北师大八年级下册数学知识点

合集下载

北师大版八年级下册数学[《三角形的证明》全章复习与巩固--知识点整理及重点题型梳理](基础)

北师大版八年级下册数学[《三角形的证明》全章复习与巩固--知识点整理及重点题型梳理](基础)

北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习《三角形的证明》全章复习与巩固(基础)【学习目标】1.经历回顾与思考的过程,深刻理解和掌握定理的探索和证明.2.结合具体实例感悟证明的思路和方法,能运用综合、分析的方法解决有关问题.3.能正确运用尺规作图的基本方法作已知线段的垂直平分线和角的平分线,以及绘制特殊三角形.【知识网络】【要点梳理】要点一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个角等于30°,那么它所对的直角边等于斜边的一半. 要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,比如边长为a的等边三角形它的高是32a,面积是234a;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础.要点二、直角三角形1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL).要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,HL一共有5种判定方法.要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于12AB的长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线.要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围;②利用线段的垂直平分线定理可解决两条线段的和距离最短问题.要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.3.如何用尺规作图法作出角平分线要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形. 【典型例题】类型一、三角形的证明1. 已知:点D 是△ABC 的边BC 的中点,DE ⊥AC ,DF ⊥AB ,垂足分别为E ,F ,且BF=CE .求证:△ABC 是等腰三角形.【思路点拨】欲证△ABC 是等腰三角形,又已知DE ⊥AC ,DF ⊥AB ,BF=CE ,可利用三角形中两内角相等来证明.【答案与解析】证明:∵D是BC 的中点,∴BD=CD ,∵DE ⊥AC ,DF ⊥AB ,∴△BDF 与△CDE 为直角三角形,在Rt △BDF 和Rt △CDE 中,,BF CE BDCD∴Rt △BFD ≌Rt △CED (HL ),∴∠B=∠C ,∴AB=AC ,∴△ABC 是等腰三角形.【总结升华】考查等腰三角形的判定方法及全等三角形的判定及性质;充分利用条件证明三角形全等是正确解答本题的关键.举一反三:【变式1】(2015秋?江阴市校级期中)已知:如图,△AMN 的周长为18,∠B ,∠C的平分线相交于点O ,过O 点的直线MN ∥BC 交AB 、AC 于点M 、N .求AB+AC 的值.【答案】解:∵MN ∥BC ,∴∠BOM=∠OBC ,∠CON=∠OCB ,∵∠B,∠C的平分线相交于点O,∴∠MBO=∠OBC,∠NCO=∠OCB,∴∠MBO=∠BOM,∠NCO=∠CON,∴BM=OM,CN=ON,∵△AMN的周长为18,AN=AB+AC=18.∴AM+MN+AN=AM+OM+ON+AN=AM+BM+CN+【变式2】如图,在△ABC中,AB=AC,D、E在BC上,且AD=AE,求证:BD=CE.【答案】证明:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∵∠ADE=∠B+∠BAD,∠AED=∠C+∠EAC,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∴ BD=CE.类型二、直角三角形2. 如图,已知,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.(1)当∠A满足什么条件时,点D恰为AB的中点写出一个你认为适当的条件,并利用此条件证明D为AB的中点;(2)在(1)的条件下,若DE=1,求△ABC的面积.【思路点拨】(1)根据折叠的性质:△BCE≌△BDE,BC=BD,当点D恰为AB的重点时,AB=2BD=2BC,又∠C=90°,故∠A=30°;当添加条件∠A=30°时,由折叠性质知:∠EBD=∠EBC=30°,又∠A=30°且ED⊥AB,可证D为AB的中点;(2)在Rt△ADE中,根据∠A及ED的值,可将AE、AD的值求出,又D为AB的中点,可得AB的长度,在Rt△ABC中,根据AB、∠A的值,可将AC和BC的值求出,代入S△ABC=AC×BC 进行求解即可.【答案与解析】解:(1)添加条件是∠A=30°.证明:∵∠A=30°,∠C=90°,所以∠CBA=60°,∵C点折叠后与AB边上的一点D重合,∴BE平分∠CBD,∠BDE=90°,∴∠EBD=30°,∴∠EBD=∠EAB,所以EB=EA;∵ED为△EAB的高线,所以ED也是等腰△EBA的中线,∴D为AB中点.(2)∵DE=1,ED⊥AB,∠A=30°,∴AE=2.在Rt△ADE中,根据勾股定理,得AD=22213,∴AB=23,∵∠A=30°,∠C=90°,∴BC=12AB=3.在Rt△ABC中,AC=22AB BC=3,∴S△ABC=12×AC×BC=332.【总结升华】考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,根据轴对称的性质,折叠前后图形的形状和大小不变.3. 小林在上探索出只用三角尺作角平分线的一种方法:如图,在已知∠AOB的两边上分别取点M,N,使OM=ON,再过点M作OB的垂线,过点N作OA的垂线,垂足分别为C、D,两垂线交于点P,那么射线OP就是∠AOB的平分线.老师当场肯定他的作法,并且表扬他的创新.但是小林不知道这是为什么.①你能说明这样做的理由吗?也就是说,你能证明OP就是∠AOB的平分线吗?②请你只用三角板设法作出图∠AOB的平分线,并说明你的作图方法或设计思路.【思路点拨】①在Rt△OCM与Rt△ODN中,依据ASA得出OC=OD;在Rt△OCP与Rt△ODP中,因为OP=OP,OC=OD得出Rt△OC P≌Rt△ODP(HL),所以∠C OP=∠DOP,即OP平分∠AOB.②可作出两个直角三角形,利用HL定理证明两角所在的三角形全等.【答案与解析】①证明:在Rt△OCM和Rt△ODN中,COM DONOCM ODNOM ON∴△OCM≌△ODN(AAS),∴OC=OD,在△OCP与△ODP中,∵,OC OD OPOP∴Rt △OCP ≌Rt △ODP (HL ),∴∠COP=∠DOP ,即OP 平分∠AOB ;②解:①利用刻度尺在∠AOB 的两边上分别取OC=OD ;②过C ,D 分别作OA ,OB 的垂线,两垂线交于点E ;③作射线OE ,OE 就是所求的角平分线.∵CE ⊥OA ,ED ⊥OB ,∴∠OCE=∠ODE=90°,在Rt △OCE 与Rt △OD E 中,∵OC OD OEOE,∴Rt △OCE ≌Rt △ODE (HL ),∴∠EOC=∠EOD ,∴OE 为∠AOB 的角平分线.【总结升华】主要考查了直角三角形的判定,利用全等三角形的性质得出∠EOC=∠EOD 是解题关键.类型三、线段垂直平分线4.(2015秋?麻城市校级期中)如图所示:在△ABC 中,AB >BC ,AB=AC ,DE 是AB 的垂直平分线,垂足为D ,交AC 于E .(1)若∠ABE=50°,求∠EBC 的度数;(2)若△ABC 的周长为41cm ,边长为15cm ,△BCE 的周长.【思路点拨】(1)由DE 是AB 的垂直平分线,根据线段垂直平分线的性质,可得AE=BE ,继而求得∠A的度数,又由AB=AC ,即可求得∠ABC 的度数,则可求得答案;(2)由△BCE 的周长=AC+BC ,然后分别从腰等于15cm 与底边等于15cm 去分析求解即可求得答案.【答案与解析】解:(1)∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=50°,∵AB=AC,∴∠ABC=∠C=65°,∴∠EBC=∠ABC﹣∠ABE=15°;(2)∵AE=BE,;∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC∵△ABC的周长为41cm,∴AB+AC+BC=41cm,若AB=AC=15cm,则BC=11cm,则△BCE的周长为:15+11=26cm;若BC=15cm,则AC=AB=13cm,∵AB>BC,∴不符合题意,舍去.∴△BCE的周长为26cm.【总结升华】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.举一反三:【变式】如图所示,AD是△ABC中∠BAC的平分线,AD的垂直平分线EF交BC的延长线于F,试说明∠BAF=∠ACF的理由.【答案】解:∵EF垂直平分AD,∴AF=DF,∴∠FAD=∠FDA.又∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠BAF=∠BAD+∠FAD,∠ACF=∠DAC+∠FDA,∴∠BAF=∠ACF.类型四、角平分线5.(2016秋?兴化市期中)已知:如图,△ABC的角平分线BE、CF相交于点P.求证:点P在∠A的平分线上.【思路点拨】过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,根据角平分线上的点到角的两边距离相等可得PD=PM,同理可得PM=PN,从而得到PD=PN,再根据到角的两边距离相等的点在角的平分线上证明即可.【答案与解析】证明:如图,过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,∵BE平分∠ABC,点P在BE上,∴PD=PM,同理,PM=PN,∴PD=PN,∴点P在∠A的平分线上.【总结升华】本题考查了角平分线上的点到角的两边距离相等的性质,到角的两边距离相等的点在角的平分线上,熟记性质并作出辅助线是解题的关键.举一反三:【变式】如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处 C.3处 D.4处【答案】D.解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.。

