人教版八年级数学下册全册知识点总结大全
人教版八年级下册数学知识点汇总

人教版八年级下册数学知识点汇总第十六章二次根式。
1. 二次根式的概念。
- 形如√(a)(a≥slant0)的式子叫做二次根式。
其中“√()”称为二次根号,a叫做被开方数。
- 注意:被开方数a必须是非负数,否则√(a)无意义。
例如√(-2)就不是二次根式。
2. 二次根式的性质。
- √(a)(a≥slant0)是一个非负数,即√(a)≥slant0。
- (√(a))^2=a(a≥slant0)。
例如(√(5))^2 = 5。
- √(a^2)=| a|=a(a≥sl ant0) -a(a<0)。
如√(3^2) = 3,√((-3)^2)=| - 3|=3。
3. 二次根式的乘除。
- 二次根式的乘法法则:√(a)·√(b)=√(ab)(a≥slant0,b≥slant0)。
例如√(2)×√(3)=√(2×3)=√(6)。
- 二次根式的除法法则:√(a)÷√(b)=√(frac{a){b}}(a≥slant0,b>0)。
如√(8)÷√(2)=√(frac{8){2}}=√(4) = 2。
4. 二次根式的加减。
- 最简二次根式:被开方数不含分母,被开方数中不含能开得尽方的因数或因式的二次根式。
例如√(8)不是最简二次根式,化简为2√(2)后是最简二次根式。
- 二次根式加减时,先将二次根式化为最简二次根式,然后合并同类二次根式(同类二次根式是指被开方数相同的二次根式)。
例如√(12)+√(27)=2√(3)+3√(3)=5√(3)。
第十七章勾股定理。
1. 勾股定理。
- 直角三角形两直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2。
- 例如在直角三角形中,两直角边分别为3和4,则斜边c=√(3^2)+4^{2}=√(9 + 16)=√(25)=5。
2. 勾股定理的逆定理。
- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
八年级数学下册知识点总结(全)

八年级数学下册知识点总结(全)八年级数学下册知识点总结一、代数式1. 代数式的概念和基本性质。
2. 一元一次方程的概念、解法和实际应用。
3. 一元一次不等式的概念、解法和实际应用。
4. 一元二次方程的概念、解法和实际应用。
5. 代数式的加减乘除、化简和因式分解。
6. 二元一次方程组的概念、解法和实际应用。
7. 一元二次不等式的概念、解法和实际应用。
8. 质因数分解和最大公因数、最小公倍数的求法。
9. 分式的基本概念和运算方法。
二、几何1. 平面图形的基本性质和分类。
2. 勾股定理及其应用。
3. 三角形的相似性质和判定方法。
4. 三角形的内角和及其计算。
5. 空间图形的基本性质和分类。
6. 直线与平面的位置关系及其应用。
7. 圆的基本性质和相关定理。
8. 空间中直线与平面的交角问题和判定方法。
9. 圆锥曲线(椭圆、双曲线、抛物线)的基本性质。
三、概率统计1. 事件和概率的基本概念。
2. 古典概型和几何概型的概率计算。
3. 条件概率和独立性的概念和计算方法。
4. 排列和组合的概念和应用。
5. 随机变量和概率分布的定义和联系。
6. 统计分布(频数分布、累积频率分布)和直方图、折线图的绘制。
7. 样本统计量(平均数、中位数、众数、标准差)的概念和计算方法。
8. 正态分布的概念和应用。
9. 假设检验的基本概念和方法。
以上就是八年级数学下册的全部知识点总结。
在学习过程中,应该注意掌握基本概念和定理,并能够熟练地运用到实际问题中去。
同时,还应该注重应用能力的培养,多做一些与日常生活和实际问题有关的题目,提高自己的解决问题的能力。
关于初二数学下册必备知识点归纳

关于初二数学下册必备知识点归纳初二数学下册必备知识点归纳第一章分式1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变。
2、分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的'积作为积的分子,分母的积作为积的分母。
