. (2)8(3)设租甲型客车y 辆,则租乙型客车(8-y )辆,根据题意得解得2≤y ≤5.5.∵y 为正整数,∴y 可取2,3,4,5. ∴共有4种租车方案. 设租车费用为W 元,则W =400y +320(8-y )=80y +2 560, ∵80>0,∴W 随y 的增大而增大. ∴当y =2时,W 最小=2 720.答:学校共有4种租车方案,最少租车费用是2 720元.。
最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组同步练习试题(含详细解析)
第二章一元一次不等式和一元一次不等式组同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣42、下列选项正确的是( )A .a 不是负数,表示为0a >B .a 不大于3,表示为3a <C .x 与4的差是负数,表示为40x -<D .x 不等于34,表示为34x > 3、如图,一次函数y =kx +b (k ,b 为常数,k ≠0)经过点A (-3,2),则关于x 的不等式中k (x -1)+b <2的解集为( )A .x >-2B .x <-2C .x >-3D .x <-34、不等式3+2x ≥1的解在数轴上表示正确的是( )A .B .C .D .5、设m 为整数,若方程组3131x y m x y m +=-⎧⎨-=+⎩的解x 、y 满足175x y +>-,则m 的最大值是() A .4 B .5 C .6 D .76、若m <n ,则下列各式正确的是( )A .﹣2m <﹣2nB .33m n> C .1﹣m >1﹣n D .m 2<n 27、下列变形中,错误的是( )A .若3a +5>2,则3a >2-5B .若213x ->,则23x <-C .若115x -<,则x >﹣5 D .若1115x >,则511x >8、若a >b ,则下列不等式一定成立的是( )A .﹣2a <﹣2bB .am <bmC .a ﹣3<b ﹣3D .3a+1<3b+19、一次函数y =kx +b (k ≠0)的图象如图所示,当x >2时,y 的取值范围是( )A .y <0B .y >0C .y <3D .y >310、已知一次函数y 1=kx +1和y 2=x ﹣2.当x <1时,y 1>y 2,则k 的值可以是( )A .-3B .-1C .2D .4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)14≥-的解集是_________.2、已知关于x 的一元一次不等式20212021x a x +>的解集为2021x <,那么关于y 的一元一次不等式12021(1)2021y y a -<-+的解集为___________. 3、如图直线y =x +b 和y =kx +4与x 轴分别相交于点A (﹣4,0),点B (2,0),则040x b kx +>⎧⎨+>⎩解集为_____________.4、若关于x 的不等式组9210x x a ->-⎧⎨-≥⎩的整数解共有5个,则a 的取值范围_________. 5、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____. 三、解答题(5小题,每小题10分,共计50分)1、解不等式(组)(1)3(1)5x x -≤+(2)4614312163x x x x +>-⎧⎪++⎨-≤⎪⎩2、解不等式3x﹣1≤x+3,并把解在数轴上表示出来.3、某校为了丰富学生的业余生活,组织了一次棋类的比赛,准备购买若干跳棋和军棋作为奖品,若购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元.(1)求购买一副跳棋和一副军棋各需要多少钱?(2)学校准备购买跳棋与军棋共80副作为奖品,根据规定购买的总费用不能超过600元,则学校最多可以购买多少副军棋?4、下列各式哪些是不等式2(2x+1)>25的解?哪些不是?(1)x=1.(2)x=3.(3)x=10.(4)x=12.5、某公司销售A、B两种型号教学设备,每台的销售成本和售价如表:已知每月销售两种型号设备共20台,设销售A种型号设备x台,A、B两种型号设备全部售完后获得毛利润y万元(毛利润=售价-成本)(1)求y关于x的函数关系式(不要求写自变量的取值范围);(2)若销售两种型号设备的总成本不超过80万元,那么公司如何安排销售A、B两种型号设备,售完后毛利润最大?并求出最大毛利润.-参考答案-一、单选题1、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.2、C【分析】由题意先根据非负数、负数及各选项的语言表述列出不等式,再与选项中所表示的进行比较即可得出答案.【详解】解:A .a 不是负数,可表示成0a ,故本选项不符合题意;B .a 不大于3,可表示成3a ,故本选项不符合题意;C .x 与4的差是负数,可表示成40x -<,故本选项符合题意;D .x 不等于34,表示为34x ≠,故本选项不符合题意; 故选:C .【点睛】本题考查不等式的定义,解决本题的关键是理解负数是小于0的数,不大于用数学符号表示是“≤”.3、A【分析】根据一次函数图象平移规律可得函数y =kx +b 图像向右平移1个单位得到平移后的解析式为y =k (x -1)+b ,即可得出点A 平移后的对应点,根据图象找出一次函数y=k (x -1)+b 的值小于2的自变量x 的取值范围,据此即可得答案.【详解】解:∵函数y =kx +b 图像向右平移1个单位得到平移后的解析式为y =k (x -1)+b ,∴A (−3,2)向右平移1个单位得到对应点为(−2,2),由图象可知,y 随x 的增大而减小,∴关于x 的不等式(1)2k x b 的解集为2x >-,故选:A .【点睛】本题考查一次函数的性质、一次函数图象的平移及一次函数与不等式,正确理解函数的性质、会观察图象,熟练掌握平移规律是解题的关键.4、B【分析】不等式移项,合并同类项,把x 系数化为1求出解集,表示在数轴上即可.【详解】解:不等式3+2x ≥1,移项得:2x ≥1﹣3,合并同类项得:2x ≥﹣2,解得:x ≥﹣1,数轴表示如下:.故选:B .【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.不等式的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.5、B【分析】先把m 当做常数,解一元二次方程,然后根据175x y +>-得到关于m 的不等式,由此求解即可 【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①② 把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=, 把25m x -=代入①得6315m y m -+=-,解得125m y --=, ∵175x y +>-, ∴21217555m m ---+>-,即131755m ->-, 解得6m <,∵m 为整数,∴m 的最大值为5,故选B .【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.6、C【分析】根据不等式的基本性质逐项判断即可.【详解】解:A :∵m <n ,∴﹣2m >﹣2n ,∴不符合题意;B :∵m <n , ∴33m n <, ∴不符合题意;C :∵m <n ,∴﹣m >﹣n ,∴1﹣m >1﹣n ,∴符合题意;D : m <n ,当10m n =-=,时,m 2>n 2, ∴不符合题意;故选:C .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.7、B【分析】根据不等式的两边都加(或减)同一个数(或同一个整式),不等号的方向不变;不等式的两边都乘以同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、不等式的两边都减5,不等号的方向不变,故A 不符合题意;B 、不等式的两边都乘以32-,不等号的方向改变得到32x <-,故B 符合题意; C 、不等式的两边都乘以(﹣5),不等号的方向改变,故C 不符合题意;D 、不等式的两边都乘以同一个正数,不等号的方向不变,故D 不符合题意;故选:B .【点睛】本题考查了不等式的性质,熟记不等式的性质并根据不等式的性质计算式解题.8、A【分析】由题意直接依据不等式的基本性质对各个选项进行分析判断即可.【详解】解:A .∵a >b ,∴﹣2a <﹣2b ,故本选项符合题意;B .a >b ,当m >0时,am >bm ,故本选项不符合题意;C .∵a >b ,∴a ﹣3>b ﹣3,故本选项不符合题意;D .∵a >b , ∴33a b >, ∴1133ab +>+,故本选项不符合题意;故选:A .【点睛】本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.9、A【分析】观察图象得到直线与x 轴的交点坐标为(2,0),根据一次函数性质得到y 随x 的增大而减小,所以当x >2时,y <0.【详解】∵一次函数y =kx +b (k ≠0)与x 轴的交点坐标为(2,0),∴y 随x 的增大而减小,∴当x >2时,y <0.故选:A .【点睛】本题考查了一次函数的性质:一次函数y =kx +b (k 、b 为常数,k ≠0)的图象为直线,当k >0,图象经过第一、三象限,y 随x 的增大而增大;当k <0,图象经过第二、四象限,y 随x 的增大而减小;直线与x 轴的交点坐标为(,0)b k-.10、B【分析】先求出不等式的解集,结合x <1,即可得到k 的取值范围,即可得到答案.【详解】解:根据题意,∵y 1>y 2,∴12kx x +>-,解得:(1)3k x ->-,∴10k -<,∴1k <;31x k <--, ∵当x <1时,y 1>y 2, ∴311k -<- ∴2k >-,∴21k -<<;∴k 的值可以是-1;故选:B .【点睛】本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.二、填空题1、≤x 【分析】根据不等式的性质进行求解,根据二次根式的运算法则进行化简即可.【详解】4≥-4≥-,4x ≥-,x≤x故答案为:≤x【点睛】本题考查了解一元一次不等式,二次根式的混合运算,熟练掌握相关运算法则是解本题的关键. 2、2022y <【分析】设1,x y =-则20212021x a x +>化为:()120211,2021y a y -+->整理可得:12021(1)2021y y a -<-+,从而可得12021(1)2021y y a -<-+的解集是不等式12021y -<的解集,从而可得答案. 【详解】解: 关于x 的一元一次不等式20212021x a x +>的解集为2021x <, 设1,x y =- 则20212021x a x +>化为:()120211,2021y a y -+-> 两边都乘以1-得:()120211,2021y a y ---< 即12021(1)2021y y a -<-+ ∴ 12021(1)2021y y a -<-+的解集为:12021y -<的解集, 2022.y ∴<故答案为:2022.y <【点睛】本题考查的是求解一元一次不等式的解集,掌握“整体法求解不等式的解集”是解本题的关键. 3、42x -<<【分析】观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,从而得到0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,从而得到40kx +> 的解集为2x <,即可求解.【详解】解:观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,∴0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,∴40kx +> 的解集为2x <,∴040x b kx +>⎧⎨+>⎩解集为42x -<<. 故答案为:42x -<<【点睛】本题主要考查了一次函数与不等式的关系,观察图象得到当4x >- 时,y x b =+的图象位于x 轴的上方,当2x < 时,4y kx =+的图象位于x 轴的上方是解题的关键.4、﹣1<a ≤0【分析】先求出不等式组的解集,再根据已知条件得出−1<a ≤0即可.【详解】解:9210x x a --⎧⎨-≥⎩>①②, 解不等式①,得x <5,解不等式②,得x ≥a ,所以不等式组的解集是a ≤x <5,∵关于x 的不等式组9210x x a ->-⎧⎨-≥⎩的整数解共有5个, ∴−1<a ≤0,故答案为:−1<a ≤0.【点睛】本题考查了解一元一次不等式组的整数解和解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.5、0【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键.三、解答题1、(1)4x ≤;(2)1x >-【分析】(1)根据解不等式的基本步骤求解即可;(2)先求得每一个不等式的解集,后确定出解集即可.【详解】(1)∵3(1)5x x -≤+ ,∴335x x -≤+,∴28x ≤,∴4x ≤;(2)4614312163x x x x +>-⎧⎪⎨++-≤⎪⎩①②由①:1x >-,由②:4x ≥-,1x ∴>-.【点睛】本题考查了一元一次不等式和一元一次不等式组的解法,熟练掌握解题的基本步骤是解题的关键.2、x ≤2;数轴表示见解析.【分析】按移项、合并同类项、系数化为1的步骤求得不等式的解集,然后在数轴上表示出来即可.【详解】解:313x x -≤+,移项,得331x x -≤+,合并同类项,得24x ≤,系数化为1,得x ≤2,把解集在数轴上表示如图所示:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的基本步骤以及在数轴上表示解集的方法是解题的关键.3、(1)购买一副跳棋和一副军棋各需要6元、10元;(2)学校最多可以买30副军棋【分析】(1)设购买一副跳棋和一副军棋各需要x 元、y 元,然后根据购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元,列出方程求解即可;(2)设购买m 副军棋,则购买()80m -副跳棋,然后根据购买的总费用不能超过600元,列出不等式求解即可.【详解】解:(1)设购买一副跳棋和一副军棋各需要x 元、y 元,由题意得:2342540x y x y +=⎧⎨+=⎩, 解得610x y =⎧⎨=⎩, ∴购买一副跳棋和一副军棋各需要6元、10元,答:购买一副跳棋和一副军棋各需要6元、10元;(2)设购买m 副军棋,则购买()80m -副跳棋,由题意得:()68010600m m -+≤,即4480600m +≤,解得30m ≤,∴学校最多可以买30副军棋,答:学校最多可以买30副军棋.【点睛】本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意,列出式子求解.4、(1)不是(2)不是(3)是(4)是【分析】把未知数的值代入计算,比较后,判断即可(1)把x=1代入不等式2(2x+1)>25,因为:左边=2×(2×1+1)=6<25,所以x=1不是不等式2(2x+1)>25的解.(2)把x=3代入不等式2(2x+1)>25,因为:左边=2×(2×3+1)=14<25,所以x=3不是不等式2(2x+1)>25的解.(3)把x=10代入不等式2(2x+1)>25,因为:左边=2×(2×10+1)=42>25,所以x=10是不等式2(2x+1)>25的解.(4)把x=12代入不等式2(2x+1)>25,因为:左边=2×(2×12+1)=50>25,所以x=12是不等式2(2x+1)>25的解.【点睛】本题考查了不等式的解即使不等式左右两边成立的未知数的值,正确理解不等式的解是解题的关键.5、(1)y=-2x+60;(2)公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元.【分析】(1)设销售A种品牌设备x台,B种品牌设备(20-x)台,算出每台的利润乘对应的台数,再合并在一起即可求出总利润;(2)由“生产两种品牌设备的总成本不超过80万元”,列出不等式,再由(1)中的函数的性质得出答案.【详解】解:(1)设销售A种型号设备x台,则销售B种型号设备(20-x)台,依题意得:y=(4-3)x+(8-5)×(20-x),即y=-2x+60;(2)3x+5×(20-x)≤80,解得x≥10.∵-2<0,∴当x=10时,y最大=40万元.故公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元.【点睛】本题考查了一次函数的应用,一元一次不等式的应用,注意题目蕴含的数量关系,正确列式解决问题.。
2.6 一元一次不等式组 北师大版八年级下册数学作业(含答案)
