知识点27三角形(含多边形及其内角和)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点27三角形(含多边形及其内角和)
一、选择题1.(2019贵州省毕节市,题号12,分值3分)在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cmB.
3cm,6cm,76cmC.2cm,2cm,6cmD.5cm,6cm,7cm 【答案】C.【解题过程】解:A、2+3>4,能组成三角
形;B、3+6>7,能组成三角形;C、2+2<6,不能组成三角形;
D、5+6>7,能够组成三角形.故选:C.【知识点】三角形三边关
系.2.(2019贵州黔西南州,7,4分)在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cmB.3cm
,6cm,76cmC.2cm,2cm,6cmD.5cm,6cm,7cm【答案】C【解析】解:A、2+3>4,能组成三角形;B、3+
6>7,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形.故选:C.【知识点】三角形三边关系3.(2 019湖北咸宁,4,3分)若正多边形的内角和是540°,则该正多边形的一个外角为()A.45°B.60°C.72°D.90°【
答案】C【解析】解:∵(n﹣2)?180°=540°,∴n=5,∵多边形的外角和都是360°,∴多边形的每个外角=360÷5=72
°.故选:C.【知识点】多边形内角与外角4.(2019湖南湘西,10,4分)已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【答案】D【解析】解:设所求多边形边数为n,则(n﹣2)?180°=1080°,解得n=8.故选:D.【知识点】多边形内角与外角5.(2019北京市,3题,2分)正十边形的外角和为A.B.C.D.【答案】B 【解析】根据多边形的外角和等于360°易得B正确;故选B.【知识点】多边形的外角和等于360°.6.(2019广西梧州,7,3分)正九边形的一个内角的度数是A.B.C.D.【答案】D【解析】解:该正九边形内角和,则每个内角的度数.故选:D.【知识点】多边形内
角与外角7.(2019内蒙古赤峰,13,3分)如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为()A.65°B.70°C.75°D.85°【答案】B【解析】解:∵DE⊥AB,∠A=35°∴∠AF
E=∠CFD=55°,∴∠ACB=∠D+∠CFD=15°+55°=70°.故选:B.【知识点】三角形内角和定理8.(2019江苏
徐州,3,3分).【答案】D【解析】本题解答时利用三角形的三边关系.解:∵2+2=4,5+6=11<12,2+5=7,6+8=
14>10,故本题选D.【知识点】三角形的三边关系1.(2019山东枣庄,3题,3分)将一副直角三角板按如图所示的位置摆放,若含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠的度数是A.45°B.60°C.75°D.85
°第3题图【答案】C【解析】在直角三角形中,可得∠1+∠A=90°,∵∠A=45°,∴∠1=45°,∴∠2=∠1=45°,∵∠B=
30°,∴∠=∠2+∠B=75°,故选C.第3题答图【知识点】直角三角形两锐角互余,对顶角相等,三角形的外角2.(2019四川省
眉山市,5,3分)如图,在△ABC中AD平分∠BAC交BC于点D,∠B=30度,∠ADC=70度,则∠C的度数是A.50°B.6 0°C.70°D.80°【答案】C【解析】解:∵∠ADC=70°,∠B=30°,∴∠BAD=∠ADC-∠B=70°-30°=40°
,∵AD平分∠BAC,∴∠BAC=2∠BAD=80°,∴∠C=180°-∠B-∠BAC=180°-30°-80°=70°,故选C.
【知识点】三角形的内角和,三角形的外角的性质,角平分线的定义3.(2019四川省自贡市,6,4分)已知三角形的两边长分别为1和4
,第三边长为整数,则该三角形的周长为()A.7B.8C.9D.10【答案】C.【解析】解:∵两边长为1和4,∴由三角形三
边关系可知,第三边x的取值范围是4-1<x<1+4,即3<x<5.又∵第三边长为整数,∴x=4.∴该三角形周长为1+4+4=9.故选C.【知识点】三角形的三边关系4.(2019浙江省金华市,3,
3分)若长度分别为,3,5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.3
D.8【答案】C.【解析】根据三角形的三边关系,得2<a<8,故选C.【知识点】三角形的三边关系5.(2019浙江台州
,4题,4分)下列长度的三条线段,能组成三角形的是()A.3,4,8B.5,6,10C.5,5,11D.5,6,11【答
案】B【解析】组成三角形的三边符合任意两边之和大于第三边,任意两边之差小于第三边,只有B符合.【知识点】三角形三边关系6.(201
9甘肃武威,6,3分)如图,足球图片正中的黑色正五边形的内角和是A.B.C.D.【答案】C【解析】根据多边形内角和公式,得黑色正
五边形的内角和为:,故选C.【知识点】多边形内角和与外角和7.(2019贵州黔东南,7,4分)在下列长度的三条线段中,不能组成三
角形的是()A.2cm,3cm,4cmB.3cm,6cm,76cmC.2cm,2cm,6cmD.5cm,6cm,7cm【答案】C【解析】解:A、2+3>4,能组成三角形;B、3+6>7,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形.故选:C.【知识点】三角形三边关系8.(2019湖北荆门,4,3分)将一副直角三角板按如图所示的位置摆放,使得它们的直角
边互相垂直,则∠1的度数是()A.95°B.100°C.105°D.110°【答案】C【解析】解:由题意得,∠2=45°,∠4
