2018年高考物理复习第七章 第1讲
高考物理总复习第七章 第1讲 电流、电阻、电功和电功率
2013-11-27
有志者事竟成
17
高考复习· 物理
图7-1-1 4.导体的伏安特性曲线. (1)I-U图线以电流为纵轴、电压为横轴画出导体上的 电流随电压变化的曲线,如图7-1-1所示.
2013-11-27
有志者事竟成
18
高考复习· 物理
(2)比较电阻的大小. I 1 图线的斜率k=U=R,图中R1>R2. 五、电功、电热和电功率 1.电功. (1)电功:电流在一段电路上所做的功,等于这段电路两 端的电压U、电路中的电流I和通电时间t三者的乘积,即W =UIt. (2)电流做功的实质:电能转化为其他形式能的过程.
12
高考复习· 物理
三、电阻定律 1.内容:同种材料的导体,其电阻跟它的长度成正 比,与它的横截面积成反比;导体电阻与构成它的材料有 关. l 2.表达式:R=ρS. 3.电阻率.
2013-11-27
有志者事竟成
13
高考复习· 物理
RS (1)计算公式:ρ= l ,ρ与导体的长度l、横截面积S无 关,是导体材料本身的电学性质,由导体的材料决定,且与 温度有关. (2)物理意义:反映了材料对电流的阻碍作用,在数值上 等于用这种材料制成的1 m长、截面积为1_m2的导线的电阻 值.
l 量电阻的方法;公式R=ρ S 是电阻的决定式,提供了一种测 量导体电阻率的方法.
2013-11-27
有志者事竟成
16
高考复习· 物理
四、欧姆定律 1.内容:导体中的电流跟导体两端的电压成正比,跟 导体的电阻成反比. U 2.表达式:I=R . 3.适用范围. (1)金属导电和电解液导电(对气体导电不适用). (2)纯电阻电路(不含电动机、电解槽等的电路).
有志者事竟成
第七章第1讲 动量和动量定理--2025版高考总复习物理
[基础落实练]1.对于一定质量的某物体而言,关于其动能和动量的关系,下列说法正确的是() A.物体的动能改变,其动量不一定改变B.物体动量改变,则其动能一定改变C.物体的速度不变,则其动量不变,动能也不变D.动量是标量,动能是矢量解析:物体的动能改变,则物体的速度大小一定改变,则其动量一定改变,A错误;动量表达式为p=m v,动量改变可能只是速度方向改变,其动能不一定改变,B错误;物体的速度不变,则其动量不变,动能也不变,C正确;动量是矢量,动能是标量,D错误。
答案:C2.一物体沿水平面做初速度为零的匀加速直线运动,以动量大小p为纵轴建立直角坐标系,横轴分别为速度大小v、运动时间t、位移大小x,则以下图像可能正确的是()解析:物体做初速度为零的匀加速直线运动,则速度v=at,根据动量的计算公式有p =m v=mat,可知动量与速度和时间都成正比关系,故A、B错误;根据匀变速直线运动规律有v2=2ax,根据动量的计算公式有p=m v=m2ax,根据数学知识可知C图正确,故C 正确,D错误。
答案:C3.行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬间充满气体。
若碰撞后汽车的速度在很短时间内减小为零,关于安全气囊在此过程中的作用,下列说法正确的是()A.增加了司机单位面积的受力大小B.减少了碰撞前后司机动量的变化量C.将司机的动能全部转换成汽车的动能D.延长了司机的受力时间并增大了司机的受力面积解析:汽车剧烈碰撞瞬间,安全气囊弹出,立即跟司机身体接触。
司机在很短时间内由运动到静止,动量的变化量是一定的,由于安全气囊的存在,作用时间变长,据动量定理Δp=FΔt知,司机所受作用力减小;又知安全气囊打开后,司机与物体的接触面积变大,因此减少了司机单位面积的受力大小;碰撞过程中,动能转化为内能和气囊的弹性势能。
综上可知,选项D正确。