北师大版八年级下册数学各章知识要点总结

北师大版八年级下册数学各章知识要点总结

北师大版八年级下册数学各章知识要点总结北师大版八年级下册数学各章学问要点总结北师大版八年级数学下册各章学问要点总结第一章一元一次不等式和一元一次不等式组一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。

1、能使不等式成立的未知数的值,叫做不等式的解. 2、不等式的解不唯一,把全部满意不等式的解集合在一起,构成不等式的解集.3、求不等式解集的过程叫解不等式.4、由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组5、不等式组的解集:一元一次不等式组各个不等式的解集的公共局部。

6、等式根本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.根本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的根本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变。

)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向转变.不等式的根本性质、若a>b,则ac>bc;、若a>b,c>0则ac>bc,若cc,则a>c四、一元一次不等式与一次函数五、一元一次不等式组※1.定义:由含有一个一样未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.※2.一元一次不等式组中各个不等式解集的公共局部叫做不等式组的解集.假如这些不等式的解集无公共局部,就说这个不等式组无解.几个不等式解集的公共局部,通常是利用数轴来确定.※3.解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共局部,(3)写出这个不等式组的解集.两个一元一次不等式组的解集的四种状况(a、b为实数,且a找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取一样的字母,字母的指数取较低的;(3)取一样的多项式,多项式的指数取较低的.(4)全部这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则依据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a+2ab+b或a-2ab+b的式子称为完全平方式.六、分解因式的方法:1、提公因式法。

八年级数学下册目录(北师大版)

八年级数学下册目录(北师大版)

八年级数学下册目录(北师大版)第一章三角形的证明
1. 等腰三角形
2. 直角三角形
3. 线段的垂直平分线
4. 角平分线
回顾与思考
复习题
第二章一元一次不等式与一元一次不等式组
1. 不等关系
2. 不等式的基本性质
3. 不等式的解集
4.一元一次不等式
5.一元一次不等式与一次函数
6.一元一次不等式组
回顾与思考
复习题
第三章图形的平移与旋转
1. 图形的平移
2. 图形的旋转
3. 中心对称
4. 简单的图案设计
回顾与思考
复习题
第四章因式分解
1. 因式分解
2. 提公因式法
3. 公式法
回顾与思考
复习题
第五章分式与分式方程
1. 认识分式
2. 分式的乘除法
3. 分式的加减法
4. 分式方程
回顾与思考
复习题
第六章平行四边形
1. 平行四边形的性质
2. 平行四边形的判定
3. 三角形的中位线
4. 多边形的内角和与外角和
回顾与思考
复习题。