=90°﹣30°=60°,∴∠3=∠2=45°,由三角形的外角性质可知,∠1=∠3+∠4=105°,故选:C.【知识点】三角形内角
和定理;三角形的外角性质;多边形内角与外角9.(2019江苏泰州,5,3分)如图所示的网格由边长相同的小正方形组成,点A、B、C、
D、E、F、G在小正方形的顶点上,则△ABC的重心是()A.点DB.点EC.点FD.点G【答案】A【解析】三角形三条中线相交于一点,这一点叫做它的重心,直线CD经过△ABC的AB边上的中线,直线AD经过△A BC的BC边上的中线,∴点D是△ABC重心,故选
A.【知识点】三角形的重心10.(2019江苏扬州,7,3分)已知是正整数,若一个三角形的3边长分别是、、,则满足条件的的值有
A.4个B.5个C.6个D.7个【答案】D【解析】解:①若,则,解得,即,正整数有6个:4,5,6,7,8,9;②若,则,解得,即
,正整数有2个:3和4;综上所述,满足条件的的值有7个,故选:D.【知识点】三角形三边关系二、填空题1.(2019黑龙江哈尔滨,
18,6分)在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为____
___________度【答案】60或10【解析】当△ACD为直角三角形时,存在两种情况:∠ADC=90°或∠ACD=90°,根据
三角形的内角和定理可得结论.【解答】解:分两种情况:①如图1,当∠ADC=90°时,∵∠B=30°,∴∠BCD=90°﹣30°=6 0°;②如图2,当∠ACD=90°时,∵∠A=50°,∠B=30°,∴∠ACB=180°﹣30°﹣50°=100°,∴∠BCD=1
00°﹣90°=10°,综上,则∠BCD的度数为60°或10°;故答案为:60°或10;【知识点】三角形的内角和定理;三角形外角
的性质2.(2019年陕西省,121,3分)正n边形的每个内角为,这个正n边形的对角线条数为条.【答案】【解析】因为正n边形的每个内角为,所以正n边形的每个外角为,所以正n边形的边数n等于所以正n边形的对角线的条数为条.【知识点】正多边形的性质.3.(2
019北京市,10题,2分)如图,已知,通过测量、计算得的面
积约为_______cm2.(结果保留一位小数)【答案】由测量结果计算.【解析】如图10-1,测量三角形的底和高时,长度精确定mm,测量图中AC和BD的长度.【知识点】三角形的面积、动手测量、求近似数
.1.(2019湖南省岳阳市,12,4分)若一个多边形的内角和等于它的外角和,则这个多边形的边数为.【答案】4【解析】设这个多边形的边数为n,根据题意得:(n-2)·180o=360o,解得:n=4.所以这个多边形的边数为4.【知识点】多边形的内角和与外角和2.(2019山东省济宁市,12,3分)如图,该硬币边缘镌刻的正九边形每个内角的度数是.【答案】140°【解析】法1:设正九边形的每个内角为x°,根据多边形内角和公式:(9-2)·180=9x,解得x=140.法2:根据多边形的外角和为360°,可知它每个外角为40°,所以内角是140°.【知识点】多边形的内角和3.(2019山东枣庄,16,4分)用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧,压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC=________.【答案】3
6°【解析】正五边形的内角和为(5-2)×180°=540°,∴∠ABC=540°÷5=108°,∵BA=B C,∴∠BAC=∠BC
A=36°【知识点】正多边形,等边对等角4.(2019广东省,13,4分)一个多边形的内角和是1080°,这个多边形的边数是.【答案】8【解析】解:设多边形边数有x条,由题意得:180(x ﹣2)=1080,解得:x=8,故答案为:8.【知识点】多边形内角与外角5.(2019江苏南京,16,2分)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是.【答案】4<
BC.【解析】解:作△ABC的外接圆,如图所示:∵∠BAC>∠ABC,AB=4,当∠BAC=90°时,BC是直径最长,∵∠C=60 °,∴∠ABC=30°,∴BC=2AC,ABAC=4,∴AC,∴BC;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=A
B=4,∵∠BAC>∠ABC,∴BC长的取值范围是4<BC;故答案为:4<BC.【知识点】三角形的三边关系6.(2019江苏泰州,
11,3分)八边形的内角和为°.【答案】1080°【解析】解:(8﹣2)?180°=6×180°=1080°.【知识点】多边
形内角与外角7.(2019四川广安,14,3分)如图,正五边形中,对角线与相交于点,则度.【答案】72【解析】解:五边形是正五边形,,,,同理,.故答案为:72【知识点】多边形内角与外角8.(2019四川南充,12,3分)如图,以正方形的边向外作正六边形
,连接,则度.【答案】15【解析】解:四边形是正方形,,,在正六边形中,,,,,,故答案为:15.【知识点】多边形内角与外角;
正多边形和圆9.(2019四川宜宾,10,3分)如图,六边形的内角都相等,,则.【答案】60【解析】解:在六边形中,,,,,,故答案为:.【知识点】平行线的性质;多边形内角与外角10.(2019四川资阳,13,4分)若正多边形的一个外角是60°,则这个正多边形的内角和是.【答案】720°【解析】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故答案为:720°【知识点】多边形内角与外角11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.3 2.33.34.35.36.37.38.39.三、解答题1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.2 6.27.28.29.30.31.32.33.34.35.36.37.38.39.时代博雅解析时代博雅解析。

相关文档
最新文档