答案:D4.(2024·四川绵阳诊断)质点所受的合力F方向始终在同一直线上,大小随时间变化的情况如图所示,已知t=0时刻质点的速度为零。
高考物理一轮复习课件:第1讲+交变电流的产生和描述
C
注意: 1、与线框形状无关 2、与转轴无关 只要满足“两匀一直”和磁通量随时间是正弦(余弦)变化关系即可。
交变电流的产生和描述
3、正弦交变电流的产生和变化规律(扩展)
B=B0sinωt
x=Lsinωt
v=v0sinωt
交变电流的产生和描述
4、交变电流“四值”的应用
瞬时值: 计算线圈某时刻的受力情况
交变电流的产生和描述
1、交变电流有效值
i/A 5
交流电的有效值是根据电流的热效应规定的
遵循“三同原则”:同一个周期,同一个电阻, 相同的热量
0
t
-3
u U
m0
t
E
Em 2
ቤተ መጻሕፍቲ ባይዱ
0.707Em
I
Im 2
0.707Im
U
Um 2
0.707U m
直流(DC)电源有正负极,交流(AC)电源没有正负极
例1:如图所示的交变电流由正弦式交变电流的一半和反向脉冲电流组合而 成,则这种交变电流的有效值为( C )
⑤ 线圈中的感应电动势多大?
e
2BL1
L2 2
sin t
BS
sin t
t=0
A(
B) θ
v⊥
中性面
B
D(C)
交变电流的产生和描述
2、正弦交变电流的产生和变化规律
最大值(峰值)
Em nBS nm
Im
Em Rr
Um ImR
Φ=Φmcos ωt
e=Emsin ωt i=Imsin ωt
e NBS sin t e E m sin t
例1:矩形线圈的匝数为50匝,在匀强磁场中绕垂直于磁场的轴匀速转动时, 穿过线圈的磁通量随时间的变化规律如图所示,下列结论正确的是( C )
备考2019年高考物理一轮复习:第七章第1讲电场力的性质讲义含解析
第1讲 电场力的性质板块一 主干梳理·夯实基础【知识点1】 电荷守恒 点电荷 Ⅰ 库仑定律 Ⅱ 1、元电荷、点电荷(1)元电荷:e =1.6×10-19 C,最小的电荷量,所有带电体的电荷量都是元电荷的整数倍,其中质子、正电子的电荷量与元电荷相同。
电子的电荷量q =-1.6×10-19 C 。
(2)点电荷:忽略带电体的大小、形状及电荷分布状况的理想化模型。
(3)比荷:带电粒子的电荷量与其质量之比。
2、电荷守恒定律(1)内容:电荷既不会创生,也不会消失,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不变。
(2)起电方法:摩擦起电、感应起电、接触起电。
(3)带电实质:物体带电的实质是得失电子。
(4)电荷的分配原则:两个形状、大小相同的导体,接触后再分开,二者带等量同种电荷;若两导体原来带异种电荷,则电荷先中和,余下的电荷再平分。
3、库仑定律(1)内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上。
(2)表达式:F =k q 1q 2r 2,式中k =9.0×109 N·m 2/C 2,叫静电力常量。
(3)适用条件:真空中静止的点电荷。
①在空气中,两个点电荷的作用力近似等于真空中的情况,可以直接应用公式。
②当点电荷的速度较小,远远小于光速时,可以近似等于静止的情况,可以直接应用公式。
③当两个带电体的间距远大于本身的大小时,可以把带电体看成点电荷。
④两个带电体间的距离r →0时,不能再视为点电荷,也不遵循库仑定律,它们之间的库仑力不能认为趋于无穷大。
(4)库仑力的方向由相互作用的两个带电体决定,且同种电荷相互排斥,为斥力;异种电荷相互吸引,为引力。
【知识点2】 静电场 Ⅰ 电场强度、点电荷的场强 Ⅱ1.电场(1)定义:存在于电荷周围,能传递电荷间相互作用的一种特殊物质。
最新-2018高考物理一轮复习 第7章-第1单元随堂课件 精品
发热功率
P
热
′=U′2= 22 R 0.5
W=8 W.