八年级数学北师大版知识点

八年级数学北师大版知识点

一、整数1.整数的概念:正整数、负整数、零以及它们在数轴上的位置关系。

2.整数的加法和减法:同号相加、异号相减、零的作用以及加减法的运算规律。

3.整数的乘法和除法:同号相乘得正,异号相乘得负,零的乘除法,乘除法的运算规律。

4.带括号的整数运算:正数和带括号的数的加减法、乘除法的运算法则。

5.整数运算的计算顺序。

二、分数1.分数的概念:真分数、假分数、带分数以及它们之间的转换。

2.分数的加法和减法:同分母相加减,不同分母化为通分后相加减。

3.分数的乘法和除法:分子乘分子,分母乘分母;分数相除等于分子乘以倒数。

4.带分数的加减法和乘除法。

5.分式的加减法:分式化为通分后相加减。

6.真分数与带分数之间的相互转换。

三、小数1.小数的概念:有限小数、无限循环小数、无限不循环小数。

2.小数的加法和减法:竖式加减法,注意小数点的对齐和运算法则。

3.小数的乘法:先忽略小数点,数的乘积的小数位数等于因数的小数位数之和,最后确定小数点的位置。

4.小数的除法:先将除法运算转化为乘法运算,然后计算商的整数部分和小数部分。

四、正比例与反比例1.正比例关系的概念:一个变量的增大,另一个变量也随之增大。

2.例题解答:给出两个变量间的正比例关系,推算一个变量当另一个变量已知时的数值。

3.反比例关系的概念:一个变量的增大,另一个变量随之减小。

4.例题解答:给出两个变量间的反比例关系,推算一个变量当另一个变量已知时的数值。

五、平方根和立方根1.平方根的概念:一个数的平方根是指能够使得该数的平方等于所求数的数值。

2.求解平方根的方法:完全平方数、近似计算。

3.平方根的应用:勾股定理。

4.立方根的概念:一个数的立方根是指能够使得该数的立方等于所求数的数值。

5.求解立方根的方法:近似计算。

6.立方根的应用。

六、代数式和方程式1.代数式的概念:由数、字母和常数通过运算符号连接而成的式子。

2.代数式的计算:合并同类项、求和差、分配律。

3.方程式的概念:等式的特殊形式,表示两个代数式或算式之间的平衡关系。

北师大版八下数学1.3《线段的垂直平分线》知识点精讲

北师大版八下数学1.3《线段的垂直平分线》知识点精讲

注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明通常来说,垂直平分线会与全等三角形来使用。

垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等。

巧记方法:点到线段两端距离相等。

可以通过全等三角形证明。

垂直平分线的尺规作法方法之一:(用圆规作图)1、在线段的中心找到这条线段的中点通过这个点做这条线段的垂线段。

2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。

得到两个交点(两交点交与线段的同侧)。

3、连接这两个交点。

原理:等腰三角形的高垂直平分底边。

方法之二:1、连接这两个交点。

原理:两点成一线。

等腰三角形的性质:1、三线合一 ( 等腰三角形底边上的高、底边上的中线、顶角平分线相互重合。

)2、等角对等边(如果一个三角形,有两个内角相等,那么它一定有两条边相等。

)3、等边对等角(在同一三角形中,如果两个角相等,即对应的边也相等。

)垂直平分线的判定①利用定义.②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.(即线段垂直平分线可以看成到线段两端点距离相等的点的集合)例1.如图,已知:在△ABC中,∠C=90°∠A=30°,BD平分∠ABC交AC于D.求证:D在AB的垂直平分线上.分析:根据线段垂直平分线的逆定理,欲证D在AB的垂直平分线上,只需证明BD=DA即可.证明:∵∠C=90,°∠A=30°(已知),∴∠ABC=60°(Rt△的两个锐角互余)又∵BD平分∠ABC(已知)∴∠DBA=1/2∠ABC=30°=∠A∴BD=AD(等角对等边)∴D在AB的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上).例2.如图,已知:在△AB C中,AB=AC,∠BAC=120°,AB的垂直平分线交AB于E,交BC于F。

北师大版八年级数学下册第一讲 不等式的基本性质(基础讲解)(含解析)

北师大版八年级数学下册第一讲 不等式的基本性质(基础讲解)(含解析)