6一元一次不等式组(打“√”或“×”)1.是一元一次不等式组. (×)2.在平面直角坐标系中,点A(2x-5,6-2x)在第四象限,则x的取值范围是<x<3. (×)3.不等式组的解集是x<-1. (×)4.已知不等式组则x可取的整数是0,1,2. (×)5.根据“x的2倍大于4,且x的三分之一与1的和不大于2”列出的不等式组是(×)·知识点1一元一次不等式组的概念1.下列不等式组是一元一次不等式组的是 (B)A. B.C. D.·知识点2一元一次不等式组的解集2.(2021·泉州丰泽区期末)下列不等式组中,无解的是(D)A. B. C. D.3.关于x的不等式组的解集是x<-3,则m的取值范围是m≥-3.·知识点3解一元一次不等式组4.(2021·厦门集美区模拟)不等式组的解集是(C)A.x>-1B.x>-C.x≥-D.-1<x≤-5.若不等式组无解,则a的取值范围是a≥2.·知识点4一元一次不等式组的特殊解6.若关于x的不等式组恰有3个整数解,则实数a的取值范围是(C)A.7<a<8B.7<a≤8C.7≤a<8D.7≤a≤87.不等式组的最大整数解是x=-4.·知识点5一元一次不等式组的实际应用8.(2021·福州马尾区期中)《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为6.1.(2021·湘潭中考)不等式组的解集在数轴上表示正确的是(D)2.(2021·南平延平区期末)已知且0<x-y<1,则k的取值范围为(B)A.<k<1B.0<k<C.0<k<1D.-1<k<-3.定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[3.2]=3,[2]=2,[-2.3]=-3.如果[]=2,则x的取值范围是(D)A.5≤x≤7B.5<x≤7C.5<x<7D.5≤x<74.如图,是甲、乙、丙三人玩跷跷板的示意图(支点在板的中点处),则甲的体重m的取值范围是.(C)A.0<m<45B.45≤m<60C.45<m<60D.45<m≤605.(2021·三元区质检)先阅读理解下面的例题,再按要求完成后面的问题:例:解不等式(x-2)(x+1)>0.【解析】由有理数的乘法法则“两数相乘,同号得正,异号得负”得: ①,或②解不等式组①,得:x>2.解不等式组②,得:x<-1.所以(x-2)(x+1)>0的解集为x>2或x<-1.根据上述方法解析下列问题:(1)解一元二次不等式x2-4>0;(2)解不等式<0.【解析】见全解全析易错点1:依据不等式组的解集确定不等式组中参数的值时,忽略等号导致漏解1.(2021·菏泽中考)如果不等式组的解集为x>2,那么m 的取值范围是(A)A.m≤2B.m≥2C.m>2D.m<2易错点2:套用解方程组的方法直接把两个不等式相加或相减得出其解集造成错误2.解不等式组【解析】见全解全析6一元一次不等式组必备知识·基础练【易错诊断】1.×2.×3.×4.×5.×【对点达标】1.B A.是二元一次不等式组,故本选项不符合题意;B.是一元一次不等式组,故本选项符合题意;C.是一元二次不等式组,故本选项不符合题意;D.是二元一次不等式组,故本选项不符合题意.2.D A.的解集为x<-3,故本选项不合题意;B.的解集为-3<x<2,故本选项不合题意;C.的解集为x>2,故本选项不合题意;D.无解,故本选项符合题意.3.【解析】解不等式2x-1>3x+2,得:x<-3,∵关于x的不等式组的解集是x<-3,∴m≥-3.答案:m≥-34.C解不等式2x≥-1,得:x≥-,又x>-1,∴不等式组的解集为x≥-.5.【解析】解不等式x+2>2a,得:x>2a-2,∵不等式组无解,∴a≤2a-2,解得a≥2.答案:a≥26.C解不等式①,得x>4.5.解不等式②,得x≤a.所以不等式组的解集是4.5<x≤a,∵关于x的不等式组恰有3个整数解(整数解是5,6,7),∴7≤a<8.7.【解析】由①得:x<-3.由②得:x≤3.∴不等式组的解集为x<-3.则不等式组最大的整数解为x=-4.答案:x=-48.【解析】设阅读过《西游记》的人数是a,阅读过《水浒传》的人数是b(a,b均为整数),依题意,得:∵a,b均为整数.∴4<b<7,∴b最大可以取6.答案:6关键能力·综合练1.D解不等式x+1≥2,得:x≥1.解不等式4x-8<0,得:x<2.则不等式组的解集为1≤x<2.将不等式组的解集表示在数轴上如下:2.B两个方程相减,得:x-y=1-2k,∵0<x-y<1,∴0<1-2k<1,解得0<k<.3.D∵[]=2,∴2≤<3,解得5≤x<7.4.C∵甲的体重>乙的体重,∴m>45,∵甲的体重<丙的体重,∴m<60.∴45<m<60.5.【解析】(1)(x+2)(x-2)>0,原不等式可转化为①,或②解不等式组①,x>2.解不等式组②,x<-2.即一元二次不等式x2-4>0的解集为x>2或x<-2;(2)原不等式可转化为①,或②解不等式组①,-<x<.解不等式组②无解.即分式不等式<0的解集为-<x<.【易错必究】1.A解不等式x+5<4x-1,得:x>2,∵不等式组的解集为x>2,∴m≤2.2.【解析】由①得:x≤3.由②得:x≥-1.即不等式组的解集为-1≤x≤3.。
最新北师大版八年级数学下册第二章同步测试题及答案全套
最新北师大版八年级数学下册第二章同步测试题及答案全套第二章 一元一次不等式与一元一次不等式组1 不等关系知能演练提升能力提升1.下面给出了6个式子:①3>0;②4x+3>0;③x=3;④x -1;⑤x+2≤3;⑥2x ≠0. 其中不等式共有( ) A .2个 B .3个 C .4个 D .5个2.根据下列数量关系列出相应的不等式,其中错误的是( ) A.a 与3的和大于1:a+3>1 B.a 与2的差不小于3:a -2≥3C.b 与1的和的3倍是一个非负数:3(b+1)>0D.b 的2倍与3的差是负数:2b -3<03.如图,对a ,b ,c 三种物体的质量判断正确的是( )A.a<cB.a<bC.a>cD.b<c4.在开山工程爆破时,已知导火索燃烧的速度为0.5 cm/s,人跑开的速度是4 m/s,为了使放炮的人在爆破时能安全跑到100 m 以外(不包括100 m)的安全区,导火索的长度x (cm)应满足的不等式是( ) A.4×x0.5≥100 B.4×x0.5≤100 C.4×x 0.5<100D.4×x0.5>1005.如图,左托盘物体x 的质量与右托盘两个砝码的质量之间的大小关系是:x 80.6.某饮料瓶上有这样的字样:保质期18个月.如果用x (月)表示保质期,那么该饮料的保质期可以用不等式表示为 .7.某班同学外出春游,要拍照合影留念,若一张彩色底片需0.57元,冲印一张需0.35元.每人预定一张,出钱不超过0.45元.设合影的同学有x 人,则可列不等式为 .8.在“庆祝世界反法西斯战争胜利70周年”知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对x 道题. (1)根据所给条件,完成下表:答题情况 答对 答错或不答 题 数 x每题分值 10 -5得 分 10x(2)小明同学的竞赛成绩超过100分,写出满足关系的不等式.创新应用9.如图,用锤子以相同的力将铁钉钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的13.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是a cm .若铁钉总长度是 6 cm,试求a 的取值范围.答案: 能力提升1.C2.C3.C4.D5.>6.x ≤187.0.57+0.35x ≤0.45x8.解 (1)25-x -5(25-x )(2)根据题意,得10x -5(25-x )>100. 创新应用9.解 若敲击2次后铁钉恰好全部进入木块,则有a+13a=6,解得a=92,而实际这个铁钉被敲击3次后全部进入木块,所以a<92.若敲击 3次后恰好全部进入木块,则有 a+13a+19a=6,解得a=5413.综上可知,a 的取值范围是5413≤a<92.2 不等式的基本性质知能演练提升能力提升1.已知a ,b ,c 均为实数,若a>b ,c ≠0,则下列结论不一定正确的是( )A.a+c>b+cB.c -a<c -bC.a c2>b c2D.a 2>ab>b 22.已知实数a ,b 在数轴上的位置如图,则a -ba+b 0.(填“>”“<”或“=”)3.下列四个判断:①若ac 2>bc 2,则a>b ;②若a>b ,则a|c|>b|c|;③若a>b ,则b a<1;④若a>0,则b -a<b.其中正确的是 .(填序号)4.已知-m+5>-n+5,试比较10m+8与10n+8的大小.5.如图,有四个小朋友在公园玩跷跷板,他们的体重分别为P ,Q ,R ,S.请你根据图中的情境确定他们的体重大小关系.(用“>”连接起来)6.甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,请问在哪家超市购买这种商品更合算?创新应用7.阅读下列材料:试判断a 2-3a+7与-3a+2的大小.分析:要判断两个数的大小,我们往往使用作差法,即若a -b>0,则a>b ;若a -b<0,则a<b ;若a -b=0,则a=b. 解:∵(a 2-3a+7)-(-3a+2)=a 2-3a+7+3a -2=a 2+5,且a 2≥0, ∴a 2+5>0.∴a 2-3a+7>-3a+2.阅读后,应用这种方法比较a 2-b 2+22与a 2-2b 2+13的大小.答案:能力提升 1.D2.< 由数轴知0<a<1,b<-1,故a -b>0,a+b<0.由不等式的基本性质3,a -b>0两边除以a+b ,得a -b a+b<0.3.①④4.解 根据不等式的基本性质1,不等式-m+5>-n+5的两边都减去5,得-m>-n ,根据不等式的基本性质3,不等式的两边都乘-1,得m<n ;根据不等式的基本性质2,不等式的两边都乘10,得 10m<10n ,根据不等式的基本性质1,不等式的两边都加上8,得10m+8<10n+8.5.解 由题中第一个图知S>P ;由题中第二个图知P>R ,故S>P>R.又由题中第三个图知P+R>S+Q ,而由S>P ,得S+Q>P+Q ,所以P+R>P+Q ,故R>Q.因此,S>P>R>Q.6.解 设这种商品的价格为a (a>0)元,在甲超市购买需付款a (1-10%)·(1-10%)元,即0.81a 元.在乙超市购买需付款a (1-20%)元,即0.8a 元.∵0.81>0.8,且a>0,∴0.81a>0.8a ,∴在乙超市购买更合算. 创新应用 7.解a 2-b 2+22−a 2-2b 2+13=3a 2-3b 2+66−2a 2-4b 2+26=3a 2-3b 2+6-2a 2+4b 2-26=a 2+b 2+46,由a 2≥0,b 2≥0,得a 2+b 2≥0, 故a 2+b 2+4≥4.故a 2+b 2+46≥46.∵46>0,∴a 2-b 2+22>a 2-2b 2+13.3 不等式的解集知能演练提升能力提升1.下列数值不是不等式5x ≥2x+9的解的是( )A.5B.4C.3D.22.如果式子√2x +6 有意义,那么x 的取值范围在数轴上表示出来正确的是( )3.若关于x 的不等式x -b>0恰有两个负整数解,则b 的取值范围是( ) A.-3<b<-2 B.-3<b ≤-2C.-3≤b≤-2D.-3≤b<-24.已知关于x的不等式的解集如图,则这个不等式的非负整数解是.5.如果a与12的差小于a的9倍与8的和,那么请写出一个符合题意的a的值.6.已知x=3是方程x=x-a-1的解,求关于x的不等式ax+5<0的解集.27.是否存在整数m,使关于x的不等式mx-m>3x+2的解集为x<-4?若存在,求出整数m的值;若不存在,请说明理由.创新应用8.现有A,B两种型号的钢管,每根A型钢管的长度比每根B型钢管的长度的2倍少5 cm.现取这两种型号的钢管分别做长方形的钢框的长与宽,焊成周长大于2.9 m的长方形钢框.(1)B型钢管至少有多长才合适?列出不等式.(2)如果每根B型钢管的长度有以下四种选择:45 cm,55 cm,48 cm,50 cm,那么哪些合适?哪些不合适?答案:能力提升1.D2.C3.D4.0,1,2题中数轴表示的解集是x<3,满足x<3的非负整数有0,1,2,故这个不等式的非负整数解是0,1,2.5.答案不唯一,如0,1,2.只要满足a>-5即可.26.分析本题是方程与不等式的综合运用,通过解方程求出a的值,把a的值代入不等式,然后求不等式的解集.解由x=x-a-1,得2x=x-a-2,2∵x=3是原方程的解,∴a=-x-2=-3-2=-5.∴不等式ax+5<0可化为-5x+5<0,利用不等式的性质,得x>1.7.解∵mx-m>3x+2,∴(m-3)x>m+2.=-4,要使x<-4,必须m-3<0,且m+2m-3解得m<3,m=2,∴存在整数m=2,使关于x 的不等式mx -m>3x+2的解集为x<-4.创新应用8.解 (1)设B 型钢管的长为x cm,则A 型钢管的长为(2x -5) cm .根据题意,得2(x+2x -5)>290.(2)把45 cm,55 cm,48 cm,50 cm 分别代入(1)中的不等式,得x=55是该不等式的解,所以 55 cm 合适,45 cm,48 cm ,50 cm 不合适.4 一元一次不等式第1课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.不等式2(x+1)<3x 的解集在数轴上表示为 ( )2.不等式x -72+1<3x -22的负整数解有( )A.1个B.2个C.3个D.4个3.若不等式ax>b 的解集是x<ba,则a 的取值范围是( )A.a ≤0B.a<0C.a ≥0D.a>04.定义新运算:对于任意实数a ,b 都有:a b=a (a -b )+1,其中等式右边是通常的加法、减法及乘法运算,如:2 5=2×(2-5)+1=2×(-3)+1=-5.则不等式3 x<13的解集为 .5.若(m -2)x 2m+1-1>5是关于x 的一元一次不等式,则该不等式的解集是 .6.解不等式x -1≤1+x3,并把解集在数轴上表示出来.7.已知不等式x+8>4x+m (m 是常数)的解集是x<3,求m 的值.8.当1≤x ≤2时,ax+2>0,试求a 的取值范围.创新应用9.已知关于x ,y 的方程组{x -y =3,2x +y =6a的解满足不等式x+y<3,求实数a 的取值范围.答案: 能力提升1.D2.A3.B4.x>-15.x<-3 根据一元一次不等式的定义,可知2m+1=1,且m -2≠0,即m=0.把m=0 代入不等式,得-2x -1>5.解这个不等式,得x<-3.6.解 去分母,得3(x -1)≤1+x.去括号,得3x -3≤1+x.移项、合并同类项,得2x ≤4. 两边同除以2,得x ≤2.该不等式的解集用数轴表示如图所示:7.解 移项,得4x -x<8-m.合并同类项,得 3x<8-m.两边同除以3,得x<8-m 3.∵不等式的解集为x<3,∴8-m 3=3,解得m=-1.8.解 由题可知,当1≤x ≤2时,ax+2>0恒成立.①当a>0时,得x>-2a ,故-2a <1,故a>-2,又∵a>0,∴a>0;②当a=0时,原不等式为2>0,故当1≤x ≤2时,不等式恒成立;③当a<0时,得x<-2a ,故-2a >2,故a>-1,又∵a<0,∴-1<a<0.综上所述,a 的取值范围是a>-1. 创新应用9.解 把方程组中的两个方程相加,得3x=3+6a ,得x=1+2a,代入x-y=3,得y=x-3=2a-2.故x+y=4a-1,于是有4a-1<3,解得a<1.第2课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.某种商品的进价为800元,出售标价为1 200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,最多可打()A.6折B.7折C.8折D.9折2.老王家上个月付电话费31元以上,其中月租费21元.已知市内通话如果每次不超过3分钟,则话费为0.18元.如果老王家上个月打的全部是市内电话,且每次都不超过3分钟,那么老王家上个月通话次数最少为()A.55次B.56次C.57次D.58次3.小宏准备用50元买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买甲饮料.4.一只纸箱的质量为1 kg,放入一些苹果(每个苹果的质量约为0.25 kg)后,箱子和苹果的总质量不超过10 kg.这只箱子内最多能装个苹果.5.为绿化校园,某校计划购进A,B两种树苗,共21棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B 种树苗x棵,购买两种树苗所需费用为y元.(1)y与x的函数关系式为:;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.6.某超市有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市一次性购进两种商品共80件,且恰好用去1 600元,问购进甲、乙两种商品各多少件?(2)若该超市要使两种商品共80件的购进费用不超过1 640元,且总利润(利润=售价-进价)不少于600元,请你帮助该超市设计相应的进货方案,并指出使该超市利润最大的方案.7.某城市平均每天产生垃圾700 t,由甲、乙两个处理厂处理.已知甲厂每小时可处理垃圾55 t,需费用550元;乙厂每小时可处理垃圾45 t,需费用495元.问:(1)甲、乙两厂同时处理该城市的垃圾,每天需多长时间完成?(2)如果规定该城市每天用于处理垃圾的费用不得超过7 370元,那么甲厂每天处理垃圾至少需要多长时间?创新应用8.为了提倡低碳经济,某公司为了更好地节约能源,决定购买节省能源的10台新机器.现有甲、乙两种型号的设备供选择,其中每台的价格、工作量如下表:(1)经预算:该公司购买的节能设备的资金不超过110万元,请列式解答有几种购买方案可供选择;(2)在(1)的条件下,若每月要求产量不低于2 040吨,为了节约资金,请你设计一种最省钱的购买方案.答案:能力提升1.B2.B3.3瓶 设小宏买x 瓶甲饮料.列不等式为7x+4(10-x )≤50,解得x ≤313,即最多能买3瓶甲饮料.4.36 设这只纸箱内装x 个苹果.根据题意得0.25x+1≤10,解得x ≤36, 所以x 的最大值是36.5.解 (1)y=-20x+1 890 y=90(21-x )+70x=-20x+1 890.(2)由题意,得x<21-x ,解得x<10.5.又∵x ≥1,∴1≤x<10.5,且x 为整数.由(1)中一次函数知,y 随x 的增大而减小,故当x=10时,y 取最小值-20×10+1 890=1 690,因此,费用最省的方案是购买B 种树苗10棵,A 种树苗11棵,所需费用为1 690元.6.解 (1)设该超市购进甲商品x 件,乙商品(80-x )件.由题意,得10x+30(80-x )=1 600.解得x=40,80-x=40.因此,购进甲、乙两种商品各40件.(2)设该超市购进甲商品x 件,乙商品(80-x )件.由题意,得{10x +30(80-x )≤1 640,(15-10)x +(40-30)(80-x )≥600.解得38≤x ≤40.∵x 为整数,∴x=38,39,40,相应的y=42,41,40.从而利润分别为5×38+10×42=610,5×39+10×41=605,5×40+10×40=600. 因此,使该超市利润最大的方案是购进甲商品38件,乙商品42件.7.解 (1)设甲、乙两厂同时处理垃圾,每天需x h .依题意,得(55+45)x=700.解这个方程,得x=7.所以,甲、乙两厂同时处理垃圾,每天需7 h 完成. (2)设甲厂每天处理垃圾需要y h . 依题意,得55y×55055+(700-55y )×49545≤7 370,解得y ≥6.所以,甲厂每天处理垃圾至少需要6 h . 创新应用8.解 (1)设购买节省能源的甲型新设备x 台,乙型新设备(10-x )台.根据题意得12x+10(10-x )≤110, 解得x ≤5,∵x 取非负整数, ∴x=0,1,2,3,4,5, ∴有6种购买方案.(2)由题意得240x+180(10-x )≥2 040, 解得x ≥4, 则x 为4或5.当x=4时,购买资金为12×4+10×6=108(万元), 当x=5时,购买资金为12×5+10×5=110(万元),则最省钱的购买方案为选购甲型设备4台,乙型设备6台.5 一元一次不等式与一次函数第1课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.