[答案] 1.5 W 8 W
3.一台小型电动机在3 V电压下工作,用此电动机提升所受重力 为4 N的物体时,通过它的电流是0.2 A.在30 s内可使该物体被匀速 提升3 m.若不计除电动机线圈生热之外的能量损失,求:
(1)电动机的输入功率; (2)在提升重物的30 s内,电动机线圈所产生的热量; (3)线圈的电阻. 解析:(1)电动机输入功率: P入=IU=0.2×3 W=0.6 W.
B
选项正
答案:B
对电阻、电阻率的理解
1.电阻与电阻率的区别 (1)电阻是反映导体对电流阻碍作用大小的物理量.电阻率是反 映制作导体的材料导电性能好坏的物理量. (2)导体电阻与电阻率无直接关系,即电阻大,电阻率不一定大 ;电阻率小,电阻不一定小.
2.两个公式的对比
[重点提示] (1)利用 R=ρSl 和 R=UI 计算出来的电阻都是
速直线运动时,由于棒运动而形成的等效电流大小为( )
A.vq
B.vq
C.qvS
qv D. S
解析:在电荷的运动方向上假设有一截面,则在 t 时间内通过截 面的电荷量为 Q=vtq,则等效电流为 I=Qt =vq,故选项 A 正确.
答案:A
4. (2011年杭州模拟)如图所示是某导体的I-U图象,图中α=45°, 下列说法正确的是( )
一根给定的导线体积不变,若均匀拉长为原来的 2 倍,则横截面
积为原来的1,设 2
A、B
导线原长为
l,横截面积为
S,电阻为
R,则
lA′=2l,SA′=S2,lB′=2l ,SB′=l2S.
RA′=ρ2Sl=4ρSl =4R,RB′=ρ22S=14ρSl =R4.
统考版高考物理总复习 第1讲 动量和动量定理
安全气囊未弹开与弹开时受到的作用力之比为(
)
1
A.
100
1
B.
10
C.100
D.10
解析:本题考查动量定理的应用,为基础性题.根据动量
mv
1
定理可得FΔt=mv,得F= ,当时间变为 ,作用力变为10
Δt
10
倍.故选D.
答案:D
情境3 高空坠物
[2022·北京模拟]城市进入高楼时代后,高空坠物已成为危害极大的
下.( √ )
(3)铜珠的动量越大,其惯性也越大.( × )
(4)铜珠刚落入蟾蜍口时的动量大小为0.1 kg·m/s.( √ )
(5)铜珠在空中的整个过程中动量的变化量为0.1 kg·m/s,方
向竖直向下.( √ )
(6)铜珠所受合外力的冲量方向与物体动量变化的方向是一致
的.( √ )
关键能力·分层突破
动量变化量 Δp=mv′-mv 与合力同向
Δp
动量变化率
与合力同向
Δt
跟进训练
1.颠球是足球运动基本技术之一,若质量为400 g的足球用脚颠起后,
竖直向下以4 m/s的速度落至水平地面上,再以3 m/s的速度反向弹回,
取竖直向上为正方向,在足球与地面接触的时间内,关于足球动量变
化量Δp和合外力对足球做的功W,下列判断正确的是(
)
A.Δp=1.4 kg·m/s,W=-1.4 J
B.Δp=-1.4 kg·m/s,W=1.4 J
C.Δp=2.8 kg·m/s,W=-1.4 J
D.Δp=-2.8 kg·m/s,W=1.4 J
答案:C
2.[2021·湖南卷,2]物体的运动状态可用位置x和动量p描述,称为
2018版高考物理新课标一轮复习课件:第七章 恒定电流 7-2 精品
考向 3 电路故障分析 [典例 3] (多选)在如图所示的电路中,由于某一电阻发生短路 或断路,A 灯变暗,B 灯变亮,则故障可能是( BC )
A.R1 短路 C.R3 断路
B.R2 断路 D.R4 短路
[解析] 由于 A 灯串联于干路中,且故障发生后,A 灯变 暗,故知电路中总电流变小,即电路总电阻变大,由此推知, 故障应为某一电阻断路,排除选项 A、D.假设 R2 断路,则其断 路后,电路总电阻变大,总电流变小,A 灯变暗,同时 R2 断路 必引起与之并联的 B 灯中电流变大,使 B 灯变亮,推理结果与 现象相符,故选项 B 正确.假设 R3 断路,则总电阻变大,总电 流变小,使 A 灯变暗,同时 R3 断路也必引起与之并联的电路(即 R1 所在支路)中电流增大,B 灯中分得的电流也变大,B 灯变亮, 故选项 C 正确.
