高考数学一轮复习等差数列多选题专项训练单元测试及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学一轮复习等差数列多选题专项训练单元测试及答案
一、等差数列多选题
1.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( )
A .25n a n =-
B .310n
a n
C .2
28n S n n =- D .2
4n S n n =-
解析:AD 【分析】
设等差数列{}n a 的公差为d ,根据已知得11
45
460a d a d +=⎧⎨+=⎩,进而得13,2a d =-=,故
25n a n =-,24n S n n =-.
【详解】
解:设等差数列{}n a 的公差为d ,因为450,5S a == 所以根据等差数列前n 项和公式和通项公式得:1145
460
a d a d +=⎧⎨+=⎩,
解方程组得:13,2a d =-=,
所以()31225n a n n =-+-⨯=-,2
4n S n n =-.
故选:AD.
2.设公差不为0的等差数列{}n a 的前n 项和为n S ,若1718S S =,则下列各式的值为0的是( ) A .17a B .35S
C .1719a a -
D .1916S S -
解析:BD 【分析】 由1718S S =得18
0a =,利用17180a a d d =-=-≠可知A 不正确;;根据351835S a =可
知 B 正确;根据171920a a d -=-≠可知C 不正确;根据19161830S S a -==可知D 正确. 【详解】
因为1718S S =,所以18170S S -=,所以18
0a =,
因为公差0d ≠,所以17180a a d d =-=-≠,故A 不正确;
13518
351835()35235022
a a a S a +⨯=
===,故B 正确; 171920a a d -=-≠,故C 不正确;
19161718191830S S a a a a -=++==,故D 正确.
故选:BD. 【点睛】
本题考查了等差数列的求和公式,考查了等差数列的下标性质,属于基础题.
3.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a < D .613S S =
解析:AD 【分析】
由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误. 【详解】
解:1385a a S +=,111110875108,90,02
d
a a d a a d a ⨯++=+
+==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.
9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.
61656+
5415392
d
S a d d d ⨯==-+=-, 131131213+
11778392
d
S a d d d ⨯==-+=-,故D 正确. 故选:AD 【点睛】
考查等差数列的有关量的计算以及性质,基础题.
4.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .24
37
d -
<<- C .S n <0时,n 的最小值为13 D .数列n n S a ⎧⎫
⎨
⎬⎩⎭
中最小项为第7项 解析:ABCD 【分析】
S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得24
7
-
<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫
⎨⎬⎩⎭
中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断
出D 是否正确. 【详解】
∵S 12>0,a 7<0,∴
()
67122
a a +>0,a 1+6d <0.
∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴24
7
-<d <﹣3.a 1>0. S 13=
()
113132
a a +=13a 7<0.
∴S n <0时,n 的最小值为13. 数列n n S a ⎧⎫
⎨
⎬
⎩⎭
中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0. 对于:7≤n ≤12时,n
n
S a <0.S n >0,但是随着n 的增大而减小;a n <0,
但是随着n 的增大而减小,可得:
n
n
S a <0,但是随着n 的增大而增大. ∴n =7时,
n
n
S a 取得最小值. 综上可得:ABCD 都正确. 故选:ABCD . 【点评】
本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.
5.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =
D .当8n ≥时,0n a <
解析:AD 【分析】
由已知得到780,0a a ><,进而得到0d <,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为160a d +=,可知不一定成立,从而判定C 错误. 【详解】
由已知得:780,0a a ><,
结合等差数列的性质可知,0d <,该等差数列是单调递减的数列, ∴A 正确,B 错误,D 正确,
310S S =,等价于1030S S -=,即45100a a a ++⋯+=,等价于4100a a +=,即160a d +=,
这在已知条件中是没有的,故C 错误. 故选:AD. 【点睛】
本题考查等差数列的性质和前n 项和,属基础题,关键在于掌握和与项的关系. 6.设d 为正项等差数列{}n a 的公差,若0d >,32a =,则( ) A .244a a ⋅< B .2
24154
a a +≥
C .