如图,已知直线y=kx+b 交坐标轴于A (-3,0),B (0,5)两点,则不等式-kx -b<0 的解集为( ) A.x>-3 B.x<-3 C.x>3 D.x<3 2.如图,函数y 1=|x|和y 2=13x+43的图象相交于(-1,1),(2,2)两点.当y 1>y 2时,x 的取值范围是( ) A.x<-1 B.-1<x<2 C.x>2 D.x<-1或x>23.如图,已知直线y 1=x+b 与y 2=kx -1相交于点P ,点P 的横坐标为-1,则关于x 的不等式x+b>kx -1的解集在数轴上表示正确的是( )4.在一次800 m 的长跑比赛中,甲、乙两人所跑的路程s (m)与各自所用时间t (s)之间的函数图象分别为线段OA 和折线OBCD ,下列说法正确的是( )A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后180 s 时,两人相遇D.在起跑后50 s 时,乙在甲的前面5.如图,已知一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2.其中说法正确的有.(把你认为说法正确的序号都填上)6.若直线y=kx+b经过A(-2,-1)和B(-3,0)两点,则不等式2x<kx+b的解集为.7.当x为何值时,一次函数y=-2x+3的值小于一次函数y=3x-5的值?(1)一变:当x为何值时,一次函数y=-2x+3的值等于一次函数y=3x-5的值?(2)二变:当x为何值时,一次函数y=-2x+3的图象在一次函数y=3x-5的图象的上方?(3)三变:已知一次函数y1=-2x+a,y2=3x-5a,当x=3时,y1>y2,求a的取值范围.8.x+3的图象,观察图象回答下列问题:如图,直线l是函数y=12(1)当x取何值时,1x+3>0?2x+3<5?(2)当x取何值时,12x+3,则点P的坐标可能是(-2,1)吗?(3)若点P(x,y)满足x<5,且y>129.我边防局接到情报,在离海岸5海里处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶.如图,l A,l B分别表示两船相对于海岸的距离s(海里)与追赶时间t(min)之间的关系.(1)A,B哪个速度更快?(2)B能否追上A?创新应用10.甲有存款600元,乙有存款2 000元,从本月开始,他们进行零存整取储蓄,甲每月存款500元,乙每月存款200元.(1)列出甲、乙的存款额y1,y2(元)与存款月数x(月)之间的函数关系式,并画出函数图象;(2)请问到第几个月,甲的存款额超过乙的存款额?答案:能力提升1.A2.D3.A4.D5.①②③6.x<-1易知y=-x-3,所以2x<-x-3,解得x<-1.7.解由题意,可知-2x+3<3x-5,.即-5x<-8,得x>85(1)由题意,可知-2x+3=3x-5,.即-5x=-8,得x=85(2)由题意,可知-2x+3>3x-5,.即-5x>-8,得x<85(3)当x=3时,y1=-6+a,y2=9-5a,∵y1>y2,∴-6+a>9-5a,.即6a>15,得a>528.解由题图可以看出函数与x轴的交点为(-6,0).x+3>0.(1)当x>-6时,12(2)由题图可以看出,当y=5时,x=4,x+3<5.所以当x<4时,12(3)由题意,得点P 满足横坐标x<5的同时,对应的点P 的位置要在直线的上方,而点(-2,1)在直线的下方, 故点P 的坐标不可能是(-2,1).9.分析 根据题图提供的信息,分别求出l A ,l B 的关系式,根据k 值的大小来判断谁的速度快,B 能否追上A.实际上,根据图象就可以直接作出判断.解 (1)∵直线l A 过(0,5),(10,7)两点,设直线l A 的函数表达式为s=k 1t+b ,则{5=b ,7=10k 1+b ,∴{k 1=15,b =5.∴s=15t+5. ∵直线l B 过(0,0),(10,5)两点,设直线l B 的函数表达式为s=k 2t ,则5=10k 2,∴k 2=12.∴s=12t.∵k 1<k 2,∴B 的速度快. (2)∵k 1<k 2,∴B 能追上A.创新应用10.解 (1)y 1=600+500x ;y 2=2 000+200x.函数图象如图.(2)令600+500x>2 000+200x ,解得x>423, 所以到第5个月甲的存款额超过乙的存款额.第2课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.某市打市话的收费标准是:每次3 min 以内(含3 min)收费0.2元,以后每 min 收费0.1元(不足1 min 按1 min 计).某天小芳给同学打了一个6 min 的市话,所用电话费为0.5元;小刚现准备给同学打市话6 min,他经过思考以后,决定先打3 min,挂断后再打3 min,这样只需电话费0.4元.若你想给某同学打市话,准备通话10 min,则你所需要的电话费至少为( ) A.0.6元 B.0.7元 C.0.8元 D.0.9元2.声音在空气中的传播速度y (m/s)(简称音速)与气温x (℃)满足关系式:y=35x+331.当音速超过340 m/s 时,气温 .3.某医药公司要把药品运往外地,现有两种运输方式可供选择.方式一:使用快递公司的邮车运输,装卸收费400元,另外每千米再加收4元;方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每千米再加收2元.当运输路程时,选择邮车运输较好.4.某单位需刻录一批光盘,若在电脑公司刻录每张需8元(包括空白光盘费);若单位自制,除租用刻录机需120元外,每张还需成本4元(包括空白光盘费).问刻录这批光盘是到电脑公司刻录费用省,还是自制费用省?请说明理由.5.某商场计划投入一笔资金采购一批商品,经市场调研发现,如果本月初出售,那么可获利10%,然后将本利再投资其他商品,到下月初又可获利10%;如果下月初出售,那么可获利25%,但要支付仓储费8 000元.请你根据商场的资金情况,向商场提出合理化建议,说明何时出售获利较多.6.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A,B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见下表:(1)设派往A地区x台乙型联合收割机,农机租赁公司这50台联合收割机一天获得的租金为y(元),求y与x 之间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.7.甲、乙两家体育器材商店出售同样的乒乓球拍和乒乓球,球拍每副定价60元,乒乓球每盒定价10元.世界乒乓球锦标赛期间,两家商店都搞促销活动:甲商店规定每买1副乒乓球拍赠2盒乒乓球;乙商店规定所有商品9折优惠.某校乒乓球队需要买2副乒乓球拍,乒乓球若干盒(不少于4盒).设该校要买乒乓球x盒,所需商品在甲商店购买需用y1元,在乙商店购买需用y2元.(1)请分别写出y1,y2与x之间的函数关系式(不必注明自变量x的取值范围);(2)对x的取值情况进行分析,试说明在哪一家商店购买所需商品比较便宜;(3)若该校要买2副乒乓球拍和20盒乒乓球,在不考虑其他因素的情况下,请你设计一个最省钱的购买方案.创新应用8.新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/m2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元.已知该楼盘每套楼房面积均为120 m2.若购买者一次性付清所有房款,则开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/m2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.答案:能力提升1.B2.超过15 ℃3.小于210千米4.解设需刻录x张光盘,单位自制的总费用为y1元,电脑公司刻录的总费用为y2元.由题意,得y1=4x+120,y2=8x.(1)当y1>y2,即4x+120>8x时,解得x<30;(2)当y1=y2,即4x+120=8x时,解得x=30;(3)当y1<y2,即4x+120<8x时,解得x>30.所以,当刻录光盘少于30张时,到电脑公司刻录费用省;当刻录光盘等于30张时,两个地方都行;当刻录光盘多于30张时,单位自制费用省.5.解设商场投入资金x元,如果本月初出售,到下月初可获利y1元,则y1=10%x+(1+10%)x·10%=0.1x+0.11x=0.21x;如果下月初出售,可获利y2元,则y2=25%x-8 000=0.25x-8 000.当y1=y2,即0.21x=0.25x-8 000时,x=200 000;当y1>y2,即0.21x>0.25x-8 000时,x<200 000;当y1<y2,即0.21x<0.25x-8 000时,x>200 000.所以,若商场投入资金20万元,两种销售方式获利相同;若商场投入资金少于20万元,本月初出售获利较多;若商场投入资金多于20万元,下月初出售获利较多.6.解(1)派往A地区的乙型收割机为x台,则派往A地区的甲型收割机为(30-x)台,派往B地区的乙型收割机为(30-x)台,派往B地区的甲型收割机为(x-10)台.则y=1 600x+1 800(30-x)+1 200(30-x)+1 600(x-10)=200x+74 000(10≤x≤30,x是正整数).(2)由题意,得200x+74 000≥79 600,解得x≥28.由于10≤x≤30,所以,x取28,29,30三个值.因此有三种分配方案.(3)由于一次函数y=200x+74 000的值是随着x的增大而增大的,故当x=30时,y取最大值.建议农机租赁公司将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,可使公司获得的租金最高.7.解(1)y1=10(x-4)+120=10x+80,y2=(10x+120)×90%=9x+108,x≥4,且x是整数.(2)若y1>y2,即10x+80>9x+108,解得x>28;若y1=y2,即10x+80=9x+108,解得x=28;若y1<y2,即10x+80<9x+108,解得x<28.故当x>28时,在乙商店购买所需的商品比较便宜;当4≤x<28时,在甲商店购买所需的商品比较便宜;当x=28时,在两家商店购买所需商品价钱一样.(3)若所需商品全部在一家商店购买,由(2)知,购买2副球拍和20盒乒乓球时,在甲商店购买比乙商店购买便宜,需10×20+80=280(元).若所需商品在两家商店购买,可以到甲商店购买2副乒乓球拍,需要2×60=120(元),同时获得4盒乒乓球;到乙商店购买16盒乒乓球,需16×10×90%=144(元),共需120+144=264(元).∵264元<280元,∴最佳的购买方案是:到甲商店购买2副乒乓球拍,获赠4盒乒乓球,到乙商店购买16盒乒乓球. 创新应用8.解 (1)当1≤x ≤8时,每平方米的售价应为y=4 000-(8-x )×30=30x+3 760(元/m 2),当9≤x ≤23时,每平方米的售价应为y=4 000+(x -8)×50=50x+3 600(元/m 2).故y={30x +3 760(1≤x ≤8),50x +3 600(9≤x ≤23).(2)第十六层楼房的每平方米的价格为50×16+3 600=4 400(元/m 2), 按照方案一所交房款为W 1=4 400×120×(1-8%)-a=485 760-a (元), 按照方案二所交房款为W 2=4 400×120×(1-10%)=475 200(元), 当W 1>W 2时,即485 760-a>475 200,解得0<a<10 560, 当W 1<W 2时,即485 760-a<475 200,解得a>10 560,故当0<a<10 560时,方案二合算;当a>10 560时,方案一合算;当a=10 560时,两种方案一样合算.6 一元一次不等式组第1课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.若一个关于x 的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是( )A.-2<x<1B.-2<x ≤1C.-2≤x<1D.-2≤x ≤12.如图,天平右盘中的每个砝码的质量都是1 g,则物体A 的质量m (g)的取值范围在数轴上可表示为 ( )3.不等式组{4x -3>2x -6,25-x ≥-35的整数解的个数为( )A.1B.2C.3D.44.已知不等式组{x >2,x <a 的解集中共有5个整数,则a 的取值范围为( )A.7<a ≤8B.6<a ≤7C.7≤a<8D.7≤a ≤85.如果不等式组{3-2x ≥0,x ≥m ①②有解,那么m 的取值范围是 .6.不等式组{3x +4≥0,12x -24≤1的所有整数解的积为 .7.将一箱苹果分给若干名小朋友,若每名小朋友分5个苹果,则还剩12个苹果,若每名小朋友分8个苹果,则有一名小朋友分到了苹果但不足5个,则有小朋友 名,苹果 个.8.已知三个一元一次不等式:2x>6,2x ≥x+1,x -4<0,请从中选择你喜欢的两个不等式,组成一个不等式组,求出这个不等式组的解集,并把解集在数轴上表示出来.9.解不等式组{4(x +1)≤7x +10,x -5<x -83,并写出它的所有非负整数解.创新应用10.一个长方形足球场的长为x m,宽为70 m.如果它的周长大于350 m,面积小于7 560 m 2,求x 的取值范围,并判断这个足球场是否可以用作国际足球比赛.(注:用于国际足球比赛的足球场地的长在100 m 到110 m 之间,宽在64 m 到75 m 之间)答案: 能力提升1.C2.A3.C4.A5.m ≤32 首先将不等式组化简,由不等式①解得x ≤32,∵不等式组有解,∴m 的取值范围为m ≤32.6.07.6 428.解 答案不唯一,如(1)2x>6与x -4<0结合,组成不等式组{2x >6,x -4<0.①②解不等式①,得x>3;解不等式②,得x<4. 故不等式组的解集为3<x<4.不等式组的解集在数轴上表示如图.(2)2x ≥x+1与x -4<0结合,组成不等式组{2x ≥x +1,x -4<0.①②解不等式①,得x ≥1;解不等式②,得x<4.故不等式组的解集为1≤x<4.不等式组的解集在数轴上表示如图.9.解 {4(x +1)≤7x +10,x -5<x -83.①②由①得4x+4≤7x+10,-3x ≤6,x ≥-2. 由②得3x -15<x -8,2x<7,x<72.把不等式①②的解集在数轴上表示如图.所以不等式组的解集为-2≤x<72,其非负整数解为0,1,2,3. 创新应用10.解 由题意,得{2(x +70)>350,70x <7 560,解得105<x<108.所以可以用作国际足球比赛.第2课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.不等式组{2x +12<12x -4,3x -1≤2x的解集在数轴上表示正确的是( )2.关于x 的不等式组{3x -1>4(x -1),x <m的解集为x<3,则m 的取值范围为( )A.m=3B.m>3C.m<3D.m ≥33.生物兴趣小组要在温箱里培养A,B 两种菌苗.已知A 种菌苗的生长温度x (℃)的范围是35≤x ≤38,B 种菌苗的生长温度y (℃)的范围是34≤y ≤36.则温箱里的温度T (℃)的范围是( ) A.34≤T ≤38 B.35≤T ≤38C.35≤T ≤36D.36≤T ≤384.若不等式组{x <m +1,x >2m -1无解,则m 的取值范围是 . 5.若ab>0,根据学过的知识可将其转化为{a >0,b >0或{a <0,b <0.若x -2与x -3的乘积为正数,则x 的取值范围是 .6.关于x 的不等式组{x+152>x -3,2x+23<x +a 只有4个整数解,求a 的取值范围.7.一种药品的说明书上写着:“每日用量60~120 mg,分3~4次服用.”一次服用这种药品的剂量在什么范围?创新应用8.南海地质勘探队在一次勘探中发现了很有价值的A,B 两种矿石,A 矿石大约565 t,B 矿石大约500 t .要一次性将两种矿石运往冶炼厂,需要不同型号的甲、乙两种货船共30艘,甲货船每艘运费1 000元,乙货船每艘运费1 200元.(1)设运送这些矿石的总运费为y 元,若使用甲货船x 艘,请写出y 和x 之间的函数关系式.(2)如果甲货船最多可装A 矿石20 t 和B 矿石15 t,乙货船最多可装A 矿石15 t 和B 矿石25 t,装矿石时按此要求安排甲、乙两种货船,共有几种安排方案?哪种安排方案运费最低并求出最低运费.答案:能力提升1.C2.D3.C4.m ≥2 不等式组{x <m +1,x >2m -1无解, 因此,2m -1≥m+1,解这个不等式得m ≥2.5.x>3或x<2 由(x -2)(x -3)>0得{x -2>0,x -3>0或{x -2<0,x -3<0.解第一个不等式组得x>3,解第二个不等式组得x<2.故x 的取值范围是x>3或x<2.6.解 解不等式组{x+152>x -3,2x+23<x +a ,得{x <21,x >2-3a . 由不等式组有4个整数解,可知这4个解应是20,19,18,17,则 16≤2-3a<17,解得a 的取值范围为-5<a ≤-143.7.解 设一次服用的剂量为x mg .若分3次服用,则{3x ≥60,3x ≤120,解得20≤x ≤40; 若分4次服用,则{4x ≥60,4x ≤120,解得15≤x ≤30. 创新应用8.解 (1)y=1 000x+1 200(30-x ).(2){20x +15(30-x )≥565,15x +25(30-x )≥500,解得23≤x ≤25.因为x 为整数,所以x 可取23,24,25.因此共有3种方案. 方案一:甲货船23艘、乙货船7艘,运费y=1 000×23+1 200×7=31 400元; 方案二:甲货船24艘、乙货船6艘,运费y=1 000×24+1 200×6=31 200元; 方案三:甲货船25艘、乙货船5艘,运费y=1 000×25+1 200×5=31 000元. 所以,方案三运费最低,最低运费为31 000元.。
2.6 一元一次不等式组 北师大版数学八年级下册堂堂练及答案