第一讲不等式的基本性质【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 知道不等式解集的概念并会在数轴上表示解集.3. 理解不等式的三条基本性质,并会简单应用.【知识总结】一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.二、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.不等式的解是具体的未知数的值,不是一个范围不等式的解集是一个集合,是一个范围.其含义:①解集中的每一个数值都能使不等式成立②能够使不等式成立的所有数值都在解集中3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a而言,x>a或x≥a向右画;对边界点a而言,x<a或x≤a 向左画.注意:在表示a的点上画空心圆圈,表示不包括这一点.三、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c.不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点诠释:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变. 【典型例题】【类型】一、不等式的概念例1.给出下列表达式:①()a b c ab ac +=+;②20-<;③5x ≠;④21a b >+;⑤222x xy y -+;⑥236x ->,其中属于不等式的是______.(填序号) 【答案】②③④⑥【分析】根据不等式的定义判断即可. 解:①a (b+c )=a b+ac 是等式;②-2<0是用不等号连接的式子,故是不等式; ③x≠5是用不等号连接的式子,故是不等式; ④2a >b+1是用不等号连接的式子,故是不等式; ⑤x 2-2xy+y 2是代数式;⑥2x-3>6是用不等号连接的式子,故是不等式, 故答案为:②③④⑥.【点拨】本题考查的是不等式的定义,即用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.【训练】下列式子:①-1>2;②3x≥-1;③x -3;④s =vt ;⑤3x -4<2y ;⑥3x -5=2x +2;⑦a 2+2≥0;⑧a 2+b 2≠c 2.其中是不等式的是___________________.(只填序号) 【答案】①②⑤⑦⑧ 【解析】【分析】根据不等式的定义即可得出结论.解:根据不等式的定义:①-1>2,②3x ≥-1,⑤3x -4<2y ,⑦a 2+2≥0,⑧a 2+b 2≠c 2是不等式;③x -3,④s =vt ,⑥3x -5=2x +2不是不等式. 故答案为:①②⑤⑦⑧.【点拨】本题考查了不等式的概念.掌握不等式的概念是解题的基础. 【训练】下列式子属于不等式的是_______________.① 50-< ② 2x 3= ③ 3x 12-> ④4x 2y 0-≤ ⑤ 2x 3x 20-+> ⑥ x 2y - ⑦ 57x ≠ ⑧54< ⑨ x y 0+≥【答案】①③④⑤⑦⑧⑨【解析】【分析】根据不等式的概念即可解题. 解:∵不等式要求用不等号连接 ∴排除②⑥∴不等式的有①③④⑤⑦⑧⑨【点拨】本题考查了不等式的识别,属于简单题,熟悉不等式的概念是解题关键.【类型】二、不等式的解及解集例2.(2018·安徽全国·七年级单元测试)下列数值中哪些是不等式3x-1≥5的解?哪些不是? 100, 98, 51, 12, 2, 0, -1, -3, -5.【答案】100, 98, 51, 12, 2是不等式3x-1≥5的解;0,-1,-3,-5不是不等式3x-1≥5的解. 【解析】试题分析:把上述各数分别代入不等式315x -≥的左边计算出左边的值,看是否大于或等于5即可. 试题解析:∵在不等式315x -≥中,当100x =时,左边=312995x -=>; 当98x =时,左边=312935x -=>; 当51x =时,左边=311525x -=>; 当12x =时,左边=31355x -=>; 当2x =时,左边=315x -=;当0x =时,左边=3115x -=-<; 当1x =-时,左边=3145x -=-<; 当3x =-时,左边=31105x -=-<; 当5x =-时,左边=31165x -=-<;∴上述各数中,100,98,51,12,2是不等式315x -≥的解;0,-1,-3,-5不是不等式315x -≥的解. 例3. 把下列不等式的解集在数轴上表示出来. (1)x≥-3; (2)x >-1; (3)x≤3;(4)x<-32. 【答案】(1)(2) (3)(4)【解析】将上述不等式的解集规范的表示在数轴上即可. 试题解析:(1)将3x ≥-表示在数轴上为:(2)将1x >-表示在数轴上为:(3)将3x ≤表示在数轴上为:(4)将32x <-表示在数轴上为:点拨:将不等式的解集表示在数轴上时,需注意两点:(1)“大于(大于或等于)向右,小于(小于或等于)向左”;(2)“x a >或(x a <)时”,数轴上表示数“a ”的点用“空心圆圈”,“x a ≥(或x a ≤)时”,数轴上表示数“a ”的点用“实心圆点”. 【训练】在数轴上表示不等式﹣3≤x <6的解集和x 的下列值:﹣4,﹣2,0,142,7,并利用数轴说明x 的这些数值中,哪些满足不等式﹣3≤x <6,哪些不满足? 【答案】﹣2,0,142满足不等式;﹣4,7不满足不等式 【分析】根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式的解集和x 的下列值:﹣4,﹣2,0,142,7在数轴上表示出来,这些值如果在解集范围内则表示满足不等式,否则就是不满足不等式.解:根据图可知:x 的下列值:﹣2,0,142满足不等式;x 的下列值:﹣4,7不满足不等式.【点拨】不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.【类型】三、不等式的性质例4.根据不等式的基本性质,把下列不等式化成x a >或x a <的形式.(1)x 15-<. (2)4x 13-≥. (3)1x 142-+≥. (4)4x 10-<-. 【答案】(1)x 6<;(2)x 1≥;(3)x 6≤-;(4)5x 2>.【分析】(1)利用不等式的性质将两边加上1即可求解;(2)利用不等式的性质先将两边加上1,再两边同除以4即可求解; (3)利用不等式的性质先将两边减去1,再两边同除以12-即可求解; (3)利用不等式的性质将两边同除以-4即可求解; 解:(1)x 15-<,两边加上1得:x 1151-+<+, 解得:x 6<; (2)4x 13-≥,两边加上1得:4x 1131-+≥+,即4x 4≥, 两边除以4得:x 1≥; (3)1x 142-+≥, 两边减去1得:1x 11412-+-≥-,即1x 32-≥, 两边除以12-得:x 6≤-; (4)4x 10-<-, 两边除以4-得:5x 2>. 【点拨】本题考查不等式的性质,解题的关键是熟练掌握不等式的性质.【训练】根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:(1)5x>4x+8 (2)x+2<-1 (3)-23x>-1(4)10-x>0 (5)-15x<-2 (6)3x+5<0【答案】(1)x>8;(2)x<-3;(3)x<32;(4)x<10;(5)x>10;(6)x<-53.【分析】根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变;依次分析各小题即可.解:(1)根据不等式性质1,不等式两边都减4x,不等号的方向不变,得5x-4x>4x+8-4x,即x>8;(2)根据不等式性质1,不等式两边都减去2,不等号的方向不变,得x+2-2<-1-2即x<-3;(3)根据不等式性质3,不等式两边同除以-23,不等号的方向改变,得-23x÷(-23)<-1÷(-23)即x<32;(4)根据不等式性质1,不等式两边同减10,不等号的方向不变,得10-x-10>0-10即-x>-10,再根据不等式性质3,不等式两边同除以-1,不等号的方向改变,得x<10;(5)根据不等式性质3,不等式两边同乘以-5,不等号的方向改变,得-15x·(-5)>-2×(-5)即x>10;(6)根据不等式性质1,不等式两边都减去5,不等号的方向不变得3x+5-5<0-5即3x<-5,再根据不等式性质2,不等式两边同除以3,不等号的方向不变,得3x÷3<-5÷3即x<-53.【点拨】本题主要考查了不等式的基本性质,本题重在考查不等式的三条基本性质,特别是性质3,两边同乘以(•或除以)同一个负数时,一定要改变不等号的方向!•这条性质是初学者最易出错也经常出错的地方.。