(1)电动势的大小反映了电源把电能转化为其他形式的能 的本领强弱.( )
(2)电动势由电源中非静电力的特性决定,与电源的体积无 关,与外电路无关.( )
(3)电动势等于电源的路端电压.( ) (4)电路中某电阻增大,该电阻的功率一定增大.( )
(5)闭合电路中外电阻越大,路端电压越大.( ) (6) 在 闭 合 电 路 中 , 外 电 阻 越 大 , 电 源 的 输 出 功 率 越 大.( ) (7)电源的输出功率越大,电源的效率越高.( )
第五步:由部分电路欧姆定律确定干路上某定值电阻两端 的电压如何变化.
第六步:由串、并联电路的规律确定各支路两端的电压以 及通过各支路的电流如何变化.
考向 1 纯电阻电路动态分析 [典例 1] (多选)在如图所示的电路中,闭合开关 S,当滑 动变阻器的滑片 P 向下滑动时,四个理想电表的示数都发生变 化,电表的示数分别用 I、U1、U2 和 U3 表示,电表示数变化量 的大小分别用 ΔI、ΔU1、ΔU2 和 ΔU3 表示.下列判断正确的是
2025年高考物理总复习第七章动量守恒定律第1讲动量和动量定理
2.[多选][粤教版选修一P15第1题拓展变式,2023新课标卷] 使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的极正对着乙的 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等。现同时释放甲和乙,在它们相互接近过程中的任一时刻( )
3.[鲁科版选修一P32第7题拓展变式]如图所示,学生练习用头颠球。某次足球由静止开始下落后,被竖直顶起,离开头部后上升的最大高度仍为 。已知足球与头部的作用时间为,足球的质量为,取 ,不计空气阻力。下列说法正确的是( )
B
A.足球与头部刚接触时,足球的动量大小为 B.与头部作用过程中,足球的动量变化量大小为 C.与头部作用过程中,头部对足球的冲量大小为 ,方向竖直向下D.从最高点下落至重新回到最高点的过程中,足球重力的冲量为0
知识点46 动量和冲量
知识点47 动量定理的简单应用
知识点48 用动量定理处理“流体模型”
知识点46 动量和冲量
1.动量
(1)定义:物体的 ______与 ______的乘积.
(2)表达式: ____,单位 .
(3)动量为矢量,方向与 ____动量的变化量
D
A.前内摩擦力对物体的冲量为0 B.内,拉力对物体的冲量大小等于 C.内,摩擦力对物体的冲量大小等于 D.末物体的动量大小是
【解析】物体与地面间的最大静摩擦力,因为前内拉力 小于最大静摩擦力,所以物体静止不动,此时静摩擦力,物体所受摩擦力的冲量为,故A错误;图像与 轴包围的面积表示冲量的大小,故内拉力对物体的冲量 ,故B错误;前物体所受静摩擦力,内物体所受滑动摩擦力,故 内摩擦力的冲量大小,故C错误;内物体的加速度,则 末物体的速度,在内物体的加速度,则 末物体的速度,此时物体的动量 ,故D正确。
高考物理总复习第1讲 描述运动的基本概念
②都是过程量 联系
③一般情况下,物体(质点)的位移大小小于其路程,只有在物体(质点)
做 06 __单__向__直__线____运动时,其位移大小才等于路程
1.[教材母题] (人教版必修 1 P14·T1、T2)(1)以下各种说法中,哪些指 时间?哪些指时刻?