2.6一元一次不等式组——2022-2023学年北师大版数学八年级下册堂堂练1.将不等式组的解集在数轴上表示出来,正确的是( )A.B.C.D.2.不等式组的解集是( )A. B. C. D.3.若关于x的一元一次不等式组的解集是,则m的取值范围是( )A. B. C. D.4.把一些图书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人至少有一本,但不到3本.那么这些图书有( )A.26本B.25本C.24本D.23本5.若不等式组无解,则m的取值范围为( )A. B. C. D.6.不等式组的解集为________.7.不等式组的所有整数解的和为___________.8.入汛以来,我国南方地区发生多轮降雨,造成的多地发生较重洪涝灾害.某爱心机构将为一受灾严重地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在第(2)问的条件下,如果甲种货车每辆需付运输费2000元,乙种货车每辆需付运输费1800元,应选择哪种方案可使运输费最少?最少运输费是多少元?答案以及解析1.答案:B解析:不等式组的解集在数轴上表示出来为故选B.2.答案:C解析:解不等式,得;解不等式,得,不等式组的解集是.3.答案:A解析:解不等式,得,又,且不等式组的解集是,根据“同小取小”,知m的取值范围是.4.答案:A解析:设共有x名学生,则图书共有本,由题意得:解得,书的数量为.故选:A.5.答案:A解析:解不等式,得.∵不等式组无解,,解得.6.答案:解析:解不等式得:,解不等式得:,所以不等式组的解集为:,故答案为:.7.答案:0解析:,由①得:,由②得,,x可取的整数有:-2,-1,0,1,2;所有整数解的和为,故答案为:0.8.答案:(1)食品120件,则帐篷200件(2)方案共有3种:方案一:甲车2辆,乙车6辆;方案二:甲车3辆,乙车5辆;方案三:甲车4辆,乙车4辆(3)方案一运费最少,最少运费是14800元解析:(1)设食品x件,则帐篷件,由题意得:,解得:.帐篷有件.答:食品120件,则帐篷200件;(2)设租用甲种货车a辆,则乙种货车辆,由题意得:,解得:.又a为整数,或3或4,乙种货车为:6或5或4.方案共有3种:方案一:甲车2辆,乙车6辆;方案二:甲车3辆,乙车5辆;方案三:甲车4辆,乙车4辆;(3)3种方案的运费分别为:方案一:(元);方案二:(元);方案三:(元).方案一运费最少,最少运费是14800元.。
八年级数学北师大版下册 第二章 一元一次不等式与一元一次不等式组 同步单元训练卷(含答案)
北师大版八年级数学下册第二章 一元一次不等式与一元一次不等式组同步单元训练卷一、选择题(共10小题,3*10=30)1.若2a +6的值是正数,则a 的取值范围是( ) A .a >0 B .a >3 C .a >-3 D .a <-32.若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( ) A .m≥2 B .m >2 C .m <2 D .m≤23.把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( )A.⎩⎪⎨⎪⎧x >-1,x≤2B.⎩⎪⎨⎪⎧x≥-1,x <2 C.⎩⎪⎨⎪⎧x≥-1,x≤2 D.⎩⎪⎨⎪⎧x <-1,x≥2 4.在数轴上到原点的距离大于2的点对应的x 满足( ) A .x>2 B .x<2C .x>2或x<-2D .-2<x<25.若函数y =kx +b 的图象如图所示,则关于x 的不等式kx +2b <0的解集为( )A .x <3B .x >3C .x <6D .x >66. 不等式组⎩⎪⎨⎪⎧2-x >1,①x +52≥1②中,不等式①和②的解集在数轴上表示正确的是( )7. 三个连续正整数的和小于39,这样的正整数中,最大一组的和是( ) A .39 B .36 C .35 D .348.关于x 的不等式2x +a ≤1只有2个正整数解,则a 的取值范围为( ) A.-5<a <-3 B.-5≤a <-3 C.-5<a ≤-3 D.-5≤a ≤-39.若不等式2x<4的解都能使关于x 的不等式(a -1)x<a +5成立,则a 的取值范围是( ) A .1<a≤7 B .a≤710.某镇有甲,乙两家液化气站,它们每罐液化气的价格,质地和重量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年需购买8罐液化气,则购买液化气最省钱的方法是( ) A .买甲站的 B .买乙站的 C .买两站的都一样D .先买甲站的1罐,以后买乙站的 二.填空题(共8小题,3*8=24) 11. 不等式 2x -1>3的解集是________.12. 已知“x 的3倍大于5,且x 的一半与1的差不大于2”,则x 的取值范围是__________. 13. 不等式组⎩⎪⎨⎪⎧x -3(x -2)≤8,5-12x >2x 的整数解是________.14.已知关于x 的不等式(a -1)x >4的解集是x <4a -1,则a 的取值范围是____________.15.若|5-10x|=10x -5, 则x 的取值范围是________.16.某商场推出一种购物“金卡”,凭卡在该商场购物可按商品价格的八折优惠,但办理金卡时每张要收100元购卡费,设按标价累计购物金额为x(元),当x___________时,办理金卡购物省钱. 17.某中学举办了“汉字听写大会”,准备为获奖的40名同学颁奖(每人一个书包或一本词典),已知每个书包28元,每本词典20元,学校计划用不超过900元钱购买奖品,则最多可以购买________个书包.18. 已知实数x ,y 满足2x -3y =4,并且x≥-1,y <2,现有k =x -y ,则k 的取值范围是____________.三.解答题(7小题,共66分)19.(8分) 解不等式,并把它们的解集在数轴上表示出来:15-9y <10-4y ;20.(8分) 已知不等式3x -a≤0的正整数解是1,2,3.求a 的取值范围.21.(8分) 根据题意列出不等式:(1)某市化工厂现有甲原料290千克,计划用这种原料与另一种足够多的原料配合生产A,B两种产品共50件.已知生产一件A型产品需甲种原料15千克,生产一件B型产品需甲种原料2.5千克,若该化工厂现有的原料能保证生产,试写出满足生产A型产品x(件)的关系式;(2)某厂生产一种机械零件,固定成本为2万元,每件零件成本为3元,零售价为5元,应纳税款为总销售额的10%.若要使该厂盈利,则该零件至少要生产销售x个,试写出x应满足的不等式.22.(10分) 如图,一次函数y1=kx-2和y2=-3x+b的图象相交于点A(2,-1).(1)求k,b的值;(2)利用图象求出:当x取何值时,y1≥y2?(3)利用图象求出:当x取何值时,y1>0且y2<0?23.(10分) 某校九年级有三个班,其中九(一)班和九(二)班共有105名学生,在期末体育测试中,这两个班级共有79名学生满分,其中九(一)班的满分率为70%,九(二)班的满分率为80%.(1)求九(一)班和九(二)班各有多少名学生;(2)该校九(三)班有45名学生,若九年级体育成绩的总满分率超过75%,求九(三)班至少有多少名学生体育成绩是满分.24.(10分) 如图,一次函数y1=kx-2和y2=-3x+b的图象相交于点A(2,-1).(1)求k,b的值.(2)利用图象求出:当x取何值时,y1≥y2.(3)利用图象求出:当x取何值时,y1>0且y2<0.25.(12分) 某区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设买甲种树苗x棵.有关甲、乙两种树苗的信息如图所示.(1)当n=500时.①根据信息填表(用含x的代数式表示):②如果购买甲、乙两种树苗共用25600元,那么甲、乙两种树苗各买了多少棵?参考答案1-5CCACD 6-10BBCAB11. x>2 12.53<x≤6 13.-1,0,1 14.a <1 15. x≥1216.>500 17. 12 18.1≤k <319.解:移项,得-9y +4y <10-15.合并同类项,得-5y <-5.系数化为1,得y >1.不等式的解集在数轴上表示如图所示.20. 解:3x -a≤0,解得x≤a 3,因为它的正整数解为1,2,3,当a 3=3时,a =9;当a3=4时,a =12.当a =12时,x≤4,有4个正整数,舍去,∴9≤a<1221. 解:(1)生产A 型产品x 件,则生产B 型产品(50-x)件,根据题意, 得15x +2.5(50-x)≤290. (2)5x -3x -5x×10%-20 000>0.22. 解:(1)k =12,b =5.(2)当x≥2时,y 1≥y 2.(3)当x >4时,y 1>0且y 2<0.⎩⎪⎨⎪⎧x =50,y =55.答:九(一)班有50名学生,九(二)班有55名学生 (2)设九(三)班有m 名学生体育成绩满分,根据题意得79+m >(105+45)×75%,解得m >33.5,∵m 为整数,∴m 的最小值为34.答:九(三)班至少有34名学生体育成绩是满分24. 解:(1)将A 点的坐标代入y 1=kx -2,得2k -2=-1,即k =12. 将A 点的坐标代入y 2=-3x +b ,得-6+b =-1,即b =5.(2)从图象可以看出:当x≥2时,y 1≥y 2.(3)直线y 1=12x -2与x 轴的交点坐标为(4,0),直线y 2=-3x +5与x 轴的交点坐标为⎝⎛⎭⎫53,0.从图象可以看出:当x >4时,y 1>0;当x >53时,y 2<0,∴当x >4时,y 1>0且y 2<0.25. 解:(1)①500-x 50x 80(500-x)②由题意得50x +80(500-x)=25600,解得x =480,500-x =20.答:甲种树苗买了480棵,乙种树苗买了20棵(2)由题意得90%x +95%(n -x)≥92%×n ,解得x≤35n ,50x +80(n -x)=26000,解得x =8n -26003.∵8n -26003≤35n ,∴n≤4191131.∵n 为正整数,x 为正整数,当n 为419时,x =7523≈250.7不是整数;当n 为418时,x =248,∴n 的最大值为418。
新北师大版八年级数学下册第2章《一元一次不等式与一元一次不等式组 》综合练习题含答案解析 (24)
(共25题)一、选择题(共10题)1. 若关于 x 的不等式组 {2x −6+m <0,4x −m >0 有解,则在其解集中,整数的个数不可能是 ( )A . 1B . 2C . 3D . 42. 如图表示下列四个不等式组中其中一个的解集,这个不等式组是 ( )A . {x ≥2,x >−3B . {x ≤2,x <−3C . {x ≥2,x <−3D . {x ≤2,x >−33. 把不等式组 {2x +3>1,3x +4≥5x的解集表示在数轴上如图,正确的是 ( )A .B .C .D .4. 若 a >b ,则下列不等式成立的是 ( ) A . a −1<b −1 B . −8a <−8b C . 4a <4bD . ac >bc5. 若 x <y 成立,则下列不等式成立的是 ( ) A . x −2<y −2 B . −x <−y C . x +1>y +1D . −3x <−3y6. 不等式 x −1>0 的解集是 ( ) A . x >1B . x <1C . x >−1D . x <−17. 不等式组{5x +2>3(x −1)12x −1≤7−32x的所有非负整数解的和是( ) A .10 B .7 C .6 D .08. 已知 a >b ,则下列不等关系中正确的是 ( ) A . ac >bcB . a +c >b +cC . a −1>b +1D . ac 2>bc 29. 不等式组 {x +9<5x +1,x ≥2x −3 的解集是 ( )A .x >2B .x ≤3C .2<x ≤3D .x ≥310. 不等式 2x ≥x −1 的解集在数轴上表示正确的是 ( )A .B .C .D .二、填空题(共7题)11. 在平面直角坐标系中,点 P (m,m −2) 在第一象限内,则 m 的取值范围是12. 已知关于 x 的不等式组 {x −a <0,9−2x ≤3 有且只有 2 个整数解,且 a 为整数,则 a 的值为 .13. 定义新运算:对于任意实数 a ,b 都有:a ⊕b =a (a −b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2−5)+1=2×(−3)+1=−5,那么不等式 3⊕x <13 的解集为 .14. 当 x 满足条件 时,代数式 6−3x 5的值不大于零.15. 对于有理数 m ,我们规定 [m ] 表示不大于 m 的最大整数,例如 [1.2]=1,[3]=3,[−2.5]=−3,若 [x+23]=−5,则整数 x 的取值是 .16. 一元一次不等式需满足的三个条件是:① ,② ,③ ,这样的不等式叫做一元一次不等式.17. 如图,周长为 a 的圆上仅有一点 A 在数轴上,点 A 所表示的数为 1.该圆沿着数轴向右滚动一周后点 A 对应的点为点 B ,且滚动中恰好经过 3 个整数点(不包括 A ,B 两点),则 a 的取值范围为 .三、解答题(共8题)18. 已知不等式 18x −2>x 与 ax −3>2x 的解集相同,求 a 的值.19. 解不等式组 {2x−13−5x+12≤1,5x −1<3(x +1), 并写出该不等式组的整数解.20. 列方程解应用题.(1) 某车间 32 名工人生产螺母和螺钉,每人每天平均生产螺钉 1500 个或螺母 5000 个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉?(2) 一家游泳馆每年 6∼8 月份出售夏季会员证,每张会员证 80 元,只限本人使用凭证购入场券每张 1 元,不凭证购入场卷每张 3 元,请用所学数学知识分析,什么情况下购会员证更合算?21. 解不等式组 {3x ≥4x −4, ⋯⋯①5x −11≥−1. ⋯⋯②请结合题意填空,完成本题的解答. (1) 解不等式 ①,得 . (2) 解不等式 ②,得 .(3) 把不等式 ① 和 ② 的解集在数轴上表示出来:(4) 原不等式组的解集为 .22. 已知两个语句:①式子 2x −1 的值比 1 大; ②式子 2x −1 的值不小于 1. 请回答下列问题:(1) 两个语句表达的意思是否一样?(不用说明理由)(2) 把两个语句分别用数学式子表示出来,并选择一个求其解集.23. 解方程组:{x +3>5 ⋯⋯①2x −3<x +2 ⋯⋯②24. 解不等式组:{4x >2x −6,x−13≤x+19, 并把解集在数轴上表示出来.25. 解不等式:x−52+1>x −3.答案一、选择题(共10题)1. 【答案】C【解析】解不等式2x−6+m<0,得x<6−m2,解不等式4x−m>0,得x>m4,∵不等式组有解,∴m4<6−m2,解得m<4,如果m=2,则不等式组的解集为12<x<2,整数解为x=1,有1个;如果m=0,则不等式组的解集为0<x<3,整数解为x=1,2,有2个;如果m=−1,则不等式组的解集为−14<x<72,整数解为x=0,1,2,3,有4个.故选C.【知识点】含参一元一次不等式组2. 【答案】D【知识点】常规一元一次不等式组的解法3. 【答案】B【解析】解不等式2x+3>1,得:x>−1,解不等式3x+4≥5x,得:x≤2,则不等式组的解集为−1<x≤2,故选:B.【知识点】常规一元一次不等式组的解法4. 【答案】B【知识点】不等式的性质5. 【答案】A【解析】A、不等式的两边都减去2,不等号的方向不变,故本选项正确;B、不等式的两边都乘以−1,不等号的方向改变,故本选项错误;C、不等式的两边都加上1,不等号的方向不变,故本选项错误;D、不等式的两边都乘以−3,不等号的方向改变,故本选项错误.【知识点】不等式的性质6. 【答案】A【知识点】常规一元一次不等式的解法7. 【答案】A【解析】【分析】分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.【解析】解:{5x +2>3(x −1)①12x −1≤7−32x②, 解不等式①得:x >−2.5, 解不等式②得:x ≤4,∴不等式组的解集为:−2.5<x ≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10, 故选:A .【点评】本题主要考查解一元一次不等式组的基本技能,准确求出每个不等式的解集是解题的根本,确定不等式组得解集及其非负整数解是关键. 【知识点】常规一元一次不等式组的解法8. 【答案】B【解析】A .不等式两边都乘以 c ,当 c <0 时,不等号的方向改变,原变形错误,故此选项不符合题意;B .不等式两边都加上 c ,不等号的方向不变,原变形正确,故此选项符合题意;C .不等式的两边一边加 1 一边减 1,不等号的方向不确定,原变形错误,故此选项不符合题意;D .不等式的两边都乘以 c 2,当 c =0 时,变为等式,原变形错误,故此选项不符合题意. 【知识点】不等式的性质9. 【答案】C【解析】{x +9<5x +1, ⋯⋯①x ≥2x −3, ⋯⋯②解不等式 ①,得 x >2, 解不等式 ②,得 x ≤3, ∴ 不等式组的解集为 2<x ≤3. 【知识点】常规一元一次不等式组的解法10. 【答案】C【知识点】常规一元一次不等式的解法二、填空题(共7题) 11. 【答案】 m >2【知识点】常规一元一次不等式组的解法12. 【答案】 5【解析】 {x −a <0,9−2x ≤3解得:{x <a,x ≥3,∴3≤x <a ,∵ 有且只有 2 个整数解, ∴4<a ≤5, ∵a 为整数, ∴a =5.【知识点】含参一元一次不等式组13. 【答案】 x >−1【解析】 ∵a ⊕b =a (a −b )+1,∴3⊕x =3(3−x )+1<13,解得 x >−1. 【知识点】常规一元一次不等式的解法14. 【答案】 x ≥2【知识点】常规一元一次不等式的解法15. 【答案】 −17 或 −16 或 −15【解析】 ∵[x+23]=−5,∴−5≤x+23<−4,∴−15≤x +2<−12, ∴−17≤x <−14,∴ 整数 x 的取值为 −17 或 −16 或 −15. 【知识点】常规一元一次不等式组的解法16. 【答案】只含有一个未知数;未知数的最高次数是 1 ;系数不等于 0【知识点】一元一次不等式的概念17. 【答案】 3<a ≤4【解析】根据题意可知,三个整数点表示的数为 2,3,4,所以 4<a +1≤5,所以 a 的取值范围为3<a≤4.【知识点】不等式的概念三、解答题(共8题)18. 【答案】解不等式18x−2>x得,x<−167;由不等式ax−3>2x得,(a−2)x>3,∵两不等式的解集相同,∴a−2<0,∴x<3a−2,∴3a−2=−167,解得:a=1116.故a的值为:1116.【知识点】含参一元一次方程的解法、常规一元一次不等式的解法19. 【答案】{2x−13−5x+12≤1, ⋯⋯①5x−1<3(x+1), ⋯⋯②解不等式①,得x≥−1,解不等式②,得x<2,∴不等式组的解集为−1≤x<2,∴不等式组的整数解为−1,0,1.【知识点】常规一元一次不等式组的解法20. 【答案】(1) 设为了使每天的产品刚好配套,应该分配x名工人生产螺钉,则(32−x)名工人生产螺母,根据题意得:1500x×2=5000(32−x),解得:x=20.则为了使每天的产品刚好配套,应该分配20名工人生产螺钉.(2) 假设游泳x次,则购证后花费为(80+x)元,不购证花费3x元,根据题意得:80+x<3x,解得:x>40.答:6∼8月游泳次数大于40的话,购证更划算.【知识点】和差倍分、一元一次不等式的应用21. 【答案】(1) x≤4(2) x≥2(3) 如图所示:(4) 2≤x≤4【解析】(1) 解不等式 ① 得 x ≤4. (2) 解不等式 ② 得 x ≥2.【知识点】常规一元一次不等式组的解法、常规一元一次不等式的解法、数轴的概念22. 【答案】(1) 两个语句表达的意思不一样.(2) ① 2x −1>1; 两边同加上 1,得 2x >2, 两边再同除以 2,得 x >1. ② 2x −1≥1;两边同加上 1,得 2x ≥2, 两边再同除以 2,得 x ≥1.【知识点】常规一元一次不等式的解法、一元一次不等式的概念、不等式的概念23. 【答案】解不等式①,得 x >2.解不等式②,得 x <5.所以,这个不等式组的解集是 2<x <5. 【知识点】常规一元一次不等式组的解法24. 【答案】{4x >2x −6, ⋯⋯①x−13≤x+19. ⋯⋯②解不等式①得:x >−3,解不等式②得:x ≤2.∴ 不等式组的解集为−3<x ≤2.在数轴上表示不等式组的解集为:【知识点】常规一元一次不等式组的解法25. 【答案】(x −5)+2>2(x −3),x −5+2>2x −6,x −2x >5−2−6,−x >−3,x <3.【知识点】常规一元一次不等式的解法。