15
111a a +> D .1524a a a a ⋅>⋅
解析:ABC 【分析】
由已知求得公差d 的范围:01d <<,把各选项中的项全部用d 表示,并根据01d <<判断各选项. 【详解】 由题知,只需1220
010a d d d =->⎧⇒<<⎨
>⎩
,
()()2242244a a d d d ⋅=-⋅+=-<,A 正确;
()()2
2
22415
223644
a a d d d d +=-++=-+>≥
,B 正确; 21511111122221a a d d d
+=+=>-+-,C 正确; ()()()()2152422222230a a a a d d d d d ⋅-⋅=-⋅+--⋅+=-<,所以1524a a a a ⋅<⋅,
D 错误. 【点睛】
本题考查等差数列的性质,解题方法是由已知确定d 的范围,由通项公式写出各项(用d 表示)后,可判断.
7.已知数列{}n a 为等差数列,则下列说法正确的是( ) A .1n n a a d +=+(d 为常数)
B .数列{}n a -是等差数列
C .数列1n a ⎧⎫
⎨⎬⎩⎭
是等差数列
D .1n a +是n a 与2n a +的等差中项
解析:ABD 【分析】
由等差数列的性质直接判断AD 选项,根据等差数列的定义的判断方法判断BC 选项. 【详解】
A.因为数列{}n a 是等差数列,所以1n n a a d +-=,即1n n a a d +=+,所以A 正确;
B. 因为数列{}n a 是等差数列,所以1n n a a d +-=,那么
()()()11n n n n a a a a d ++---=--=-,所以数列{}n a -是等差数列,故B 正确;
C.
1111
11n n n n n n n n a a d a a a a a a ++++---==,不是常数,所以数列1n a ⎧⎫⎨⎬⎩⎭
不是等差数列,故C 不正确;
D.根据等差数列的性质可知122n n n a a a ++=+,所以1n a +是n a 与2n a +的等差中项,故D 正确. 故选:ABD 【点睛】
本题考查等差数列的性质与判断数列是否是等差数列,属于基础题型.
8.设{}n a 是等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论正确的是( ) A .0d < B .70a =
C .95S S >
D .67n S S S 与均为的最大值
解析:ABD 【分析】
由1n n n S S a --=()2n ≥,判断6780,0,0a a a >=<,再依次判断选项. 【详解】
因为5665600S S S S a <⇒->⇒>,677670S S S S a =⇒-==,
788780S S S S a >⇒-=<,所以数列{}n a 是递减数列,故0d <,AB 正确;
()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;
由以上可知数列{}n a 是单调递减数列,因为6780,0,0a a a >=<可知,67n S S S 与均为的最大值,故D 正确. 故选:ABD 【点睛】
本题考查等差数列的前n 项和的最值,重点考查等差数列的性质,属于基础题型. 9.设等差数列{}n a 的前n 项和为n S ,公差为d ,且满足10a >,1118S S =,则对n S 描述正确的有( ) A .14S 是唯一最小值 B .15S 是最小值 C .290S = D .15S 是最大值
解析:CD 【分析】
根据等差数列中1118S S =可得数列的公差0d <,再根据二次函数的性质可知15S 是最大值,同时可得150a =,进而得到290S =,即可得答案; 【详解】
1118S S =,∴0d <,
设2n S An Bn =+,则点(,)n n S 在抛物线2
y Ax Bx =+上,
抛物线的开口向下,对称轴为14.5x =,
∴1514S S =且为n S 的最大值,
1118S S =12131815070a a a a ⇒+++=⇒=,
∴129291529()
2902
a a S a +=
==, 故选:CD. 【点睛】
本题考查利用二次函数的性质研究等差数列的前n 项和的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力. 10.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的
是( ) A .110S =
B .10n n S S -=(110n ≤≤)
C .当110S >时,5n S S ≥
D .当110S <时,5n S S ≥
解析:BC 【分析】 设公差d 不为零,由38a a =,解得192
a d =-,然后逐项判断.
【详解】 设公差d 不为零, 因为
38a a =,
所以1127a d a d +=+, 即1127a d a d +=--, 解得192
a d =-,
11191111551155022S a d d d d ⎛⎫
=+=⨯-+=≠ ⎪⎝⎭
,故A 错误;
()()()()()()221101110910,10102222
n n n n n n d
d na d n n n a n n S S d ----=+
=-=-+=-,故B 正确; 若11191111551155022S a d d d d ⎛⎫
=+=⨯-
+=> ⎪⎝⎭
,解得0d >,
()()2
2510525222
n d d d n n S n S =
-=--≥,故C 正确;D 错误; 故选:BC 11.题目文件丢失!