A.列车员说:“火车 8 点 42 分到站,停车 8 分。” B.“您这么早就来啦,等了很久吧!” C.“前 3 秒”“最后 3 秒”“第 3 秒末”“第 3 秒内”。 (2)某市出租汽车的收费标准有 1.20 元/公里、1.60 元/公里、2.00 元/公 里……其中的“公里”说的是路程还是位移?
6.P19~21 打点计时器使用什么电源?从纸带上如何确定物体的运动速 度?实验时,接通电源和拉动纸带的顺序是怎样的?
提示:交流电源;用前后相邻两点间的平均速度代表纸带上打这一点 时物体的瞬时速度;先接通电源后拉动纸带。
7.P24[科学漫步]测出的速度是不是瞬时速度? 提示:是瞬时速度。 8.P25[思考与讨论]加速度描述什么?加速度大说明什么? 提示:加速度描述物体速度变化的快慢;加速度大说明物体速度变化 快。 9.P26~27 课本底图,你能根据飞机间距的关系做出什么判断? 提示:飞机正在加速前进。
1.(多选)下列关于物体是否可以看做质点的说法中,正确的有( ) A.研究奥运游泳冠军叶诗文的游泳技术时,叶诗文不能看成质点 B.研究飞行中直升机上的螺旋桨的转动情况时,直升飞机可以看做质 点 C.观察航空母舰上的舰载飞机起飞时,可以把航空母舰看做质点 D.在作战地图上确定航空母舰的准确位置时,可以把航空母舰看做质 点
14.P38~39 阅读“匀变速直线运动的位移”一段,体会“微元法”。 提示:时间分得非常细。 15.P40[思考与讨论]初速度为 0 的匀变速直线运动的 x-t2 图象斜率的物 理意义是什么? 提示:斜率表示加速度的一半。 16.P41[问题与练习]T5,你还能作出 T5 的 v-t 图象吗? 提示:能,如图所示。
(统考版)高考物理一轮复习 第七章 静电场 第1讲 电场的力的性质学生用书
第1讲电场的力的性质一、点电荷、电荷守恒定律1.点电荷:有一定的电荷量,忽略形状和________的一种理想化模型.2.电荷守恒定律(1)内容:电荷既不会创生,也不会消灭,它只能从一个物体________到另一个物体,或者从物体的一部分________到另一部分;在转移过程中,电荷的总量保持________.(2)起电方式:________、________、感应起电.(3)带电实质:物体带电的实质是________.二、库仑定律1.内容:________中两个静止点电荷之间的相互作用力,与它们的________成正比,与它们的距离的________成反比.作用力的方向在它们的连线上.2.表达式:F=________,式中k=________ N·m2/C2,叫静电力常量.3.适用条件:(1)________中;(2)________.三、电场强度、点电荷的场强1.定义:放入电场中某点的电荷受到的电场力F与它的电荷量q的________.2.定义式:E=________.单位:N/C或V/m.3.点电荷的电场强度:真空中点电荷形成的电场中某点的电场强度:E=________.4.方向:规定________在电场中某点所受________的方向为该点的电场强度方向.5.电场强度的叠加:电场中某点的电场强度等于各个点电荷单独在该点产生的电场强度的________和,遵从________定则.四、电场线1.定义:为了形象地了解和描述电场中各点电场强度的________和________,在电场中画出一条条有方向的曲线,曲线上每点的________表示该点的电场强度方向,曲线的________表示电场强度的大小.2.