2022-2023学年北师大版八年级数学下册《2-4一元一次不等式》同步测试题(附答案)
2022-2023学年北师大版八年级数学下册《2.4一元一次不等式》同步测试题(附答案)一.选择题(共7小题,满分28分)1.不等式x﹣5>﹣1的解集是()A.x>4B.x>﹣4C.x<4D.x<﹣42.在平面直角坐标系中,点A(a,2)在第二象限内,则a的取值可能是()A.1B.﹣3C.4D.4或﹣43.不等式4x﹣6≥7x﹣12的正整数解个数为()A.0个B.1个C.2个D.3个4.把不等式﹣3x+9>0的解集在数轴上表示为()A.B.C.D.5.若关于x,y的二元一次方程组的解满足x+y>0,则m的取值范围是()A.m>2B.m>﹣2C.m<2D.m<﹣26.近日,教育部正式印发《义务教育课程方案》,将劳动从原来的综合实践活动课程中完全独立出来,并在今年9月份开学开始正式施行.某学校组织八年级同学到劳动教育基地参加实践活动,某小组的任务是平整土地300m2.开始的半小时,由于操作不熟练,只平整完30m2,学校要求完成全部任务的时间不超过3小时,若他们在剩余时间内每小时平整土地xm2,则x满足的不等关系为()A.30+(3﹣0.5)x≤300B.300﹣30x﹣0.5≤3C.30+(3﹣0.5)x≥300D.0.5+300﹣30x≥37.某商品标价280元,若按标价出售可获利40%,由于商品积压,现准备打折销售,要使利润不低于19%,则最多可以打()A.6折B.6.5折C.8折D.8.5折二.填空题(共7小题,满分28分)8.一元一次不等式3x+5>3的解集是.9.不等式2x+5>4x+1的正整数解是.10.如果点P(2﹣m,1)在第二象限,那么关于x的不等式(1﹣m)x+1>m的解集是.11.小明用30元购买铅笔和签字笔,已知铅笔和签字笔的单价分别是2元和5元,他买了2支铅笔后,最多还能买支签字笔.12.若关于x,y的二元一次方程组的解满足2x+y>5,则a的取值范围是.13.某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局反扣1分,在12局比赛中,积分超过12分就可以晋升下一轮比赛,而且在全部12轮比赛中,没有出现平局,小王至少赢局比赛才能晋级.14.一艘轮船从某江上游的A地匀速驶到下游的B地用了10小时,从B地匀速返回A地用了不到12小时,这段江水流速为3km/h,设轮船在静水里的往返速度为vkm/h,且此速度一直保持不变,请列出符合题意的一元一次不等式.三.解答题(共6小题,满分64分)15.解不等式≤﹣1,并把它的解集在数轴上表示出来.16.已知关于x的方程4x+2m﹣1=2x+5的解是负数.(1)求m的取值范围;(2)解关于x的不等式x﹣1>.17.已知x,y满足方程组且x+y<0.(1)试用含m的式子表示方程组的解;(2)求实数m的取值范围;(3)化简|m+|﹣|2﹣m|.18.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个,乙种书柜2个,共需要资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,学校至多提供资金4320元,则最多可以购买多少个乙种书柜.19.阅读求绝对值不等式|x|<3和|x|>3的解集的过程:∵|x|<3,从如图①所示的数轴上看:大于﹣3而小于3的数的绝对值是小于3的,∴|x|<3的解集是﹣3<x<3;∵|x|>3,从如图②所示的数轴上看:小大于﹣3的数和大于3的数的绝对值是大于3的,∴|x|>3的解集是x<﹣3或x>3.解答下面的问题:(1)不等式|x|<a(a>0)的解集为;不等式|x|>a(a>0)的解集为.(2)解不等式:|x﹣5|<3;(3)解不等式:|x﹣3|>5.20.非常时期,出门切记戴口罩.当下口罩市场出现热销,某超市用12000元购进甲、乙两种型号的口罩在超市销售,销售完后共获利2700元,进价和售价如表所示.价格甲乙型号进价(元/袋)2030售价(元/袋)2536(1)求该超市购进甲、乙两种型号的口罩各多少袋?(2)该超市第二次以原价购进甲、乙两种型号的口罩,购进甲种型号的口罩袋数不变,而购进乙种型号的口罩袋数是第一次的2倍,甲种型号的口罩按原售价出售,而效果更好的乙种型号的口罩打折让利销售,若两种型号的口罩全部售完,要使第二次销售活动获利不少于1740元,求每袋乙种型号的口罩最多打几折?参考答案一.选择题(共7小题,满分28分)1.解:x﹣5>﹣1,解得x>4.故选:A.2.解:∵点A(a,2)在第二象限内,∴a<0,故选:B.3.解:4x﹣6≥7x﹣12,移项,得:4x﹣7x≥﹣12+6,合并同类项,得:﹣3x≥﹣6,系数化为1,得:x≤2,则不等式的正整数解为1、2,所以不等式的正整数解的个数为2.故选:C.4.解:﹣3x+9>0,移项,得﹣3x>﹣9,解得x<3,在数轴上表示为:故选:B.5.解:两方程相加,得:2x+2y=2m+4,∴x+y=m+2,∵x+y>0,∴m+2>0,解得m>﹣2,故选:B.6.解:依题意得:30+(3﹣0.5)x≥300.故选:C.7.解:设该商品打x折销售,依题意得:280×﹣≥×19%,解得:x≥8.5,∴该商品最多可以打8.5折.故选:D.二.填空题(共7小题,满分28分)8.解:移项得:3x>3﹣5,合并得:3x>﹣2,系数化为1得:x>﹣.故答案为:x>﹣.9.解:移项,得:2x﹣4x>1﹣5,合并同类项,得:﹣2x>﹣4,系数化为1,得:x<2,则不等式组的正整数解为1,故答案为:1.10.解:∵点P(2﹣m,1)在第二象限,∴2﹣m<0,解得:m>2,则1﹣m<0,∵(1﹣m)x+1>m,∴(1﹣m)x>m﹣1,∴x<﹣1,故答案为x<﹣1.11.解:设还能买x支签字笔,依题意得:2×2+5x≤30,解得:x≤,又∵x为正整数,∴x的最大值为5,∴最多还能买5支签字笔.故答案为:5.12.解:将两个方程相加可得2x+y=a+4,∵2x+y>5,∴a+4>5,解得a>1,故答案为:a>1.13.解:设小王赢了x局比赛,则负了(12﹣x)局比赛,依题意得:2x﹣(12﹣x)>12,解得:x>8,又∵x为正整数,∴x的最小值为9,∴小王至少赢9局比赛才能晋级.故答案为:9.14.解:由题意得,从A到B的速度为:(v+3)千米/时,从B到A的速度为:(v﹣3)千米/时,∵从B地匀速返回A地用了不到12小时,∴12(v﹣3)>10(v+3).故答案为:12(v﹣3)>10(v+3).三.解答题(共6小题,满分64分)15.解:去分母得:2(4x﹣1)≤3x﹣1﹣6,去括号得:8x﹣2≤3x﹣1﹣6,移项合并得:5x≤﹣5,系数化为1得:x≤﹣1,解集表示在数轴上,如图所示:.16.解:(1)方程4x+2m﹣1=2x+5的解是:x=3﹣m.由题意得:3﹣m<0,解得m>3.(2)x﹣1>,去分母得:3(x﹣1)>mx+1,去括号得:3x﹣3>mx+1,移项,得:3x﹣mx>1+3,合并同类项,得:(3﹣m)x>4,因为m>3,所以3﹣m<0,所以x<.17.解:(1),①+②×3得:5x=15m+10,解得:x=3m+2,把x=3m+2代入②得:3m+2﹣y=4m+1,解得:y=1﹣m,则方程组的解为;(2)∵x+y<0,∴3m+2+1﹣m<0,解得:m<﹣;(3)∵m<﹣,∴m+<0,2﹣m>0,则原式=﹣m﹣﹣2+m=﹣3.18.解:(1)设甲种书柜每个的价格是a元,乙种书柜每个的价格是b元,由题意可得:,解得,答:甲种书柜每个的价格是180元,乙种书柜每个的价格是240元;(2)设甲种书柜有x个,则乙种书柜有(20﹣x)个,由题意可得:180x+240(20﹣x)≤4320,解得:x≥8,∴20﹣x≤12,∴最多可以购买12个乙种书柜.19.解:(1)不等式|x|<a(a>0)的解集为﹣a<x<a;不等式|x|>a(a>0)的解集为x>a或x<﹣a.故答案为:﹣a<x<a;x>a或x<﹣a;(2)|x﹣5|<3,∴﹣3<x﹣5<3,∴2<x<8;(3)|x﹣3|>5,∴x﹣3>5或x﹣3<﹣5,∴x>8或x<﹣2.20.解:(1)设该超市购进甲种型号的口罩x袋,购进乙种型号的口罩y袋,依题意得:,解得:.答:该超市购进甲种型号的口罩300袋,购进乙种型号的口罩200袋.(2)设每袋乙种型号的口罩打m折销售,依题意得:(25﹣20)×300+(36×﹣30)×200×2≥1740,解得:m≥8.5,∴m的最小值为8.5.答:每袋乙种型号的口罩最多打8.5折.。
北师大版数学八年级下册 第二章不等式 同步训练(含答案)
北师大版数学八年级下册第二章不等式同步训练1、下列各式中,不是不等式的是()A.2x≠1B.3x2–2x+1C.–3<0 D.3x–2≥12、x=–1不是下列哪一个不等式的解()A.2x+1≤–3 B.2x–1≥–3C.–2x+1≥3D.–2x–1≤33、不等式__________的解集在数轴上的表示如图所示.A.x–3<0 B.x–3≤0C.x–3>0 D.x–3≥04、已知3a>–6b,则下列不等式一定成立的是A.a+1>–2b–1 B.–a<bC.3a+6b<0 D.ab>–25、不等式x≥–1的解在数轴上表示为A.B.C.D.6、“x的2倍与3的差不大于8”列出的不等式是A.238x-≤B.238x-≥C.238x-<D.238x->7、下列不等式中是一元一次不等式的是①2x–1>1;②3+12x<0;③x≤2.4;④1x<5;⑤1>–2;⑥3x–1<0.A .2个B .3个C .4个D .5个8、用不等式表示“x 的2倍与3的和大于10”是___________. 9、若1123x ->-,则x ___________23.10、一个长方形的长为x 米,宽为50米,如果它的周长不小于280米,那么x 应满足的不等式为____________. 11、用适当的不等式表示下列不等关系: (1)x 减去6大于12; (2)x 的2倍与5的差是负数; (3)x 的3倍与4的和是非负数; (4)y 的5倍与9的差不大于1-; 12、用“>”或“<”填空:(1)如果a –b <c –b ,那么a ( )c ; (2)如果3a >3b ,那么a ( )b ; (3)如果–a <–b ,那么a ( )b ; (4)如果2a +1<2b +1,那么a ( )b . 13、把下列不等式化为“x >a ”或“x <a ”的形式:(1)x +6>5;(2)3x >2x +2;(3)–2x +1<x +7;(4)–22x -<14x +. 14、下列说法中,正确的是( ) A .x =2是不等式3x >5的一个解 B .x =2是不等式3x >5的唯一解C .x =2是不等式3x >5的解集D .x =2不是不等式3x >5的解15、用不等式表示图中的解集,其中正确的是( )A .x >–3B .x <–3C .x ≥–3D .x ≤–316、已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( ) A .x <2B .x >–2C .当a >0时,x <2D .当a >0时,x <2;当a <0时,x >217、不等式y +3>4变形为y >1,这是根据不等式的性质__________,不等式两边同时加上__________.18、若a <b ,则a +c ( )b +c ;,若mx >my ,且x >y 成立,则m __________0;若5m –7b >5n –7b ,则m ( )n 。
2022-2023学年北师大版八年级数学下册《2-6一元一次不等式组》同步自主提升练习题(附答案)
2022-2023学年北师大版八年级数学下册《2.6一元一次不等式组》同步自主提升练习题(附答案)一.选择题2.下列选项中是一元一次不等式组的是()A.B.C.D.1.关于x,y的方程组,若2<k<4,则x﹣y的取值范围是()A.﹣1<x﹣y<0B.0<x﹣y<1C.﹣3<x﹣y<﹣1D.﹣1<x﹣y<1 2.不等式组的解集是()A.无解B.x<﹣1C.x≥D.﹣1<x≤3.已知点P(1﹣a,2a+6)在第四象限,则a的取值范围是()A.a<﹣3B.﹣3<a<1C.a>﹣3D.a>15.已知关于x的不等式组的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.a<﹣3D.﹣4<a<6.关于x的不等式组的所有整数解的积为2,则m的取值范围为()A.m>﹣3B.m<﹣2C.﹣3≤m<﹣2D.﹣3<m≤﹣2 7.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1名同学植树的棵数不到8棵.若设同学人数为x人,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9﹣9(x﹣1)>0B.7x+9﹣9(x﹣1)<8C.D.8.“a与5的和是正数且a的一半不大于3”用不等式组表示,正确的是()A.B.C.D.9.某企业决定购买A,B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)1210月污水处理能力(吨/月)200160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低1380吨,该企业有哪些购买方案呢?为解决这个问题,设购买A型污水处理设备x台,所列不等式组正确的是()A.B.C.D.10.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了两次才停止,那么x的取值范围是()A.x>23B.23<x≤47C.11≤x<23D.x≤47二.填空题11.写出一个无解的一元一次不等式组为.12.不等式组的解集为.13.不等式组有3个整数解,则a的取值范围是.14.某种植物生长的适宜温度不能低于18℃.也不能高于22℃.如果该植物生长的适宜温度为x℃.则有不等式.15.一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2,则x的取值范围是.三.解答题16.解不等式组,并把解集表示在数轴上.17.解不等式组,并把解集在数轴上表示出来.18.已知关于x、y的方程组的解满足,求整数k的值.19.求不等式组的正整数解.20.已知两个语句:①式子2x﹣1的值在1(含1)与3(含3)之间;②式子2x﹣1的值不小于1且不大于3.请回答以下问题:(1)两个语句表达的意思是否一样(不用说明理由)?(2)把两个语句分别用数学式子表示出来.参考答案一.选择题1.解:A、含有三个未知数,不符合题意;B、未知数的最高次数是2,不符合题意;C、含有两个未知数,不符合题意;D、符合一元一次不等式组的定义,符合题意;故选:D.2.解:,解得:,x﹣y=,∵2<k<4,∴0<x﹣y<1,故选:B.3.解:解不等式3﹣2x<5,得:x>﹣1,解不等式2(x﹣2)≤1,得:x≤,则不等式组的解集为﹣1<x≤,故选:D.4.解:∵点P(1﹣a,2a+6)在第四象限,∴,解得a<﹣3.故选:A.5.解:解不等式x﹣a>0,得:x>a,解不等式3﹣2x>0,得:x<1.5,∵不等式组的整数解有5个,∴﹣4≤a<﹣3.故选:B.6.解:由x≤﹣且不等式组的所有整数解的积为2知整数解为﹣1、﹣2这2个,所以﹣3≤m<﹣2,故选:C.7.解:(x﹣1)位同学植树棵树为9×(x﹣1),∵有1位同学植树的棵数不到8棵.植树的棵数为(7x+9)棵,∴可列不等式组为:,即.故选:C.8.解:由题意可得:.故选:A.9.解:设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据题意,得,故选:A.10.解:由题意得,,解不等式①得,x≤47,解不等式②得,x>23,∴23<x≤47,故选:B.二.填空题11.解:根据不等式组解集的口诀:大大小小找不到(无解),可写x≤2,x≥3,即.12.解:解不等式x﹣1≤2,得:x≤3,解不等式3﹣4x<﹣5,得:x>2,则不等式组的解集为2<x≤3,故答案为:2<x≤3.13.解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解集为:4<x≤2﹣a,由关于x的不等式组有3个整数解,解得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故答案为:﹣6<a≤﹣514.解:根据题意温度不能低于18℃可得x≥18,根据不能高于22℃可得x≤22,故18≤x≤22.故答案为:18≤x≤22.15.解:矩形的周长是2(x+10)cm,面积是10xcm2,根据题意,得,解不等式:2(x+10)<80,解得:x<30,解不等式:10x>100,解得:x>10,所以x的取值范围是:10<x<30.故答案为:10<x<30.三.解答题16.解:.解不等式①,得:x≥﹣3;解不等式②,得:x<2.∴不等式组的解集为:﹣3≤x<2.将其表示在数轴上,如图所示.17.解:解不等式x﹣3(x﹣2)≥4,得:x≤1,解不等式>x﹣1,得:x<4,则不等式组的解集为x≤1,将不等式组的解集表示在数轴上如下:18.解:两方程分别相加和相减可得,∴,解得,∴整数k的值为1、2.19.解:解不等式5x﹣12≤2(4x﹣3),得:x≥﹣2,解不等式<5,得:x<3,则不等式组的解集为﹣2≤x<3,所以不等式组的正整数解为1、2.20.解:(1)一样;(2)①式子2x﹣1的值在1(含1)与3(含3)之间可得1≤2x﹣1≤3;②式子2x﹣1的值不小于1且不大于3可得.。