北师大版八年级数学知识点

北师大版八年级数学知识点

一、数与代数
1.基本数与分数:包括整数、真分数、带分数、换算等。

2.小数:包括小数的读法和写法、小数与分数的关系、小数的运算等。

3.比例与比例计算:包括比例的定义、比例的性质、比例的计算等。

4.百分数与百分数计算:包括百分数的意义、百分数的计算、百分数
与小数的关系等。

二、空间与图形
1.二维图形:包括平面图形的名称、特征和性质,如三角形、四边形、平行四边形、正方形、矩形、菱形等。

2.空间几何体:包括立体图形、棱柱、棱锥、圆柱、圆锥、球体、正
方体等的特征和性质。

3.二维图形与三维图形的关系:包括二维图形在立体图形表面的展开、平行投影、立体图形的视图等。

三、函数与方程
1.一次函数与线性方程:包括直线的斜率与截距、斜率的表示和计算、线性方程的解法等。

2.二次函数与二次方程:包括二次函数的图像、顶点坐标、二次方程
的解法等。

3.图像与方程:包括函数图象与方程的关系、通过题目给出的条件建
立方程等。

四、统计与概率
1.平均数:包括算术平均数的概念、算法、利用平均数解题等。

2.统计图表:包括频数分布表、条形统计图、折线统计图、饼图等的解读和绘制。

3.概率:包括事件的概念、概率的计算与统计、独立事件和互不独立事件等。

以上只是北师大版八年级数学的一部分知识点,通过学习这些知识点可以帮助学生建立数学基本概念,培养数学思维和解题能力。

但由于篇幅限制,无法涵盖所有的数学知识点,请根据教材的内容进行详细学习。

北师大版八年级数学下册知识点总结

北师大版八年级数学下册知识点总结

第一章 一元一次不等式和一元一次不等式组一. 不等关系1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式.2. 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。

3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0 非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0 二. 不等式的基本性质1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,c b c a >. (3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc,cb c a < 2. 比较大小:(a 、b 分别表示两个实数或整式) 一般地: 如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b; 如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b; 如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b; 即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0 (由此可见,要比较两个实数的大小,只要考察它们的差就可以了. 三. 不等式的解集:1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3. 解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题) 4. 一元一次不等式基本情形为ax>b(或ax<b)①当a>0时,解为abx >;②当a=0时,且b<0,则x 取一切实数;当a=0时,且b ≥0,则无解;③当a<0时, 解为a bx <;5. 不等式应用的探索(利用不等式解决实际问题) 列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义; ②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式; ④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意. 五. 一元一次不等式组1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解. 几个不等式解集的公共部分,通常是利用数轴来确定.3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a、b为实数,且a<b)第二章分解因式一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系。

数学北师大版八年级下册第六章 多边形的内角和

数学北师大版八年级下册第六章 多边形的内角和

N边形 度数
4
°
活动四
多边形内角和公式的应用
(n-2) · 180°
多边形内角和公式的应用
例1、已知一个多边形,它的内角和等于720 ° 求这个多边形的边数。
解: 设多边形的边数为n,由题意得: (n-2)•180°= 720º 。
解得:
n=6
这个多边形的边数为6。
多边形内角和公式的应用
求正n边形每个内角度数
义务教育课程标准实验教科书--北师大版 《数学》八年级下册
6.4多边形的内角和
学习目标
1.会灵活应用多边形内角和公式.
2.会求正n边形的一个内角度数. 3.会根据对角线的条数求多边形的边数.
活动一
认识多边形
认识多边形
在平面内,由若干条不在同 一条直线上的线段首尾顺次相连 组成的封闭图形叫做多边形.
内角
顶点 A

B
对角线
(连接不相邻两个顶点的线段)
认识多边形
正三角形
正ห้องสมุดไป่ตู้形
正五边形
正六边形
在平面内,每个内角都相等,每条 边也都相等的多边形叫做正多边形。
活动二
探索四边形内角和
A D B C
探索四边形内角和 A
利用三角形内角和知识探索 “四边形内角和是360 °” . 你能想到几种办法?
B
D C
课后作业
试卷二
D
B
3× 180
B
4× 180
C B °360°
3× 180
C °180°
活动三
探索n边形内角和
探索n边形内角和
多边形 的边数
3 0 0 1
4 1 2 2

(完整版)北师大版八年级下册数学复习知识点及例题相结合

(完整版)北师大版八年级下册数学复习知识点及例题相结合

一. 不等关系第一章一元一次不等式和一元一次不等式组1. 一般地,用符号“<”(或“ ≥”), “>”(或“ ≤”)连接的式子叫做不等式.2.区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。