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;。
异分母分式相加减,先通分,变为同分母的分式,再加减。
3、整数指数幂的加减乘除法。
4、分式方程及其解法。
第二章反比例函数1、反比例函数的表达式、图像、性质。
图像:双曲线。
表达式:y=k/x(k不为0)性质:两支的增减性相同;2、反比例函数在实际问题中的应用。
第三章勾股定理1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方。
2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形1、平行四边形。
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
人教版【初中数学】知识点总结-全面整理(超全)

人教版初中数学知识点总结目录七年级数学(上)知识点1第一章有理数2第二章整式的加减6第三章一元一次方程8第四章图形的认识初步10七年级数学(下)知识点12第五章相交线与平行线12第六章平面直角坐标系15第七章三角形16第八章二元一次方程组22第九章不等式与不等式组24第十章数据的收集、整理与描述25八年级数学(上)知识点27第十一章全等三角形27第十二章轴对称29第十三章实数31第十四章一次函数32第十五章整式的乘除与分解因式34八年级数学(下)知识点36第十六章分式37第十七章反比例函数39第十八章勾股定理40第十九章四边形41第二十章数据的分析45九年级数学(上)知识点46第二十一章二次根式46第二十二章一元二次根式47第二十三章旋转49第二十四章圆51第二十五章概率54九年级数学(下)知识点58第二十六章二次函数59第二十七章相似62第二十八章锐角三角函数63第二十九章投影与视图65七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类:①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大的数-小的数 > 0,小的数-大的数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:a.零不能做除数,无意义即13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n, 当n为正偶数时: (-a)n=a n 或(a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.请判断下列题的对错,并解释. 1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次方与近似数370的精确度一样.1、错。
根据人教版八年级数学下册指数的知识点汇总

根据人教版八年级数学下册指数的知识点
汇总
本文档旨在对人教版八年级数学下册涉及的指数知识点进行汇总和总结,帮助学生更好地理解和掌握这一部分内容。
1. 指数的定义和性质
- 指数的概念:指数是表示乘方的简化写法,由底数和指数两部分组成。
- 指数的性质:指数运算有乘法、除法、幂运算、零指数和负指数等特点。
2. 指数运算
- 指数运算法则:包括相同底数相乘、相同底数相除、幂的乘方、幂的除法、零指数、负指数等。
3. 带有指数的数学表达式
- 带有指数的数:包括实数、规范科学计数法等。
4. 对数与指数的关系
- 对数的概念:对数是指数运算的逆运算,用来求解指数方程。
- 对数的性质:对数运算有乘法、除法、幂运算等特点。
5. 对数运算
- 对数运算法则:包括换底公式、对数运算与指数运算的关系等。
6. 实际问题中的指数运算
- 实际问题的建模和转化:通过列式、折线图、指数函数图像
等方式将实际问题转化为指数运算问题。
以上是八年级数学下册涉及的指数知识点的汇总和总结。
通过
研究和掌握这些知识点,同学们将能够更好地应用指数运算解决实
际问题,并提升数学应用能力。