12.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S +=
B .27S S =
C .5S 最小
D .50a =
解析:BD 【分析】
设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误. 【详解】
设等差数列{}n a 的公差为d ,则81187
88282
S a d a d ⨯=+
=+,91198
99362
S a d a d ⨯=+
=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,
解得14a d =-,()()115n a a n d n d ∴=+-=-,()()21
9122
n n n d n n d S na --=+=. 对于A 选项,59233412a a d d +=⨯=,()2
8
88942
d S d -⨯=
=-,A 选项错误; 对于B 选项,()2
2
29272
d S
d -⨯=
=-,()2
7
79772
d S
d -⨯=
=-,B 选项正确;
对于C 选项,()2
298192224n d d S n n n ⎡⎤
⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦
.
若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误; 对于D 选项,50a =,D 选项正确. 故选:BD. 【点睛】
在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解.
13.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54
C .S 2020=a 2022-1
D .a 1+a 3+a 5+…+
a 2021=a 2022 解析:BCD 【分析】
由题意可得数列{}n a 满足递推关系()12211,1,+3n n n a a a a a n --===≥,依次判断四个选项,即可得正确答案. 【详解】
对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,81+1+2+3+5+8+13+2154S ==,故B 正确; 对于C ,可得()112n n n a a a n +-=-≥, 则()()()()1234131425311++++
++++++n n n a a a a a a a a a a a a a a +-=----
即212++1n n n n S a a a a ++=-=-,∴202020221S a =-,故C 正确; 对于D ,由()112n n n a a a n +-=-≥可得,
()()()135202124264202220202022+++
+++++a a a a a a a a a a a a =---=,故D 正确.
故选:BCD. 【点睛】
本题以“斐波那契数列”为背景,考查数列的递推关系及性质,解题的关键是得出数列的递推关系,()12211,1,+3n n n a a a a a n --===≥,能根据数列性质利用累加法求解. 14.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( ) A .2490a a += B .数列{}n S 中最大值的项是25S C .公差0d > D .数列
{}n
a 也是等差数列
解析:AB 【分析】
根据已知条件求得1,a d 的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项. 【详解】
依题意,等差数列{}n a 中81535a a =,即()()1137514a d a d +=+,
1149249,2
a d a d =-=-
. 对于A 选项,24912490a a a d +=+=,所以A 选项正确. 对于C 选项,149
2
a d =-
,10a >,所以0d <,所以C 选项错误. 对于B 选项,()()149511122n a a n d d n d n d ⎛
⎫=+-=-
+-=- ⎪⎝
⎭,令0n a ≥得5151
0,22n n -
≤≤,由于n 是正整数,所以25n ≤,所以数列{}n S 中最大值的项是25S ,所以B 选项正确. 对于D 选项,由上述分析可知,125n ≤≤时,0n a ≥,当26n ≥时,0n a <,且0d <.所以数列
{}n
a 的前25项递减,第26项后面递增,不是等差数列,所以D 选项错误.
故选:AB
【点睛】
等差数列有关知识的题目,主要把握住基本元的思想.要求等差数列前n 项和的最值,可以令0n a ≥或0n a ≤来求解.
15.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有
m n m n a a a +=+,则下列结论正确的是( )
A .11285a a a a +=+
B .56110a a a a <
C .若该数列的前三项依次为x ,1x -,3x ,则10103
a = D .数列n S n ⎧⎫
⎨
⎬⎩⎭
为递减的等差数列 解析:AC 【分析】
令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由2
56110200a a a a d -=>,可
判定B 错误;根据等差数列的性质,可判定C 正确;122n d d n a n S ⎛
⎫=+- ⎪⎝
⎭,根据02>d ,可判定D 错误. 【详解】
令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;
由(
)()22
2
256110111
19209200a a a a a a d d
a
a d d -=++-+=>,所以56110a a a a >,故B
错误;根据等差数列的性质,可得()213x x x -=+,所以1
3x =,213
x -=, 故101110
9333
a =
+⨯=,故C 正确; 由()111222n
n n na d
S d d n a n
n -+
⎛⎫=
=+- ⎪⎝
⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭
是递增的等差数列,故D 错误. 故选:AC . 【点睛】
解决数列的单调性问题的三种方法;
1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;
2、作商比较法:根据
1
(0n n n
a a a +>或0)n a <与1的大小关系,进行判定;
3、数形结合法:结合相应的函数的图象直观判断.