3.准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数⇔ 非正数⇔ 大于等于0( ≥ 0) ⇔小于等于0( ≤ 0) ⇔0 和正数0 和负数⇔不小于0⇔不大于0二. 不等式的基本性质1.掌握不等式的基本性质,并会灵活运用:(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc, a >b .c c(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc, a <bc c2.比较大小:(a、b 分别表示两个实数或整式) 一般地:如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b;如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b;如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b;即:a>b ⇔ a-b>0 a=b ⇔ a-b=0 a<b ⇔ a-b<0(由此可见,要比较两个实数的大小,只要作差即可)例下列各式一定成立的是( )A.7a﹥4a B. a﹥-a C. a+1﹥a-1 D. a≤a2例若a﹥b,且a、b 同号,以下不等式中一定成立的有①a2﹥b2 ②a3<b3 ③1/a<1/b ④a/b﹥1A. 0B. 1C. 2D. 3三. 不等式的解集:1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心点,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2.解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题)4.一元一次不等式基本情形为ax>b(或ax<b)①当a>0 时,解为x >b;②当a=0 时,且b<0,则x 取一切实数;当a=0 时,且b≥0,则a无解;③当a<0 时, 解为x <b ;a5.不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式;④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意.例不等式mx﹥n(m≠0)的解集是( )A.x﹥n/m B.当m﹥0 时,x﹥n/m,当m<0 时,x<-n/mC.x<n/m D.当m﹥0 时,x﹥n/m,当m<0 时,x<n/m例如果不等式(a+1) x﹥(a+1)的解集为x<1,则a 必须满足的的条件是:A. a<0B. a≤-1C. a﹥-1D. a<-1例已知关于x 的不等式(2a-b)x+a-5b ﹥0 的解集为x<10/7,则ax+b﹥0 的解集为例若不等式组x﹥a 无解,则不等式组x﹥2-a 的解集是例水果店进了某中水果1t,进价是7 元/kg。

北师大版八年级下册数学期末知识点复习

北师大版八年级下册数学期末知识点复习

北师大版八年级下册数学期末知识点复习八年级下册数学考试知识点复第一章证明(二)一、全等三角形的判定及性质全等三角形的性质是对应相等,即对应的角相等,对应的边相等。

判定全等三角形有五种方法:SSS(分别相等的三边)、SAS(分别相等的两边和它们夹角的正弦值相等)、ASA(分别相等的两角和夹角中间的边)、AAS(分别相等的两角和它们夹角的正弦值相等)、HL(分别相等的斜边和一个直角边的长度)。

等腰三角形的性质是两个底角相等,即等边对等角。

判定等腰三角形有一个角等于另一个角,即等角对等边。

等腰三角形还有一个推论是互相重合,即两个等腰三角形的两个底边相等,两个等腰角也相等。

等边三角形的性质是三个角都相等,每个角都等于60度,是轴对称图形,有一条对称轴。

判定等边三角形有两个方法:有一个角是60度的等腰三角形是等边三角形,三个角都相等的三角形是等边三角形。

直角三角形的勾股定理是直角边的平方和等于斜边的平方,逆定理是如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

含30度的直角三角形的边的性质是如果一个锐角等于30度,那么它所对的斜边等于另一条直角边的一半。

直角三角形斜边上的中线等于斜边的一半。

线段的垂直平分线的性质是线段垂直平分线上的点到线段两端点的距离相等。

判定线段垂直平分线的方法是到一条线段两个端点距离相等的点在这条线段的中垂线上。

三角形三边的垂直平分线相交于一点,这一点到三个顶点的距离相等。

角平分线的性质是角平分线上的点到角的两边距离相等。

判定角平分线的方法是到一个角的内部,且到角的两边距离相等的点在这个角的平分线上。

三角形的三条角平分线相交于一点,这一点到三条边的距离相等,叫做内心。

二、一元一次不等式和一元一次不等式组不等关系是数学中的一种关系,包括大于、小于、大于等于、小于等于四种形式。

一元一次不等式是形如ax+b>c的不等式,其中a、b、c都是实数,且a不等于0.解一元一次不等式可以用图像法或代数法,将不等式变形为x>或x<的形式。

北师大版八年级下册数学[等腰三角形(基础)知识点整理及重点题型梳理]

北师大版八年级下册数学[等腰三角形(基础)知识点整理及重点题型梳理]

北师大版八年级下册数学[等腰三角形(基础)知识点整理及重点题型梳理]北师大版八年级下册数学重难点突破:等腰三角形(基础)研究目标:1.了解等腰三角形和等边三角形的定义和概念,掌握等腰三角形的轴对称性;2.掌握等腰三角形和等边三角形的性质,并能利用这些性质进行简单的推理、证明、计算和作图;3.理解并掌握等腰三角形和等边三角形的判定方法及其证明过程,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力;4.理解反证法并能用反证法推理证明简单几何题。

要点梳理:要点一、等腰三角形的定义等腰三角形是指有两条边相等的三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC为底边,∠A 是顶角,∠B、∠C是底角。

要点二、等腰三角形的性质1.等腰三角形的底角相等,简称“在同一个三角形中,等边对等角”。

推论:等边三角形的三个内角都相等,并且每个内角都等于60°。

2.等腰三角形的对称性1) 等腰三角形是轴对称图形;2) ∠B=∠C;3) BD=CD,AD为底边上的中线;4) ∠ADB=∠ADC=90°,AD为底边上的高线。

结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴。

3.等边三角形三条边都相等的三角形叫做等边三角形。

也称为正三角形。

等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴。

要点诠释:1) 等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

∠A=180°-2∠B,∠B=∠C=180A/2.2) 等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。