请注意此文档所提供的内容仅供参考,具体内容以教材为准。
八年级下册数学知识点归纳总结

八年级下册数学知识点归纳总结一、代数知识点1. 代数表达式- 单项式与多项式的定义- 合并同类项- 代数式的加减运算- 代数式的乘除运算2. 一元一次方程- 方程的建立与解法- 利用等式性质解方程- 解含有括号的一元一次方程- 解应用题3. 一元一次不等式- 不等式的概念与性质- 不等式的解集表示- 解一元一次不等式- 解一元一次不等式组4. 二元一次方程组- 方程组的建立- 代入法解方程组- 加减法解方程组- 应用题的解决二、几何知识点1. 平行线与角- 平行线的判定与性质- 同位角、内错角、同旁内角- 平行线间的角关系2. 三角形- 三角形的基本概念- 三角形的内角和定理- 三角形的外角性质- 等腰三角形与等边三角形的性质3. 四边形- 四边形的基本概念- 矩形、菱形、正方形的性质- 平行四边形的性质与判定- 四边形的面积计算4. 圆的基本性质- 圆的定义与性质- 圆的直径、弦、弧、切线- 圆周角与圆心角的关系- 切线长定理三、统计与概率知识点1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读(条形图、折线图、饼图)2. 概率- 随机事件的概率- 概率的计算方法- 等可能事件的概率四、数列知识点1. 数列的概念- 数列的定义- 常见的数列类型(等差数列、等比数列)2. 等差数列- 等差数列的定义与通项公式- 等差数列的前n项和公式- 等差数列的性质与应用3. 等比数列- 等比数列的定义与通项公式- 等比数列的前n项和公式- 等比数列的性质与应用五、函数知识点1. 函数的概念- 函数的定义- 函数的表示方法(解析式、图像、表格)2. 一次函数- 一次函数的定义与图像- 一次函数的性质- 一次函数的应用题3. 二次函数- 二次函数的定义与图像- 二次函数的性质- 二次函数的应用题六、实数与根式知识点1. 实数- 实数的基本概念- 有理数与无理数- 实数的运算2. 根式- 平方根与立方根的定义- 根式的运算- 无理数的估算七、解题技巧与策略1. 解题步骤的规范化- 理解题意- 制定解题计划- 执行解题过程- 检查验证结果2. 常见解题误区与避免方法- 忽略题目条件- 计算失误- 逻辑推理错误3. 提高解题效率的方法- 练习典型题目- 分类记忆公式与定理- 定期复习巩固以上是对八年级下册数学知识点的一个全面归纳总结。
初二数学下册知识点人教版

初二数学下册知识点人教版一、有理数的运算初二数学下册的第一个章节是有理数的运算。
有理数分为正有理数、负有理数和零,包括整数、分数、小数等。
有理数进行加、减、乘、除运算时,有一些基本的规律需要掌握。
例如:1.同号两数相加,异号两数相减;2.负数与正数相乘结果为负数,同号两数相乘结果为正数;3.除法的规律为“乘倒数”。
需要注意的是,运算时要进行数学推导,属于数学的精髓之一。
二、图形的认识初二数学下册的第二个章节是图形的认识。
这一章节主要介绍了平面几何和立体几何两部分内容。
1.平面几何中,需要掌握解题方法和步骤,如平移、旋转、对称等操作。
平面几何中的图形有:点、线、面的基本概念、直线、角、三角形、四边形、圆等。
需要掌握图形性质、判定定理和证明方法。
2.立体几何中,需要认识各种几何体的性质和分类方法。
例如,球体、棱锥、棱柱等,需要掌握计算它们的面积和体积的方法。
三、统计与概率初二数学下册的第三个章节是统计与概率。
这一章节侧重于对各种数据进行统计和分析,同时介绍了概率的基本知识,包括概率的定义、计算公式等。
1.在统计方面,需要掌握数据的收集、整理、展示和分析方法。
例如,频数表和频数直方图的制作方法、比较数据的方法、数据的变化趋势等。
2.在概率方面,要掌握基本概念和计算方法。
例如,“肯定事件”和“不可能事件”等概念,掌握计算概率的方法,如加法原理和乘法原理等。
四、函数初二数学下册的第四个章节是函数。
函数是数学中一个非常重要的概念,是数学中的基础。
1.需要掌握函数的定义、图象、性质和分类等内容,同时也要学习函数的运算、逆函数及它的性质和计算方法等。