16.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <
B .10a <
C .当5n =时n S 最小
D .0n S >时n 的最小值为8
解析:BD 【分析】
由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】
由于等差数列{}n a 是递增数列,则0d >,A 选项错误;
753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;
()()()22
171117493222224n n n d n n d n n d S na nd n d -⎡⎤
--⎛⎫=+=-+==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦
,
当3n =或4时,n S 最小,C 选项错误; 令0n S >,可得270n n ->,解得0n <或7n >.
n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.
故选:BD.
17.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( ) A .0,2,n n a n ⎧=⎨
⎩
为奇数
为偶数
B .1(1)1n n a -=-+
C .2sin 2
n n a π
= D .cos(1)1n a n π=-+
解析:BD 【分析】
根据选项求出数列的前4项,逐一判断即可. 【详解】
解:因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;
选项B :0
1(1)12,a =-+=1
2(1)10,a =-+=
23(1)12,a =-+=34(1)10a =-+=,符合题设;
选项C :,12sin
2,2
a π
==22sin 0,a π==
332sin 22
a π==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=
3cos 212,a π=+=4cos310a π=+=,符合题设.
故选:BD.
【点睛】
本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题.
18.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( )
A .68a =
B .733S =
C .135********a a a a a +++
+= D .22212201920202019a a a a a +++= 解析:ABD
【分析】
根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正
确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,
244534534()a
a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,累加可知D 正确.
【详解】
依题意可知,11a =,21a =,21n n n a a a ++=+,
312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确;
7565813a a a =+=+=,所以
712345671123581333S a a a a a a a =++++++=++++++=,故B 正确; 由12a a =,342a a a =-,564a a a
=-,786a a a =-,
,201920202018a a a =-,
可得13572019a a a a a ++++
+=242648620202018a a a a a a a a a +-+-+-++-2020a =,
故C 不正确; 2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,
244534534()a
a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-, 所以
2222212342019
a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+-
20192020a a =, 所以22212201920202019
a a a a a +++=,故D 正确. 故选:ABD.
【点睛】
本题考查了数列的递推公式,考查了累加法,属于中档题.
19.若不等式1(1)(1)2n n
a n
+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( )
A .2-
B .1-
C .1
D .2
解析:ABC
【分析】 根据不等式1(1)(1)2n n a n +--<+对于任意正整数n 恒成立,即当n 为奇数时有12+a n -<恒成立,当n 为偶数时有12a n
<-
恒成立,分别计算,即可得解. 【详解】 根据不等式1(1)(1)2n n
a n +--<+对于任意正整数n 恒成立, 当n 为奇数时有:12+a n
-<恒成立, 由12+n 递减,且1223n <+≤, 所以2a -≤,即2a ≥-,
当n 为偶数时有:12a n <-
恒成立, 由12n -第增,且31222n
≤-<, 所以32
a <, 综上可得:322a -≤<
, 故选:ABC .
【点睛】
本题考查了不等式的恒成立问题,考查了分类讨论思想,有一定的计算量,属于中当题. 20.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论
正确的是( )
A .0d <
B .70a =
C .95S S >
D .170S < 解析:ABD
【分析】
结合等差数列的性质、前n 项和公式,及题中的条件,可选出答案.
【详解】
由67S S =,可得7670S S a -==,故B 正确;
由56S S <,可得6560S S a -=>,
由78S S >,可得8780S S a -=<,
所以876a a a <<,故等差数列{}n a 是递减数列,即0d <,故A 正确;
又()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确; 又因为等差数列{}n a 是单调递减数列,且80a <,所以90a <,
所以()
117179171702a a S a +==<,故D 正确.
故选:ABD.
【点睛】
关键点点睛:本题考查等差数列性质的应用,解题的关键是熟练掌握等差数列的增减性及前n 项和的性质,本题要从题中条件入手,结合公式()12n n n a S S n --≥=,及
()12
n n n a a S +=,对选项逐个分析,可判断选项是否正确.考查学生的运算求解能力与逻辑推理能力,属于中档题.。