等腰三角形的重要线段性质之一是“等腰三角形三线合一”,即等腰三角形的顶角平分线、底边上中线和高线互相重合。

2024年北师大版八年级下册数学第六章第3节三角形的中位线

2024年北师大版八年级下册数学第六章第3节三角形的中位线

感悟新知
特别提醒
知1-讲
1. 一个三角形有三条中位线.
2. 三条中位线将原三角形分割成四个全等的三角形,三个
面积相等的平行四边形.
3. 三角形的中位线与三角形的中线的区别:三角形的中线
是连接一顶点和它的对边中点的线段,而三角形的中位
线则是连接两边中点的线段.
4. 三角形的一条中位线与第三边上的中线互相平分.
感悟新知
(1)试证明AF 与DE互相平分.
知1-练
证明:∵E,F 分别是 BC,AC 的中点,
∴EF 是△ABC 的中位线,∴EF∥AB 且 EF=12AB.
又∵AB=2AD,即 AD=12AB,∴AD∥EF,AD=EF,
∴四边形 AEFD 是平行四边形,∴AF 与 DE 互相平分.
感悟新知
(2)若AB=8,BC=12,求DO 的长.
学习目标
第六章 平行四边形
6.3 三角形的中位线
学习目标
1 课时讲解 三角形的中位线
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 三角形的中位线
知1-讲
1. 三角形中位线的定义 连接三角形两边中点的线段叫做 三角形的中位线. 数学表达式:如图6-3-1, ∵ AD=BD,AE=EC, ∴ DE 是△ ABC 的中位线.
感悟新知
知1-练
1-1. 如图, 在△ ABC中,AB=AC, 点D是边AB 上的点, DE ∥ BC 交AC 于点E,连接BE, 点F,G,H分别为 BE,DE,BC 的中点. 求证:FG=FH.
感悟新知
Hale Waihona Puke 知1-练证明:∵AB=AC,∴∠ABC=∠ACB. ∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB, ∴∠ADE=∠AED,∴AD=AE,∴DB=EC. ∵点F,G,H分别为BE,DE,BC的中点, ∴FG是△EDB的中位线,FH是△BCE的中位线, ∴FG=12BD,FH=12CE,∴FG=FH.

北师大版八年级数学(下册)第六章平行四边形

北师大版八年级数学(下册)第六章平行四边形

A→ P
D
B ←Q
C
【典例5】AB∥CD,BE⊥AD,垂足为点E, CF⊥AD,垂足为点F,AE=DF,求证:四 边形BECF是平行四边形。
A
B
E F
C
D
【典例5】如图,□ABCD的对角线AC、BD
交于O,EF过点O交AD于E,交BC于F,G是 OA的中点,H是OC的中点,四边形EGFH是平 行四边形,说明理由.
2. 性质;平行线间的距离处处相等。
3. 平行四边形的高:从平行四边形一边的对边 上任意一点作这边的垂线段,这个垂线段就 是这边上的高。
【例2】l1∥l2∥l3 , L1与l2之间的距离为2, l2 与l3之间的距离为3,若点A、B、C分别 在直线l1、l2、l3 上,且AC⊥BC, AC=BC,求AB的长。
② 角 邻角互补
对称性;周长、面积的特征!
【典例1】
在平行四边形ABCD中,周长为24cm,
AD-AB=4cm且 ∠A:∠B=3:1 ,A
D
1)求AB的长度
2)求∠C 的度数。
解:1)∵AD+AB=12 B
C
AD-AB=4 2)∵AD∥BC
∴ AB=4cm ∴ ∠A+ ∠B = 180°
∴ ∠A= 135° (∠B = 45°)
【例1】
1. 证明判定定理
2. □ABCD中,E、F是对角线AC上的两点,
∠1=∠2。
① 求证:AE=CF ② 求证:四边形EBFD是平行四边形。
A
D
E1
O
2F
B
C
【练习】如图,AC∥ED,点 E
D
B在AC上且AB=ED=BC 。找
出图中的平行四边形。

北师大版初二数学下册知识点归纳

北师大版初二数学下册知识点归纳

北师大版初二数学下册知识点归纳(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!北师大版初二数学下册知识点归纳学会整合知识点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版八年级下册数学考试知识点第一章 三角形的证明一、全等三角形的判定及性质※1性质:全等三角形对应 角 相等、对应 边 相等 ※2判定:①判定一般三角形全等:(SSS 、SAS 、ASA 、AAS ).②判定直角三角形全等独有的方法:有斜边和一条直角边对应相等的两个直角三角形全等,即HL 二. 等腰三角形※1. 性质:等腰三角形的两个底角相等(等边对等角).※2. 判定:有两个角相等的三角形是等腰三角形(等角对等边). ※3. 推论:等腰三角形 顶角平分线 、 底边中线 、 底边上的高 互相重合(即“ 三线合一 ”). ※4. 等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于 60° ;等边三角形是轴对称图形,有 3 条对称轴.判定定理:(1)有一个角是60°的等腰三角形是等边三角形; (2)三个角都相等的三角形是等边三角形. 三.直角三角形※1. 勾股定理及其逆定理如果三角形的三边长a 、b 、c 满足关系22b a =2c ,那么这个三角形是直角三角形(勾股定理的逆定理)(满足的三个正整数,称为勾股数:,常见的勾股数有:(1)3,4,5;(2)5,12,13;(3)6,8,10;(4)8,15,17 (5)7,24,25 (6)9, 40, 41※2.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对应的直角边等于斜边的一半.※3.直角三角形斜边上的中线等于斜边的一半。

要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,HL还有SSS,SAS,ASA,AAS,一共有5种判定方法.四. 线段的垂直平分线※1. 线段垂直平分线的性质及判定性质:线段垂直平分线上的点到线段两端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上 .※2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.五. 角平分线※1. 角平分线的性质及判定定理性质:角平分线上的点到角两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.※2. 三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.这个点叫内心六.多边形的内角和与外角和:任意n 边形的内角和为0180)2(⨯-n (n ≥3);任意n 边形的外角和为 3600第二章 一元一次不等式和一元一次不等式组一. 不等式的基本性质※1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向 不变 。