2.对于图象的绘制和解析,需要掌握函数的参数、函数的变化趋势,通过散点图等方法来进行分析和研究。
五、线性关系初二数学下册的第五个章节是线性关系。
线性关系是又函数的一种,是对直线上的变化趋势的分析。
1.需要掌握直线的方程和一次函数的定义及性质,并且要掌握一次函数与几何直线之间的关系。
全】人教版初中数学八年级下册知识点总结

全】人教版初中数学八年级下册知识点总结一、二次根式二次根式是指形如a(a≥0)的式子。
其中,a被称为被开方数。
最简二次根式是指被开方数中不含开方开的尽的因数或因式,且不含分母的二次根式。
如果两个二次根式的被开方数相同,那么它们就是同类二次根式。
二次根式具有一些性质,如a(a>0)的平方根是a,a的平方根和-a的平方根相等。
二、勾股定理勾股定理指的是直角三角形的两直角边长分别为a,b,斜边长为c时,a²+b²=c²。
应用勾股定理可以求出直角三角形的第三边长,或者判断一个三角形是否为直角三角形。
勾股定理的逆定理是指如果三角形三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。
勾股数是指能够构成直角三角形的三边长的三个正整数,常见的勾股数有3,4,5;6,8,10;5,12,13;7,24,25等。
直角三角形还有一些其他的性质,需要我们认真研究和掌握。
1.直角三角形的两个锐角互余,即∠A+∠B=90°。
2.在直角三角形中,30°角所对的直角边等于斜边的一半,即BC=AB/2.3.直角三角形斜边上的中线等于斜边的一半,即CD=AB=BD=AD,其中D为AB的中点。
4.三角形面积公式为AB•CD=AC•BC。
5.直角三角形的判定有三种:有一个角是直角的三角形是直角三角形;如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;勾股定理的逆定理也可以判定直角三角形。
6.命题是对某件事情做出判断的完整句子,分为真命题和假命题。
7.定理是用推理的方法判断为正确的命题,证明是判断命题正确性的推理过程。
8.证明命题的一般步骤是根据题意画出图形,写出已知和求证,找出由已知推出求证的途径并写出证明过程。
9.三角形的中位线平行于第三边,并且等于它的一半,有多种作用和常用结论。
10.数学口诀有助于记忆和理解数学知识,如“勾股三角形,斜边是对角线”等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于
这一点对称.
三 公式:
1.S 菱形 = 1 ab=ch.(a、b 为菱形的对角线 ,c 为菱形的边长 ,h 为 c 边上的高) 2
(2)菱形 一个直角
四边形
ABCD
是正方形.
(3)矩形 一组邻边等
D
C
(3)∵ABCD 是矩形
又∵AD=AB
∴四边形 ABCD 是正方形
A
B
11.等腰梯形的性质:
( 1)两Байду номын сангаас平行,两腰相等; 因为 ABCD 是等腰梯形 ( 2)同一底上的底角相等;
( 3)对角线相等 .
12.等腰梯形的判定:
一般方法是待定系数法。
k 的符号 b 的符号
函数图像 y
图像特征
图像经过一、二、三象限,y 随 x 的增大而
b>0
0
x
增大。
k>0 b<0
y
图像经过一、三、四象限,y 随 x 的增大而
0
x
增大。
b>0 K<0
b<0
y
图像经过一、二、四象限,y 随 x 的增
大而减小
0
x
y
图像经过二、三、四象限,y 随 x 的增
一般地,如果 y kx b (k,b 是常数,k 0),那么 y 叫做 x 的一次函数。特别地,当一
次函数 y kx b 中的 b 为 0 时, y kx(k 为常数,k 0)这时,y 叫做 x 的正比例函数。
2、一次函数的图像 所有一次函数的图像都是一条直线。
3、一次函数、正比例函数图像的主要特征:
ABCD是平行四边形 .
(4)一组对边平行且相等
(5)对角线互相平分
5.矩形的性质:
( 1)具有平行四边形的所有通性 ; 因为 ABCD 是矩形 ( 2)四个角都是直角;
( 3)对角线相等 .