一元一次不等式和一元一次不等式组 单元测试-八年级数学下册同步备课系列(北师大版)(解析版)
第二章一元一次不等式和一元一次不等式组单元测试(能力提升)一、单选题1.在数轴上与原点的距离小于8的点对应的x 满足()A .x <8B .x >8C .x <-8或x >8D .-8<x <8【答案】D【解析】解:数轴上对应x 的点到原点的距离可表示为|x |.由题意可知8x ,<解得88x -<<,故选D.2.下列不等式组:①23x x >-⎧⎨<⎩,②024x x >⎧⎨+>⎩,③22124x x x ⎧+<⎨+>⎩,④307x x +>⎧⎨<-⎩,⑤1010x y +>⎧⎨-<⎩.其中一元一次不等组的个数是()A .2个B .3个C .4个D .5个【答案】B【分析】根据一元一次不等式组的定义,含有两个或两个以上的不等式,不等式中的未知数相同,并且未知数的最高次数是1,对各选项判断再计算个数即可【解析】根据一元一次不等式组的定义,①②④都只含有一个未知数,所含未知数相同,并且未知数的最高次数是1,所以都是一元一次不等式组.③含有一个未知数,但是未知数的最高次数是2;⑤含有两个未知数,所以③⑤不是一元一次不等式组故选B【点睛】此题主要考察一元一次不等式组的定义3.下列说法中,错误的是()A.x=1是不等式x<2的解B.-2是不等式2x-1<0的一个解C.不等式-3x>9的解集是x=-3D.不等式x<10的整数解有无数个【答案】C【解析】A、B、D正确,C.不等式-3x>9的解集是x<-3.故选C.4.已知x=2不是关于x的不等式2x﹣m>4的整数解,x=3是关于x的不等式2x﹣m>4的一个整数解,则m的取值范围为()A.0<m<2B.0≤m<2C.0<m≤2D.0≤m≤2【答案】B【分析】由2x-m>4得x>42m+,根据x=2不是不等式2x-m>4的整数解且x=3是关于x的不等式2x-m>4的一个整数解得出42m+≥2、42m+<3,解之即可得出答案.【解析】解:由2x-m>4得x>4 2m+,∵x=2不是不等式2x-m>4的整数解,∴42m+≥2,解得m≥0;∵x=3是关于x的不等式2x-m>4的一个整数解,∴42m+<3,解得m <2,∴m 的取值范围为0≤m <2,故选:B .【点睛】本题主要考查了一元一次不等式的整数解,解题的关键是根据不等式整数解的情况得出关于m 的不等式.5.如图,经过点(2,0)B -的直线y kx b =+与直线42y x =+相交于点(1,2)A --,420x kx b +<+<的解集为()A .2x <-B .21x -<<-C .1x <-D .1x >-【答案】B【分析】由图象得到直线y =kx +b 与直线y =4x +2的交点A 的坐标(-1,-2)及直线y =kx +b 与x 轴的交点坐标,观察直线y =4x +2落在直线y =kx +b 的下方且直线y =kx +b 落在x 轴下方的部分对应的x 的取值即为所求.【解析】解:∵经过点B (-2,0)的直线y =kx +b 与直线y =4x +2相交于点A (-1,-2),∴直线y =kx +b 与直线y =4x +2的交点A 的坐标为(-1,-2),直线y =kx +b 与x 轴的交点坐标为B (-2,0),又∵当x <-1时,4x +2<kx +b ,当x >-2时,kx +b <0,∴不等式4x+2<kx+b<0的解集为-2<x<-1.故选:B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.6.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7B.4<m<7C.4≤m≤7D.4<m≤7【答案】A【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.【解析】解:解不等式3x﹣m+1>0,得:x>1 3m-,∵不等式有最小整数解2,∴1≤13m-<2,解得:4≤m<7,故选A.【点睛】本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.7.已知关于x、y的二元一次方程组32121399x y ax y a+=--⎧⎪⎨-=+⎪⎩的解满足x y≥,且关于s的不等式组731a s s -⎧>⎪⎨⎪≤⎩恰好有4个整数解,那么所有符合条件的整数a 的个数为()A .4个B .3个C .2个D .1个【答案】C【分析】先求出方程组和不等式的解集,再求出a 的范围,最后得出答案即可.【解析】解:解方程组32121399x y a x y a +=--⎧⎪⎨-=+⎪⎩得:213322x a y a ⎧=+⎪⎪⎨⎪=--⎪⎩,∵关于x 、y 的二元一次方程组32121399x y a x y a +=--⎧⎪⎨-=+⎪⎩的解满足x y ≥,∴213a +≥322a --,解得:a ≥-1813,∵关于s 的不等式组731a s s -⎧>⎪⎨⎪≤⎩恰好有4个整数解,即4个整数解为1,0,-1,-2,∴7323a --≤<-,解得-2≤a <1,∴1813-≤a <1,∴符合条件的整数a 的值有:-1,0,共2个,故选:C .【点睛】本题主要考查了解二元一次方程和一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.如果不等式组3020x a x b -≥⎧⎨-<⎩的整数解仅为1,2,3,那么适合这个不等式组的整数a ,b 的有序数对(a ,b )的个数是()A .5B .6C .12D .4【答案】B【分析】首先解不等式组3020x a x b -≥⎧⎨-⎩ ,不等式的解集即可用a,b 表示,根据不等式组的整数解仅为1,2,3,即可确定a,b 的范围,再确定a,b 的整数解,然后得到有序数对的个数.【解析】3020x a x b -≥⎧⎨-⎩①②,由①得:x 3a ≥,由②得:x 2b ≤,不等式组的解集为:x 32a b ≤≤,∵整数解仅为1,2,3∴013a ≤<,32b ≤<4解得:0<a ≤3,6b ≤<8,∴a=1,2,3b=6,7∴整数a,b 组成是有序数对(a ,b )共有(1,6)(1,7)(2,6)(2,7)(3,6)(3,7)即6个故选B.【点睛】考察不等式组的解集,再利用有限个整数解来解决此题.9.美美和小仪到超市购物,且超市正在举办摸彩活动,单次消费金额每满100元可以拿到1张摸彩券.已知美美一次购买5盒饼干拿到3张摸彩券;小仪一次购买5盒饼干与1个蛋糕拿到4张摸彩券.若每盒饼干的售价为x 元,每个蛋糕的售价为150元,则x 的范围为下列何者?()A .5060x ≤<B .6070x ≤<C .7080x ≤<D .8090x ≤<【答案】B【分析】首先根据题意可知,拿到3张摸彩卷的意思即是消费金额大于等于300小于400,拿到4张摸彩卷的意思即是消费金额大于等于400小于500,根据题意列出不等式组,解不等式组即可.【解析】解:美美拿到3张彩卷说明消费金额达到了300,但是不足400,小仪拿到了4张彩卷说明消费金额达到了400,但是不足500,因此可得,30054004005150500x x ≤<⎧⎨≤+<⎩,解得,6070x ≤<,故选:B .【点睛】本题考查一元一次不等式组的应用,确定消费金额与彩卷数量的不等关系是解题的关键.10.解不等式()()210x x -->时,我们可以将其化为不等式2010x x ->⎧⎨->⎩或2010x x -<⎧⎨-<⎩得到的解集为1x <或2x >,利用该题的方法和结论,则不等式()()()3210x x x --->的解集为()A .3x >B .12x <<C .1x <D .3x >或12x <<【答案】D【分析】根据已知形式化成不等式组分别求解即可;【解析】由题可得,将不等式化为()()30210x x x ->⎧⎨-->⎩或()()30210x x x -<⎧⎨--<⎩,解不等式组()()30210x x x ->⎧⎨-->⎩,由30x ->得3x >,由()()210x x -->得1x <或2x >,∴不等式的解集为:3x >;解不等式组()()30210x x x -<⎧⎨--<⎩,由30x -<得3x <,由()()210x x --<得12x <<,∴不等式组的解集为:12x <<,∴不等式组的解析为3x >或12x <<.故选D .【点睛】本题主要考查了一元一次不等式组的求解,准确根据已知条件组合不等式组求解是解题的关键.二、填空题11.“x的3倍与2的差不大于-1”所对应的不等式是___________.【答案】3x-2≤-1【分析】不大于就是小于等于的意思,根据x的3倍与2的差不大于-1,可列出不等式.【解析】根据题意得:3x-2≤-1.故答案为3x-2≤-1.【点睛】本题考查由实际问题抽象出一元一次不等式,关键是抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.12.下列四个判断:①若ac2>bc2,则a>b;②若a>b,则a|c|>b|c|;③若a>b,则ba<1;④若a>0,则b-a<b.其中正确的是______.(填序号)【答案】①④【分析】根据不等式的基本性质判断即可得答案.【解析】∵ac2>bc2∴c2>0,∴两边同时除以c2得到a>b,故①正确;若a>b,如果c=0则a|c|=b|c|,故②错误;若a>b,a,b异号时ba<1不成立,故③错误;若a>0,则b-a<b.一定成立,故④正确;故答案为①④【点睛】本题考查不等式的性质,不等式的性质运用时注意:必须是加上,减去或乘以或除以同一个数或式子;不等式的两边都乘以或除以同一个负数,不等号的方向改变.13.如果不等式(2)2a x a ->-的解集是1x <,那么a 必须满足___________.【答案】2a <【分析】根据两边同时除以a -2,不等号的方向改变,可得a -2<0.【解析】解:∵不等式(a -2)x >a -2的解集是x <1,∴a -2<0,解得,a <2.故答案为:a <2.【点睛】本题考查了不等式的性质.注意:不等式两边同除以同一个负数时,不等号的方向改变.同理,当不等式两边同时除以一个数后不等号的方向改变,也可以知道不等式两边同时除以的是一个负数.14.已知关于x 的一元一次不等式20212021x a x +>的解集为2021x <,那么关于y 的一元一次不等式12021(1)2021y y a -<-+的解集为___________.【答案】2022y <【分析】设1,x y =-则20212021x a x +>化为:()120211,2021y a y -+->整理可得:12021(1)2021y y a -<-+,从而可得12021(1)2021y y a -<-+的解集是不等式12021y -<的解集,从而可得答案.【解析】解: 关于x 的一元一次不等式20212021x a x +>的解集为2021x <,设1,x y =-则20212021x a x +>化为:()120211,2021y a y -+->两边都乘以1-得:()120211,2021y a y ---<即12021(1)2021y y a -<-+∴12021(1)2021y y a -<-+的解集为:12021y -<的解集,2022.y ∴<故答案为:2022.y <【点睛】本题考查的是求解一元一次不等式的解集,掌握“整体法求解不等式的解集”是解本题的关键.15.已知实数x ,y 满足x +y =3,且x >﹣3,y ≥1,则x ﹣y 的取值范围____.【答案】91x y --≤<【分析】先设x ﹣y =m ,利用x +y =3,构造方程组,求出用m 表示x 、y 的代数式,再根据x >﹣3,y ≥1,列不等式求出m 的范围即可.【解析】解:设x ﹣y =m ,∴3x y m x y -=⎧⎨+=⎩①②,②+①得32m x +=,②-①得32m y -=,∵y ≥1,∴312m -≥,解得1m £,∵x >﹣3,∴332m +,解得9m >-,∴91m ≤-<,x ﹣y 的取值范围91x y --≤<.故答案为91x y --≤<.【点睛】本题考查方程与不等式综合问题,解题关键是设出x ﹣y =m ,与x +y =3,构造方程组从中求出32m x +=,32m y -=,再出列不等式.16.在平面直角坐标系xOy 中,直线l 1:y =k 1x +b 过A (0,-3),B (5,2),直线l 2:y =k 2x +2.当x ≥4时,不等式k 1x +b >k 2x +2恒成立,求出k 2的取值范围为________.【答案】k 2<-14【分析】先求解1l 为3,y x =-再确定12,l l 经过()4,1时,2l 的解析式,再利用图象法求解:当x ≥4时,不等式k 1x +b >k 2x +2恒成立的2k 的范围即可.【解析】解: 直线l 1:y =k 1x +b 过A (0,-3),B (5,2),3,52b k b =-⎧∴⎨+=⎩解得:13k b =⎧⎨=-⎩1l ∴为3,y x =-当4x =时,1,y =12,l l ∴的交点为:()4,1,此时:2421,k +=21,4k ∴=-则此时:124y x =-+,如图,结合图象可得:当x ≥4时,不等式k 1x +b >k 2x +2恒成立,则2k <1.4-故答案为:2k <1.4-【点睛】本题考查的是一次函数的性质,掌握利用一次函数的交点坐标确定不等式的解集是解题的关键.17.已知关于x 的不等式组0321x a x -≥⎧⎨->-⎩有9个整数解,则a 的取值范围是________.【答案】87a -<≤-【分析】首先确定不等式组的解集,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【解析】解:0321x a x -≥⎧⎨->-⎩解不等式组可得2a x ≤<,∴9个整数解为1,0,1-,2-,3-,4-,5-,6-,7-,∴87a -<≤-.故答案为:87a -<≤-【点睛】本题主要考查了学生对不等式组知识点的掌握,先求出不等式组范围,再根据具体解逆推出a 的取值范围.18.对于数x ,符号[]x 表示不超过x 的最大整数,暨[][]1x x x ≤<+,若关于x 的方程245x a ⎡⎤+=⎢⎥⎣⎦有正整数解,则a 的取值范围是________.【答案】1212a -<<【分析】根据符号的定义,得到2455x a +≤<,求解不等式,得到202252a x a -≤<-,有正整数解,得到2521a ->,求解即可.【解析】解:∵245x a ⎡⎤+=⎢⎥⎣⎦,可得到2455x a +≤<,求得202252a x a-≤<-x 有正整数解,可以得到2521a ->,即12a <,解得1212a -<<故答案为1212a -<<【点睛】此题考查了绝对值不等式以及对新符号的理解,解题的关键的是根据符号定义以及方程求得不等式.19.某地区有序推进疫苗接种工作,构筑新冠免疫“防护墙”.12月某天,某地区甲、乙、丙三个新冠疫苗接种点均配备了A ,B ,C 三类疫苗,A ,B ,C 三类疫苗每件盒数是定值.甲接种点配备A 类、B 类、C 类疫苗分别为10件、30件、40件,乙接种点配备A 类、B 类、C 类疫苗分别为20件、30件、20件,且甲接种点和乙接种点配备疫苗的总盒数相同.若三类疫苗每件盒数之和为95盒,且各类疫苗每件盒数均是不大于50盒的整数,C 与B 两类疫苗每件盒数之差大于4盒.则丙接种点分别配备A 类、B 类、C 类疫苗分别为20件、10件、40件的总盒数为_____盒.【答案】2020或2050或2000或1950或1900或1850或1800或1750或1700【分析】设A ,B ,C 三类疫苗每件的盒数分别为,,a b c 盒,得出甲乙接种点配备A 类、B 类、C 类疫苗的盒数,根据甲接种点和乙接种点配备疫苗的总盒数相同,列出方程,列一元一次不等式,进而解二元一次方程,求整数解即可.【解析】解:设A ,B ,C 三类疫苗每件的盒数分别为,,a b c 盒,则甲接种点配备A 类、B 类、C 类疫苗的盒数分别为103040a b c ,,盒,乙接种点配备A 类、B 类、C 类疫苗的盒数分别为203020a b c ,,,则103040a b c ++=203020a b c++即2a c =①三类疫苗每件盒数之和为95盒,且各类疫苗每件盒数均是不大于50盒的整数,C 与B 两类疫苗每件盒数之差大于4盒,则9524a b c a c c b ⎧++=⎪=⎨⎪->⎩,50,50,50a b c ≤≤≤且,,a b c 都为整数解得395c b +=50b ≤ 95350c ∴-≤解得15c ≥ 4c b ->则4c b ->或4b c ->即4b c <-或4b c >+9534c c ∴-<-或9534c c ->+解得3224c <或3244c > ,,a b c 皆为整数,若25c =,则250a c ==,符合题意315224c ∴≤<或25c =c 为整数,则22,21,20,19,18,17,161525c =,,25c =时,50a =,953957520b c =-=-=,882520220c b +=⨯+=22c =时,44a =,953956629b c =-=-=,882229205c b +=⨯+=21c =时,42a =,953956332b c =-=-=,882132200c b +=⨯+=20c =时,40a =,953956035b c =-=-=,882035195c b +=⨯+=19c =时,38a =,953955738b c =-=-=,881938190c b +=⨯+=18c =时,36a =,953955441b c =-=-=,881841185c b +=⨯+==17c 时,34a =,953955144b c =-=-=,881744180c b +=⨯+=16c =时,32a =,953954847b c =-=-=,881647175c b +=⨯+=15c =时,30a =,953954850b c =-=-=,881550170c b +=⨯+=∴20104010(24)10(8)a b c a b c c b ++=++=+2200,2050=,,2000,1950,1900,1850,1800,故答案为:2020,2050,2000,1950,1900,1850,1800,1750,1700【点睛】本题考查了二元一次方程组,一元一次不等式组的应用,求得c 的取值范围是解题的关键.20.对于三个数a ,b ,c ,用{,,}M a b c 表示这三个数的平均数,用min{,,}a b c 表示这三个,数中最小的数.例如:1234{1,2,3}33M -++-==,min{1,2,3}1-=-,如果{3,21,1}min{3,7,25}M x x x x +-=-++,那么x =__________.【答案】2或-4##-4或2【分析】依据定义分别求出{3,21,1}M x x +-和min{3,7,25}x x -++,再分三种情况讨论,即可得到x 的值.