五、处于静电平衡状态的导体的特点1.导体内部的场强________.2.导体是一个等势体,导体表面是等势面.3.导体表面处的场强方向与导体表面________.4.导体内部没有净电荷,净电荷只分布在导体的________上.5.在导体外表面越尖锐的位置,净电荷的密度(单位面积上的电荷量)越大,凹陷的位置几乎没有净电荷.,生活情境1.如图所示,塑料梳子与头发摩擦后能吸引纸屑,经检验梳子所带的电荷为负电荷,则(1)梳子失去了一些电子( )(2)梳子得到了一些电子( )(3)头发得到了一些电子( )(4)头发和梳子间没有电子转移( )教材拓展2.[人教版选修3-1改编]如图所示,两个不带电的导体A和B用一对绝缘柱支持使它们彼此接触.把一带正电荷的物体C置于A附近,贴在A、B下部的金属箔都张开,则( )A.此时A带正电,B带负电B.此时A电势低,B电势高C.移去C,贴在A、B下部的金属箔都闭合D.先把A和B分开,然后移去C,贴在A、B下部的金属箔都闭合3.[人教版选修3-1P15T5改编]如图所示为某区域的电场线分布,下列说法正确的是( )A.这个电场可能是正点电荷形成的B.D处的场强为零,因为那里没有电场线C.点电荷q在A点所受的电场力比在B点所受电场力小D.负电荷在C点受到的电场力方向沿C点切线方向考点一 库仑定律的理解与应用1.对库仑定律的理解 (1)F =kq 1q 2r 2,r 指两点电荷间的距离.对可视为点电荷的两个均匀带电球,r 为两球的球心间距.(2)当两个电荷间的距离r →0时,电荷不能再视为点电荷,它们之间的静电力不能认为趋于无穷大.2.库仑力具有力的共性(1)两个点电荷之间相互作用的库仑力遵从牛顿第三定律. (2)库仑力可使带电体产生加速度. (3)库仑力可以和其他力平衡.(4)某个点电荷同时受几个点电荷的作用时,要用平行四边形定则求合力.跟进训练1.如图所示,真空中两个完全相同的绝缘带电金属小球A 、B (均可看做点电荷),分别带有-12Q 和+Q 的电荷量,两球间静电力为F .现用一个不带电的同样的金属小球C 先与A 接触,再与B 接触,然后移开C ,接着再使A 、B 间距离增大为原来的2倍,则它们间的静电力大小为( )A .3128F B .5128F C .364F D .564F2.如图所示,在一条直线上有两个相距0.4 m 的点电荷A 、B ,A 带电+Q ,B 带电-9Q .现引入第三个点电荷C ,恰好使三个点电荷均在静电力的作用下处于平衡状态,则C 的带电性质及位置应为( )A .正,B 的右边0.4 m 处 B .正,B 的左边0.2 m 处C .负,A 的左边0.2 m 处D .负,A 的右边0.2 m 处3.[2022·四川乐山模拟]如图,带电量分别为q a、q b、q c的小球,固定在等边三角形的三个顶点上,q a所受库仑力的合力F方向垂直于q a、q b的连线,则( ) A.q b、q c异号,且q c=2q bB.q a、q b异号,且q b=2q aC.q a、q c同号,且q c=2q aD.q a、q b同号,且q b=2q a4.如图所示,用两根长度均为l的绝缘轻绳将带正电的小球悬挂在水平的天花板下,小球的质量为m,轻绳与天花板的夹角均为θ,小球正下方距离也为l的A处一绝缘支架上同样有一个带电小球,此时轻绳的张力均为0,现在将支架水平向右移动到B处,B处位置与两轻绳结点的连线与竖直方向的夹角为θ,小球处于静止状态,若已知θ=30°,则( ) A.A处的带电小球带负电B.