(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向 不变 。

(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向 改变 。

※2. 比较大小:(a 、b 分别表示两个实数或整式)一般地:如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b;如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b; 如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b; (由此可见,要比较两个实数的大小,只要考察它们的差就可以了) 二. 一元一次不等式组解集一元一次不等式组的解集的四种情况(a 、b 为实数,且a<b)三.平面直角坐标系1、平面直角坐标系:在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

坐标平面内的点和有序实数对一一对应。

2、点的坐标:点的坐标用(a ,b )表示,口诀:横坐标在前,纵坐标在后,中间隔开用逗号,莫忘加括号。

3、各象限内点的坐标的特征点P(x,y)在第一象限0,0>>⇔y x ;点P(x,y)在第二象限0,0><⇔y x ;点P(x,y)在第三象限0,0<<⇔y x ;点P(x,y)在第四象限0,0<>⇔y x 。

4、坐标轴上的点的特征点P(x,y)在x 轴上0=⇔y ,x 为任意实数; 点P(x,y)在y 轴上0=⇔x ,y 为任意实数;点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0) 5、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等 点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数 6、和坐标轴平行的直线上点的坐标的特征与x 轴平行的直线上的点:纵坐标相同。

与y 轴平行的直线上的点:横坐标相同。

7、关于x 轴、y 轴或原点对称的点的坐标的特征点P 与点p’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 点P 与点p’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 点P 与点p’关于原点对称⇔横、纵坐标均互为相反数(口诀记忆法:关于什么轴对称,什么坐标不变;关于原点对称,横变纵也变) 8、点到坐标轴及原点的距离: (1)点P(x,y)到x 轴的距离等于y;(2)点P(x,y)到y 轴的距离等于x(3)点P(x,y)到原点的距离等于22y x +补充公式:若),(11y x A ,),(22y x B ,则A ,B 两点之间的距离AB=221221)()(y y x x -+-线段AB 的中点坐标为)2,2(2121y y x x ++ 四.函数及其相关概念1、变量与常量:在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数。

2、函数的三种表示法:(1)公式法 (2)列表法 (3)图像法3、由函数解析式画其图像的一般步骤 (1)列表 (2)描点 (3)连线 五.正比例函数和一次函数1、正比例函数和一次函数的概念:一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。

特别地,b 为0时,kx y =(k 为常数,k ≠0)。

这时,y 叫做x 的正比例函数。

2、一次函数的图像: 所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征: 一次函数b kx y +=的图像是过点(0,b )的直线; 正比例函数kx y =的图像是过原点(0,0)的直线4、一次函数的图像和性质:5、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。

确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b 。

解这类问题的一般方法是待定系数法。

第三章 平移和旋转一.图形的平移※1. 概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。

※2. 性质:(1)平移前后图形全等;?(2)对应点连线平行或在同一直线上且相等。

二.图形的旋转※1. 概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

?※2. 性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.三.中心对称※1.概念:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。

※2. 基本性质:?(1)成中心对称的两个图形具有图形旋转的一切性质。

?(2)成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

※3. 中心对称图形?(2)中心对称与中心对称图形的区别与联系??如果将成中心对称的两个图形看成一个图形,那么这个整体就是中心对称图形;反过来,如果把一个中心对称图形沿着过对称中心的任一条直线分成两个图形,那么这两个图形成中心对称。

第四章因式分解一.因式分解的定义※1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.※2. 因式分解与整式乘法是互逆关系.因式分解与整式乘法的区别和联系:(1)整式乘法是把几个整式相乘,化为一个多项式;(2)因式分解是把一个多项式化为几个因式相乘.二. 提公共因式法※1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.如: )(c b a ac ab +=+ 三. 运用公式法※1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.※2. 主要公式:(1)平方差公式: ))((22b a b a b a -+=-(2)完全平方公式: 222)(2b a b ab a +=++;222)(2b a b ab a -=+-第五章 分式一. 分式※1. 两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式.整式A 除以整式B,可以表示成B A 的形式.如果除式B 中含有字母,那么称BA 为分式,对于任意一个分式,分母都不能为零.※2. 整式和分式统称为有理式,即有: ⎩⎨⎧分式整式有理式 ※3. 进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.※4. 一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分.二. 分式的乘除法※1. 分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 即:BDAC D C B A =⋅, C B DA C DB A DC B A ⋅⋅=⋅=÷ ※2. 分式乘方,把分子、分母分别乘方.即: )(为正整数n B A B A nn n=⎪⎭⎫⎝⎛逆向运用nn n B A B A ⎪⎭⎫ ⎝⎛=,当n 为整数时,仍然有n n nB A B A =⎪⎭⎫⎝⎛成立.※3. 分子与分母没有公因式的分式,叫做最简分式. 三. 分式的加减法※1. 分式与分数类似,也可以通分.根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.※2. 分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减.(1)同分母的分式相加减,分母不变,把分子相加减; 上述法则用式子表示是:CBA CBC A ±=± (2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减; 上述法则用式子表示是:BDBC AD BD BC BD AD D C B A ±=±=± 四. 分式方程※1. 解分式方程的一般步骤:①去分母,在方程的两边都乘最简公分母,约去分母,化成整式方程; ②解这个整式方程;③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去.※2. 列分式方程解应用题的一般步骤:①审清题意; ②设未知数;③根据题意找相等关系,列出(分式)方程;④解方程,并验根; ⑤写出答案.第6章四边形四种特殊四边形的性质四种特殊四边形常用的判定方法:面积公式: S平行四边形=底边长×高=ah S矩形=长×宽=abS菱形=底边长×高=两条对角线乘积的一半2221对角线边长正==S【几个重要结论】1.菱形的面积等于两对角线乘积的一半.正方形同样如此。

相关文档
最新文档