【解析】3211{3,21,1}13x x M x x x +++-+-==+当min{3,7,25}3x x -++=时,73253x x -+≥⎧⎨+≥⎩,解得14x -≤≤,∵{3,21,1}min{3,7,25}M x x x x +-=-++∴13x +=,解得2x =,符合条件;当min{3,7,25}7x x x -++=-+时,37257x x x ≥-+⎧⎨+≥-+⎩,解得4x ≥,∵{3,21,1}min{3,7,25}M x x x x +-=-++∴17x x +=-+,解得3x =,不符合条件;当min{3,7,25}25x x x -++=+时,325725x x x ≥+⎧⎨-+≥+⎩,解得1x ≤-,∵{3,21,1}min{3,7,25}M x x x x +-=-++∴125x x +=+,解得4x =-,符合条件;综上所述:2x =或4x =-故答案为:2或-4【点睛】本题考查了算术平均数、一元一次方程的应用、解一元一次不等式组.解题的关键是弄清新定义运算的法则,并分情况讨论.需要考虑每种情况下x 的取值范围三、解答题21.已知22y ax bx =++,当x =1时,y =4;当x =-2时,y =-8.(1)求a 、b 的值.(2)若(1)6p m m =--,当x=m 时,y=n ,且m <-4,试比较n 与p 的大小,请说明理由.【答案】(1)13a b =-⎧⎨=⎩;(2)n p <【分析】(1)分别把当x =1时,y =4;当x =-2时,y =-8,代入22y ax bx =++中,然后解二元一次方程组即可得到答案;(2)先分别求出232n m m =-++,26p m m =-+-,然后求出28n p m -=+,利用4m <-即可求解.【解析】解:(1)∵已知22y ax bx =++,当x =1时,y =4;当x =-2时,y =-8,∴244228a b a b ++=⎧⎨-+=-⎩,解得13a b =-⎧⎨=⎩;(2)∵13a b =-⎧⎨=⎩,∴232y x x =-++,∵当x=m 时,y=n ,∴232n m m =-++,∵(1)6p m m =--,∴26p m m =-+-,∴()22326n p m m m m -=-++--+-,22326m m m m =-+++-+28m =+,∵4m <-,∴280m +<,∴0n p -<,∴n p <.【点睛】本题主要考查了解二元一次方程组,不等式的性质,整式的减法运算,解题的关键在于能够熟练掌握相关知识进行求解.22.x 取什么值时,代数式123x -的值是非负数.【答案】12x 【分析】先列不等式得:1203x - ,去分母得:120x -≥,移项得:21x -≥-,解得:12x 即可.【解析】解:列不等式得:1203x - ,去分母得:120x -≥,移项得:21x -≥-,解得:12x .答:当12x ≤时,代数式123x -的值是非负数.【点评】本题考查了不等式的解法,掌握不等式的解法与过程,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.23.(1)解不等式:5x +3≥2(x +3).(2)解不等式:13x --1>0.【答案】(1)x ≥1;(2)x >4【分析】(1)先去括号,然后移项、合并同类项、系数化1,即可求解;(2)先去分母,然后移项、合并同类项、系数化1,即可求解.【解析】解:(1)5x +3≥2(x +3),去括号得:5x +3≥2x +6,移项得:5x -2x ≥6-3,合并同类项得:3x ≥3,解得:x ≥1.(2)1103x -->,去分母,得x -1-3>0,移项及合并同类项,得x>4.【点睛】本题考查解一元一次不等式,解题的关键是熟知解一元一次不等式的步骤:去分母、去括号、移项、合并同类项、系数化1.24.解下列不等式:(1)2x﹣1<﹣6;(2)145 23--<x x;(3)解不等式组:3(2)4 1213x xx x--≥⎧⎪+⎨>-⎪⎩,并在数轴上表示它的解集.【答案】(1)x<﹣2.5(2)x>1.4(3)x≤1,在数轴上表示它的解集见解析【分析】(1)根据移项、合并同类项、系数化1的步骤求解即可;(2)根据去括号、移项、合并同类项、系数化1的步骤求解即可;(3)分别求解两个不等式,再根据同小取小即可求出不等式组的解集.(1)解:移项得:2x<﹣6+1,合并得:2x<﹣5,解得:x<﹣2.5;(2)解:去分母得:3(x﹣1)<2(4x﹣5),去括号得:3x﹣3<8x﹣10,移项得:3x﹣8x<﹣10+3,合并得:﹣5x<﹣7,解得:x>1.4;(3)解:3(2)4 1213x xx x--≥⎧⎪⎨+>-⎪⎩①②由①得:x≤1,由②得:x<4,解得:x≤1.【点睛】本题考查一元一次不等式和一元一次不等式组的解法,熟知求解步骤是解题的关键.25.如图,已知一次函数y1=k1x+b1的图象与一次函数y2=k2x+b2的图象交于点A,根据图象回答下列问题.(1)求关于x的方程k1x+b1=k2x+b2的解;(2)求出关于x的不等式k1x+b1>k2x+b2的解集;(3)当满足什么条件时,直线y1=k1x+b1与直线为y2=k2x+b2没有公共点?【答案】(1)x=3;(2)x<3;(3)k1=k2,b1≠b2【分析】(1)由题意根据两一次函数图象的交点横坐标即可得出方程的解即可求得;(2)根据题意可将两函数交点坐标左边的图象所对应的自变量的取值即可;(3)根据题意可知当两函数图象平行时,直线y1=k1x+b1与直线为y2=k2x+b2没有公共点.【解析】解:(1)∵一次函数y1=k1x+b1和y2=k2x+b2的图象交于点A(3,5),∴关于x的方程k1x+b1=k2x+b2的解为x=3.(2)一次函数y1=k1x+b1与一次函数y2=k2x+b2的图象相交于点A(3,5),所以不等式k1x+b1>k2x+b2的解集是x<3.(3)∵两直线平行,则k1=k2,b1≠b2,∴当k1=k2,b1≠b2时,直线y1=k1x+b1与直线为y2=k2x+b2没有公共点.【点睛】本题考查两条直线相交或平行问题,熟练掌握两函数图象与方程解之间,函数图象与不等式之间的关系是解题的关键.26.已知一个三角形的三条边的长分别为:n+6,3n,n+2.(n为正整数)(1)若这个三角形是等腰三角形,求它的三边长;(2)若这个三角形的三条边都不相等,直接写出n 的最大值为.【答案】(1)它的三边长分别为9,9,5;(2)7.【分析】(1)分①63n n +=和②32n n =+两种情况,分别解方程求出n 的值,再根据三角形的三边关系定理即可得出答案;(2)先根据63n n +≠和32n n ≠+可得3n ≠和1n ≠,再分01n <<,13n <<和3n >三种情况,分别根据三角形的三边关系定理,结合n 为正整数即可得.【解析】解:(1)由题意,分以下两种情况:①当63n n +=,即3n =时,这个三角形是等腰三角形,它的三边长分别为9,9,5,59149+=> ,∴满足三角形的三边关系定理,符合题意;②当32n n =+,即1n =时,这个三角形是等腰三角形,它的三边长分别为7,3,3,3367+=< ,∴不满足三角形的三边关系定理,舍去;综上,它的三边长分别为9,9,5;(2) 这个三角形的三条边都不相等,63n n ∴+≠和32n n ≠+,解得3n ≠和1n ≠,①当01n <<时,长为6n +的边是最长边,由三角形的三边关系定理得:326n n n ++>+,解得43n >,不符题设,舍去;②当13n <<时,长为6n +的边是最长边,由三角形的三边关系定理得:326n n n ++>+,解得43n >,则此时n 的取值范围是433n <<,n Q 为正整数,∴此时2n =;③当3n >时,长为3n 的边是最长边,由三角形的三边关系定理得:623n n n +++>,解得8n <,则此时n 的取值范围是38n <<,n Q 为正整数,∴此时n 的所有可能取值是4,5,6,7;综上,符合条件的n 的所有可能取值是2,4,5,6,7,则所求的n 的最大值是7,故答案为:7.【点睛】本题考查了等腰三角形的定义、三角形的三边关系定理、一元一次不等式的应用等知识点,较难的是题(2),正确分三种情况讨论是解题关键.27.某商场根据市场需求,计划购进甲、乙两种型号的洗衣机,其部分信息如下:购进甲、乙两种型号的洗衣机共80台,准备购买洗衣机的资金不少于44万元,但不超过45万元,且准备的资金全部用于购买洗衣机,现已知甲、乙两种洗衣机的成本和售价如表:型号成本(元/台)售价(元/台)甲50005500乙60006600根据以上信息,解答下列问题:(1)该商场有几种购机方案?哪种方案获得最大利润?(2)据市场调查,每台甲型号洗衣机的售价将会提高m 元(m >0),每台乙型洗衣机售价不会改变,该公司应如何购机才可以获得最大利润?【答案】(1)11种方案,购买甲型号30台,乙型号50台时,利润最大;(2)m <100时,购买甲型号30台,乙型号50台时,利润最大,m >100时,购买甲型号40台,乙型号40台时,利润最大,m =100时,第(1)题中的11种方案均可,利润为定值48000元【分析】(1)设购买甲型号洗衣机x 台,则购买乙型号洗衣机()80x -台,根据题意列出一元一次不等式组求解即可得出x 的范围,从而确定方案数量,然后设总利润为P ,根据题意,求出P 关于x 的一次函数解析式,根据一次函数的性质以及自变量x 的取值范围判断最大利润即可;(2)设提升价格后的总利润为W ,根据题意,求出W 关于x 的一次函数解析式,然后根据m 的不同情况,并结合一次函数的性质进行分类与讨论求解即可【解析】解:(1)设购买甲型号洗衣机x 台,则购买乙型号洗衣机()80x -台,由题意:()4400005000600080450000x x ≤+-≤,解得:3040x ≤≤,∵x 为正整数,∴x 可取的数为:30,31,32,33,34,35,36,37,38,39,40,∴共有11种购机方案,分别为:甲型号:30,31,32,33,34,35,36,37,38,39,40,对应乙型号:50,49,48,47,46,45,44,43,42,41,40,设总的利润为P ,则()()()550050008066006000P x x =-+--,整理得:10048000P x =-+,∵1000-<,∴P 随x 的增大而减小,∴当30x =时,P 最大,此时,乙型号数量为:80-30=50(台),∴购买甲型号30台,乙型号50台时,利润最大;(2)设提升价格后的总利润为W ,则()()()550050008066006000W x m x =+-+--,整理得:()10048000W m x =-+,①当0100m <<时,1000m -<,∴W 随x 的增大而减小,∵3040x ≤≤,∴当30x =时,W 最大,此时,乙型号数量为:80-30=50(台),∴购买甲型号30台,乙型号50台时,利润最大;②当100m >时,1000m ->,∴W 随x 的增大而增大,∵3040x ≤≤,∴当40x =时,W 最大,此时,乙型号数量为:80-40=40(台),∴购买甲型号40台,乙型号40台时,利润最大;③当100m =时,48000W =,即:选择(1)中的11种方案获得的利润均相等,均为48000元;综上分析,0100m <<时,购买甲型号30台,乙型号50台时,利润最大,100m >时,购买甲型号40台,乙型号40台时,利润最大,100m =时,第(1)题中的11种方案均可,利润为定值48000元.【点睛】本题考查一元一次不等式组和一次函数的实际应用,能够根据题意利用不等式组的方法求出自变量的取值范围,并准确建立一次函数解析式,结合一次函函数的性质分类讨论是解题关键.28.对于数轴上给定两点M 、N 以及一条线段PQ ,给出如下定义:若线段MN 的中点R 在线段PQ 上(点R 能与点P 或Q 重合),则称点M 与点N 关于线段PQ “中位对称”.如图为点M 与点N 关于线段PQ “中位对称”的示意图.已知:点O 为数轴的原点,点A 表示的数为﹣1,点B 表示的数为2(1)若点C 、D 、E 表示的数分别为﹣3,1.5,4,则在C 、D 、E 三点中,与点A 关于线段OB “中位对称”;点F 表示的数为t ,若点A 与点F 关于线段OB “中位对称”,则t 的最大值是;(2)点H 是数轴上一个动点,点A 与点B 关于线段OH “中位对称”,则线段OH 的最小值是;(3)在数轴上沿水平方向平移线段OB ,得到线段O 'B ',设平移距离为d ,若线段O 'B '上(除端点外)的所有点都与点A 关于线段O 'B '“中位对称”,请你直接写出d 的取值范围.【答案】(1)D 、E ;5(2)0.5(3)13d <<【分析】(1)根据“中位对称”的定义求出中点再去判断即可;(2)根据“中位对称”的定义求出中点再去判断即可;(3)分别表示出O B ''、表示的数,再分别求O B ''、与点A 关于线段O 'B '“中位对称”,对称时的d 值即可,需要注意向左或右两种情况.(1)点A 表示的数为﹣1,点B 表示的数为2,点C 、D 、E 表示的数分别为﹣3,1.5,4∴线段AC 的中点表示的数为-2,不在线段OB 上,不与点A 关于线段OB “中位对称”;线段AD 的中点表示的数为0.25,在线段OB 上,D 与点A 关于线段OB “中位对称”;线段AE 的中点表示的数为1.5,在线段OB 上,E 与点A 关于线段OB “中位对称”;∴D 、E 与点A 关于线段OB “中位对称”;∵点F 表示的数为t∴线段AF 的中点表示的数为12t-+∴若点A 与点F 关于线段OB “中位对称”,∴点F 在线段OB 上,∴当AF 中点与B 重合时t 最大,此时122t -+=,解得5t =,即t 的最大值是5(2)∵点A 表示的数为﹣1,点B 表示的数为2∴线段AE 的中点表示的数为0.5,∵点A 与点B 关于线段OH “中位对称”,∴0.5在线段OH 上∴线段OH 的最小值是0.5(3)当向左平移时,O '表示的数是d -,B '表示的数是2d-线段AO '的中点表示的数为12d --,线段AB '的中点表示的数为12d -,当O '与点A 关于线段O 'B '“中位对称”时,∴线段AO '的中点在O B ''上,∴122d d d ---<<-∴15d <<当B '与点A 关于线段O 'B '“中位对称”时,线段AB '的中点在O B ''上,∴122d d d --<<-∴13d -<<∵线段O 'B '上(除端点外)的所有点都与点A 关于线段O 'B '“中位对称”∴当向左平移时,13d <<同理,当向右平移时,d 不存在综上若线段O 'B '上(除端点外)的所有点都与点A 关于线段O 'B '“中位对称”13d <<【点睛】本题考查数轴上的动点问题,解题的关键是根据“中位对称”的定义进行解题,同时熟记数轴上中点公式也是解题的关键点.29.定义:给定两个不等式组P 和Q ,若不等式组P 的任意一个解,都是不等式组Q 的一个解,则称不等式组P 为不等式组Q 的“子集”.例如:不等式组:2:1x M x >⎧⎨>⎩是2:1x N x >-⎧⎨>-⎩的子集.(1)若不等式组:14:15x A x +>⎧⎨-<⎩,211:3x B x ->⎧⎨>-⎩,则其中不等式组是不等式组2:1x M x >⎧⎨>⎩的“子集”(填A 或)B ;(2)若关于x 的不等式组1x a x >⎧⎨>-⎩是不等式组21x x >⎧⎨>⎩的“子集”,则a 的取值范围是;(3)已知a ,b ,c ,d 为互不相等的整数,其中a b <,c d <,下列三个不等式组::A a x b,:B c x d ,:16C x <<满足:A 是B 的“子集”且B 是C 的“子集”,则a b c d -+-的值为;(4)已知不等式组2:3x m M x n⎧⎨<⎩ 有解,且:13N x < 是不等式组M 的“子集”,请写出m ,n 满足的条件:.【答案】(1)A (2)2a(3)4-(4)2m,9n >【分析】(1)分别求解,,A B M 的解集,再根据新定义下结论即可;(2)先确定21x x >⎧⎨>⎩的解集为2,x >再根据新定义可得a 的范围;(3)根据A 是B 的“子集”且B 是C 的“子集”,可得16,c a b d <#�再结合已知条件,从而可得答案;(4)先求解不等式组M 的解集为23mn x < ,由:13N x < 是不等式组的“子集”,可得12m ,33n >,从而可得答案.(1)解:(1)14:15x A x +>⎧⎨-<⎩的解集为36x <<,211:3x B x ->⎧⎨>-⎩的解集为1x >,2:1x M x >⎧⎨>⎩的解集为2x >,则不等式组A 是不等式组M 的子集;故答案为:A .(2)解: 21x x >⎧⎨>⎩的解集是2,x > 关于x 的不等式组1x a x >⎧⎨>-⎩是不等式组21x x >⎧⎨>⎩的“子集”,2a ∴ ;故答案为:2a;(3)解:a ,b ,c ,d 为互不相等的整数,其中a b <,c d <,:A a x b ,:B c x d ,:16C x <<满足:A 是B 的“子集”且B 是C 的“子集”,16,c a bd \<#�3a ∴=,4b =,2c =,5d =,则34254a b c d -+-=-+-=-;故答案为:4-.(4)解:不等式组M 整理得:23m x n x ⎧⎪⎪⎨⎪<⎪⎩,由不等式组有解得到23m n <,即23m n x < ,:13N x < 是不等式组的“子集”,∴12m ,33n >,即2m ,9n >,故答案为:2m,9n >.【点睛】本题考查的是一元一次不等式组的解法,新定义的理解,掌握“根据新定义的含义列新的不等式组”是解本题的关键.30.(1)【阅读理解】“a ”的几何意义是:数a 在数轴上对应的点到原点的距离,所以“2a ≥”可理解为:数a 在数轴上对应的点到原点的距离不小于2,则:①“2a <”可理解为;②请列举两个符号不同的整数,使不等式“||2a >”成立,列举的a 的值为和.我们定义:形如“||x m ≤,||x m ≥,||x m <,||x m >”(m 为非负数)的不等式叫做绝对值不等式,能使一个绝对值不等式成立的所有未知数的值称为绝对值不等式的解集.(2)【理解应用】根据绝对值的几何意义可以解一些绝对值不等式.由上图可以得出:绝对值不等式1x >的解集是1x <-或1x >,绝对值不等式3x ≤的解集是33x -≤≤.则:①不等式4x ≥的解集是.②不等式1||22x <的解集是.(3)【拓展应用】解不等式134x x ++->,并画图说明.【答案】(1)①数a 在数轴上对应的点到原点的距离小于2;②-3;3;(2)①4x ≤-或4x ≥;②44x -<<;(3)1x <-或3x >,见解析【分析】(1)①类比题目所给的信息即可解答;②写出符合题意的两个整数即可(答案不唯一);(2)①类比题目中的解题方法即可解答;②类比题目中的解题方法即可解答;(3)根据绝对值的几何意义可知,不等式134x x ++->的解集,就是数轴上表示数x 的点到表示1-与3的点的距离之大于4的所有x 的值,由此即可确定不等式134x x ++->的解集.。