D O
A
C B
D
C
O
A
B
D
C
6. 矩形的判定:
(1)平行四边形 一个直角
(2)三个角都是直角
四边形
3.平行四边形的性质:
D
C A4 D
3
1
2
B
C
( 1)两组对边分别平行; 因为 ABCD 是平行四边形 (( 32))两两组组对对角边分分别别相相等等;;
( 4)对角线互相平分; ( 5)邻角互补 .
D O
A
C B
4.平行四边形的判定:
(1)两组对边分别平行
(2)两组对边分别相等 (3)两组对角分别相等
八年级数学下册知识点总结
函数及其相关概念
1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量 x 与 y,如果对于 x 的每一个值,y 都有唯一确
定的值与它对应,那么就说 x 是自变量,y 是 x 的函数。 2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示, 这种表示法叫做解析法。 (2)列表法 把自变量 x 的一系列值和函数 y 的对应值列成一个表来表示函数关系,这种表示法叫 做列表法。 (3)图像法:用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 正比例函数和一次函数 1、正比例函数和一次函数的概念
A
D
E
BD E
A
CC F B
一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四
边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,
三角形中位线,梯形中位线.
二 定理:中心对称的有关定理
※1.关于中心对称的两个图形是全等形.
※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.
ABCD
是矩形.
(3)对角线相等的平行四 边形
A
B
D
C
O
A
B
D
C
A
B
7.菱形的性质:
D
因为 ABCD 是菱形
( 1)具有平行四边形的所有通性; ( 2)四个边都相等;
( 3)对角线垂直且平分对角.
A
OC
B
8.菱形的判定:
(1)平行四边形 一组邻边等
(2)四个边都相等
四边形四边形
ABCD
是菱形.
(3)对角线垂直的平行四 边形
A
D OC
B
9.正方形的性质:
因为 ABCD 是正方形
( 1)具有平行四边形的所有通性; ( 2)四个边都相等,四个角都是直角;
( 3)对角线相等垂直且平分对角 .
D
C
D
C
O
A
B (1)
A
10.正方形的判定:
B (2)(3)
(1)平行四边形 一组邻边等 一个直角
一般地,一次函数 y kx b 有下列性质:
(1)当 k>0 时,y 随 x 的增大而增大 (2)当 k<0 时,y 随 x 的增大而减小 6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式 y =kx(k ≠0)中的常数 k。确定一个 一次函数,需要确定一次函数定义式 y =kx +b (k ≠0)中的常数 k 和 b。解这类问题的
A
D
O
B
C
(1)梯形 两腰相等
(2)梯形 底角相等
四边形
ABCD
是等腰梯形
(3)梯形 对角线相等
A
D (3)∵ABCD 是梯形且 AD∥BC
∵AC=BD
O
∴ABCD 四边形是等腰梯形
B
C
14.三角形中位线定理: 三角形的中位线平行第三边,并且
等于它的一半. 15.梯形中位线定理:
梯形的中位线平行于两底,并且等 于两底和的一半.
大而减小。
0
x
注:当 b=0 时,一次函数变为正比例函数,正比例函数是一次函数的特例。
四边形
1.四边形的内角和与外角和定理:
A
(1)四边形的内角和等于 360°;
(2)四边形的外角和等于 360°.
B
2.多边形的内角和与外角和定理:
(1)n 边形的内角和等于(n-2)180°;
(2)任意多边形的外角和等于 360°.
一次函数 y kx b 的图像是经过点(0,b)的直线;正比例函数 y kx 的图像是经过原
点(0,0)的直线。(如下图) 4. 正比例函数的性质
一般地,正比例函数 y kx 有下列性质:
(1)当 k>0 时,图像经过第一、三象限,y 随 x 的增大而增大; (2)当 k<0 时,图像经过第二、四象限,y 随 x 的增大而减小。 5、一次函数的性质