《一元一次不等式组》同步练习2
一元一次不等式组一、填空题1.不等式-6x >4的解集是 。
2.若x 的5倍加1小于x 的3倍减5,则x 的取值范围是 。
3.x = 3-2a 是不等式53)3(51-<-x x 的解,那么a 的取值范围是 。
4.代数式2x +1的值不小于代数式x -32的值,则x 的最大整数值是 。
5.不等式31221->+x x 的非负整数解是 。
6.已知不等式4x -a≤0的正整数解是1,2,则a 的取值范围是 。
7.不等式组⎩⎨⎧>-≥-01204x x 的解集是 。
8.满足不等式组⎪⎪⎩⎪⎪⎨⎧≥--->-x x x 311221的正整数x 为 。
9.若不等式组⎩⎨⎧->+<121m x m x 无解,则m 的取值范围是 。
10.若不等式组⎩⎨⎧<->-10a x a x 的解集中任一个x 的值均不在2≤x≤5的范围内,则a的取值范围是11.不等式组⎪⎩⎪⎨⎧-≤-->-x x x x 32314315的整数解的积是 。
12.如果不等式组⎩⎨⎧≤≥-mx x 032无解,则m 的取值范围是 。
13.已知不等式组⎪⎩⎪⎨⎧-<<->k x x x 111 (1)当k=21时,不等式组的解集是 ;当k = 3时,不等式组的解集是 ;当k =-2时,不等式组的解集为 。
(2)由(1)知,不等式组的解集随数k 值的变化而变化,当k 为任意实数时,写出不等式组的解集 。
14.不等式组⎩⎨⎧<+<+1321x x x 的解集是 。
二、选择题15.若a < b ,则①3-a > 3-b ; ②a +3 < b +2 ; ③3a < 3b ; ④33b a -<-,其中正确结论的个数是( )A .1B .2C .3D .416.下面给出了四个命题:①b a =若,则a 2 = b 2 ; ②若a≤0,则a a =2;③若(1-2)x > 1,则x >211-④若关于x 的不等式(m -2)x > 1的解集是x < 21-m ,则m < 2。
北师大版八年级数学下册第2章【一元一次不等式和一元一次不等式组】单元测试卷(二)含答案与解析
北师大版八年级数学下册第2章单元测试卷(二)一元一次不等式和一元一次不等式组学校:__________姓名:___________考号:___________分数:___________(考试时间:100分钟 满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.若3a >,则下列各式正确的是( )A .14a +<B .30a -<C .41a ->-D .21a -<2.对于不等式组015x x ≥⎧⎨+<⎩,下列说法正确的是( ) A .此不等式组的解集是44x -≤<B .此不等式组有4个整数解C .此不等式组的正整数解为1,2,3,4D .此不等式组无解3.设有理数a 、b 、c 满足(0)a b c ac >><,且c b a <<,则222a b b c a c x x x ++++++﹣﹣的最小值是( ) A .2a c - B .22a b c ++ C .22a b c ++ D .22a b c +- 4.如果关于x 的一元一次方程3(x +4)=2a +5的解大于关于x 的方程()414a x+()343a x -=的解,那么a 的取值是( ). A .2a > B .2a < C .718a > D .718a < 5.不等式231x +≥的解集是( )A .1x ≤-B .1x ≥-C .2x -≤D .2x ≥-6.如图所示,两函数y 1=k 1x +b 和y 2=k 2x 的图象相交于点(m ,−2),则关于x 的不等式 k 1x +b >k 2x的解集为( )A .x >mB .x <-1C .x >-1D .x <m7.若a >b ,则下列不等式成立的是( )A .a 2>b 2B .1﹣a >1﹣bC .3a ﹣2>3b ﹣2D .a ﹣4>b ﹣3 8.下列变形属于移项的是( )A .由3x =-7+x ,得3x =x -7B .由x =y ,y =0,得x =0C .由7x =6x -4,得7x +6x =-4D .由5x +4y =0,得5x =-4y9.若不等式组的解集为0<x <1,则a 的值为( )A .1B .2C .3D .410.已知一次函数1y kx b =+与2y ax c =+的图象如图所示,则不等式kx b ax c +>+的解集为( )A .3x >B .3x <C .1x >D .1x < 11.把不等式组11x x <-⎧⎨≤⎩的解集表示在数轴上,下列选项正确的是( )A .B .C .D .12.如果关于x的分式方程1 311a xx x--=++有负分数解,且关于x的不等式组2()4,3412a x xxx-≥--⎧⎪⎨+<+⎪⎩的解集为x<-2,那么符合条件的所有整数a的积是()A.-3B.0C.3D.9二、填空题(本大题共6小题,每小题3分,共18分)13.若一次函数(1)2y k x k=-++的图像不经过第三象限,则k的取值范围是_____.14.若不等式组841x xx m+>-⎧⎨≤⎩的解集为x<3,则m的取值范围是____________.15.如图,在平面直角坐标系中,点A、B的坐标分别为()1,4、()3,4,若直线y kx=与线段AB有公共点,则k的取值范围为__________.16.若关于x,y的二元一次方程组2134x y ax y-=-⎧⎨+=⎩的解满足40x y-<,则a的取值范围是________.17.若关于x的一元一次不等式组21122x ax x->⎧⎨->-⎩的解集是21x-<<,则a的取值是__________.18.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x 时,y≤0.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.小明今年12岁,老师告诉他:“我今年的年龄是你的3倍小4岁”,接着老师又问小明:“再过几年我的年龄正好是你的2倍?”请你帮助小明解决这一问题.20.2020年疫情期间,某公司为了扩大经营,决定购进6台机器用于生产口罩.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产口罩的数量如下表所示.经过预算,本次购买机器所耗资金不能超过36万元,(1)按该公司要求可以有几种购买方案?(2)如果该公司购进的6台机器的日生产能力不能低于42万个,那么为了节约资金应选择什么样的购买方案?21.解下列不等式:(1)2x-3≤12(x+2);(2)3x>1-36x-.22.解不等式组:3561162x xx x<+⎧⎪+-⎨≥⎪⎩,把它的解集在数轴上表示出来,并写出其整数解.23.解不等式组:1011122xx-≥⎧⎪⎨--<⎪⎩,并求出它的最小整数解.24.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?参考答案与解析二、选择题(本大题共12小题,每小题3分,共36分。
第二章一元一次不等式与一元一次不等式组练习2022-2023学年北师大版八年级数学下册
八年级北师版第二章一元一次不等式与一元一次不等式组练习一、选择题1、如图,天平右盘中的每个砝码的质量为10g ,则物体M 的质量m (g )的取值范围在数轴上可表示为( )A .B .C .D .2、某次数学竞赛共有 20 道题,答对一道题得 10 分,答错或不答均 扣5 分,小强得分超过 95 分,他至少要答对( )A .12 道B .13 道C .14 道D .15 道3、如果不等式组{2x +7≥5x −8x <n的解集是x≤5,那么n 的取值范围是( ) A .n≤5 B .n <5 C .n >5 D .n≥54、三角形的三边长分别为2,21x -,5,则x 的取值范围是( )A .04x <<B .4x >C .24x ≤≤D .24x <<5、若一次函数y =kx +b (k ,b 为常数,且k ≠0)的图象经过A (0,﹣1),B (1,1),则不等式kx +b ﹣1<0的解集为( )A .x <0B .x >0C .x >1D .x <16、如图,直线2y x =+与直线y ax c =+相交于点(3)P m ,,则关于x 的不等式2x ax c +≤+的解为( )A .1x ≤B .1x <C .3x ≤D .1x ≥二、填空题7、如果53m n ->-,那么2m +_________3n +.8、不等式6x+1>2x ﹣3的解集是 .9、一个关于x 的不等式组的解集在数轴上表示为,则这个不等式组的解集是 .10、已知函数y 1=|x |和函数y 2=k 1x +b 的图像交于(−2,2)和(1,1)两点,当y 1>y 2时,求x 的取值范围为______________________11、已知不等式组{x +1<2a x −b >1的解集是3<x <5,则关于x 的方程ax −b =0的解为 . 12、已知关于x 的不等式组53120x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是_____________. 13、当|x ﹣4|=4﹣x 时,x 的取值范围是___.14、如图,直线y kx b =+与x 轴、y 轴的交点分别为()2,0M -,()0,1N ,则关于x 的不等式0kx b +≥的解集为______.三、解答题15、解不等式组16、一个两位自然数m ,满足各位数字之和小于等于9,各位数字互不相同且均不为0,称为“美丽数”.将m 的各个数位上的数字相加所得的数放在m 的前面,得到一个新数m ',那么称m '为m 的“巅峰数”,将m 的各个数位上的数字相加所得的数放在m 的后面,得到一个新数m '',那么称m ''为m 的“对决数”.记()18m m T m '''-=,例如:52m =时,752m '=,527m ''=,75252725(52)182T -==.(1)判断368______(是/不是)36的“对决数”,计算()63T =______;(2)已知两个“美丽数”1019,16,1019,()9()2m a b a b n x y x y =+≤≤≤≤=+≤≤≤≤,若()T m是572431(1)0.54x x x -≥-⎧⎪⎨--<⎪⎩231313(1)6x x x x -⎧+<-⎪⎨⎪-+≥-⎩一个完全平方数,且()17492852m T n y +-=,规定m P n=,求P 的最小值. 17、已知一次函数y 1=﹣2x ﹣3与y 2=12x+2.(1)在同一平面直角坐标系中,画出这两个函数的图象;(2)根据图象,不等式﹣2x ﹣3>12x+2的解集为多少?(3)求两图象和y 轴围成的三角形的面积.(4)在平面直角坐标系中,直线y=kx ﹣4经过点P (2,﹣8),求关于x 的不等式kx ﹣4≥0的解集.18、“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A 型和B 型两种环保节能公交车共10辆,若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元.(1)求购买A 型和B 型公交车每辆各需多少万元?(2) 预计在该线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?19、某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?20、突如其来的疫情,让我们更加珍爱周围的生活环境.为配合城建部门改善当地河流水质,某治污公司决定购买10台污水处理设备.现有A 、B 两种型号的设备,其中每台的价格与月处理污水量如下表.经调查:购买一台A 型设备比购买一台B 型设备多2万元,购买2台A 型设备比购买3台B 型设备少5万元.(1)求x 、y 的值;(2)若治污公司购买污水处理设备的资金不超过95万元,求该治污公司有哪几种购买方案;(3)在(2)的条件下,若月处理污水量不低于2040吨,为了节约资金,请为该公司设计一种最省钱的购买方案.21、如图,已知直线y 1=﹣x +1与x 轴交于点A ,与直线y 2=﹣x 交于点B .(1)求△AOB 的面积;(2)求y 1>y 2时x 的取值范围.22、已知非负数x,y,z 满足325,2x y z x y z ++=+-=,若2S x y z =+-,求S 的最值.A 型B 型 价格(万元/台) x y 处理污水量/(吨/月) 240 200。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.6 一元一次不等式组(2)
一、解答题
1.某城市的一种出租车起价是10元(即行驶路程在5km以内都需付费10元),达到或超过5km后,每增加1km加价1.2元(不足1km部分按1km计),现在某人乘这种出租车从甲地到乙地,支付车费17.2元,从甲地到乙地的路程大约是多少?
2.一玩具厂生产甲、乙两种玩具,已知造一个甲种玩具需用金属80克,塑料140克;造一个乙种玩具需用金属100克,塑料120克.若工厂有金属4 600克,塑料6 440克,计划用两种材料生产甲、乙两种玩具共50件,求甲种玩具件数的取值范围.
3.现计划把甲种货物1 240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6 000元,使用B型车厢每节费用为8 000元.
(1)设运送这批货物的总费用为y万元
..,这列货车挂A型车厢x 节,试定出用车厢节数x表示总费用y的公式.
(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排
车厢的方案?
二、能力提升
4.为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表:
(1)请你设计该企业有几种购买方案;
(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;
(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:
企业处理污水的费用包括购买设备的资金和消耗费)
5.某厂计划2 004年生产一种新产品,下面是2 003年底提供的信息,人事部:明年生产工人不多于800人,每人每年可提供2 400个工时;市场部:预测明年该产品的销售量是10 000~12 000件;技术部:该产品平均每件需要120个工时,每件要4个某种主要部件;供应部:2 003年低库存某种主要部件6 000个.预测明年能采购到这种主要部件60 000个.根据上述信息,明年产品至多能生产多少件?
6.某宾馆底层客房比二楼少5间,某旅行团有48人.若全部住底层,每间4人,房间不够;每间住5人,有房间没有住满5人.若全部安排在二楼,每间住3人,房间不够;每间住4人,有房间没有住满4人.问该宾馆底层有客房多少间?
7.某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A 型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:
政府相关部门批给该村沼气池修建用地708平方米.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.
(1)用含有x的代数式表示y;
(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;
(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.
三、创新题
学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:
用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和徽章前,了解到如下信息:
(1)求一盒“福娃”和一枚徽章各多少元?
(2)若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?
1.6.一元一次不等式组(2)
1.解:设甲地到乙地的路程大约是xkm ,据题意,得
16<10+1.2(x -5)≤17.2, 解之,得10<x ≤11,
即从甲地到乙地路程大于10km ,小于或等于11km .
2.解:设甲种玩具为x 件,则甲种玩具为(50-x )件.根据题意得:
⎩
⎨
⎧≤-+≤-+6440)50(1201404600
)50(10080x x x x 解得:20≤x ≤22
答:甲种玩具不少于20个,不超过22个. 3.(1)y =3.2-0.2x
(2)共有三种方案,A 、B 两种车厢的节数分别为24节、16节或25节、15节或26节、14节. 4.(1)共有三种购买方案,A 、B 两种型号的设备分别为0台、10台或1台、9台或2台、8台;(2)A 、B 两种型号的设备分别1台、9台;(3)10年节约资金42.8万元. 5.解:设明年可生产产品x 件,根据题意得:
⎪⎩
⎪
⎨⎧+≤≤≤⨯≤600006000412000100002400800120x x x 解得:10000≤x≤12000 答:明年产品至多能生产12000件.
6.解:设宾馆底层有客房x 间,则二楼有客房(x+5)间.根据题意得:
⎪⎪⎩⎪
⎪⎨
⎧>+<+><48
)5(448)5(3485484x x x x 解得:9.6<x <11,所以 x = 10 答:该宾馆底层有客房10间. 7.解:(1)32(20)y x x =+-40x =+ (2)由题意可得
203(20)264486(20)708x x x x +-⎧⎨
+-⎩≥ ①
≤ ②
解①得x ≥12 解②得x ≤14
∴不等式的解为12≤x ≤14 ∵x 是正整数
∴x 的取值为12,13,14
即有3种修建方案:①A 型12个,B 型8个;②A 型13个,B 型7个;③A 型14个,B 型6个. (3)∵y=x +40中,y 随x 的增加而增加,要使费用最少,则x =12
∴最少费用为y =x +40=52(万元)
村民每户集资700元与政府补助共计:700×264+340000=524800>520000 ∴每户集资700元能满足所需要费用最少的修建方案. 8.解:(1)设一盒“福娃”x 元,一枚徽章y 元,根据题意得
23153195x y x y +=⎧⎨+=⎩ 解得150
15
x y =⎧⎨
=⎩ 答:一盒“福娃”150元,一枚徽章15元. (2)设二等奖m 名,则三等奖(10—m )名,
216515015(10)1000
216515015(10)1100
m m m m ⨯++-⎧⎨
⨯++-⎩≥≤
解得104124 2727
m
≤≤.
∵m是整数,∴m=4,∴10-m=6.答:二等奖4名,三等奖6名.。