支架在A处与在B处时两小球之间的库仑力大小之比为2∶3mgC.支架在B处时,左边绳子的张力为mg-√32mgD.支架在B处时,右边绳子的张力为mg+√32[思维方法]解决库仑力作用下平衡问题的方法步骤库仑力作用下平衡问题的分析方法与纯力学平衡问题的分析方法是相同的,只是在原来受力的基础上多了电场力.具体步骤如下:考点二电场强度的理解及计算2.电场强度的三个计算公式:例.[2021·湖南卷,4]如图,在(a,0)位置放置电荷量为q的正点电荷,在(0,a)位置放置电荷量为q的负点电荷,在距P(a,a)为√2a的某点处放置正点电荷Q,使得P点的电场强度为零.则Q的位置及电荷量分别为( )A.(0,2a),√2q B.(0,2a),2√2qC√2q√2q跟进训练5.[人教版必修第三册P17T6改编]如图所示,一个质量为30 g、带电荷量为-1.7×10-8C的半径极小的小球用绝缘丝线悬挂在某匀强电场中,电场线与水平面平行.当小球静止时,测得悬线与竖直方向夹角为30°,则匀强电场方向和大小为(g取10 m/s2)( )A.水平向右,5×106 N/CB.水平向右,1×107 N/CC.水平向左,5×106 N/CD.水平向左,1×107 N/C6.如图所示,在x轴上关于原点O对称的两点A、B分别固定放置点电荷+Q1和-Q2,x轴上的P点位于B点的右侧,且P点电场强度为零,则下列判断正确的是( )A.x轴上P点右侧电场强度方向沿x轴正方向B.Q1<Q2C.在A、B连线上还有一点与P点电场强度相同D.与P点关于O点对称的M点电场强度可能为零7.(多选)如图所示,在圆心为O、半径为R的圆周上等间距分布着三个电荷量均为q 的点电荷a、b、c,其中a、b带正电,c带负电.已知静电力常量为k,下列说法正确的是( )A.a受到的库仑力大小为√3kq23R2B.c受到的库仑力大小为√3kq23R2,方向由O指向cC.a、b在O点产生的场强为√3kqR2D.a、b、c在O点产生的场强为2kq,方向由O指向cR2考点三电场线的理解和应用1.电场线的应用(1)在同一电场里,电场线越密的地方场强越大.(2)电场线上某点的切线方向表示该点的场强方向.(3)沿电场线方向电势逐渐降低.(4)电场线和等势面在相交处互相垂直.2.两种等量点电荷的电场线等量异种点电荷等量同种点电荷O点最大,向外逐渐减小O点为零,向外先变大后变小跟进训练8.如图所示是真空中两点电荷的周围的电场分布情况.图中O点为两点电荷连线的中点,MN为两点电荷连线的中垂线,OM=ON.下列说法正确的是( )A.同一电荷在O、M、N三点所受的电场力相同B.同一电荷在O、M、N三点的电场力方向相同C.O、M、N三点的电场强度大小关系是E M=E N>E OD.把另一自由电荷从M点静止释放,将沿MON做往复运动9.如图所示为静电场的一部分电场线的分布,下列说法正确的是( )A.这个电场可能是负点电荷形成的B.C点处的场强为零,因为那里没有电场线C.点电荷q在A点受到的电场力比在B点受到的电场力大D.负电荷在B点时受到的电场力方向沿B点切线方向10.如图是一带电球体和一可视为点电荷的带电小球周围电场线的分布图,球体和小球所带电荷量相同,A为球体球心与小球连线在球体外的部分的中点,B、C为关于连线对称的两点.取无穷远处电势为零,以下说法正确的是( )A.小球一定带正电,带电球体一定带负电B.A点处的电势为零,B、C两点电场强度相同C.将带电粒子从B点移到C点电场力做功为零D.A点的电场强度小于B、C两点的电场强度第七章 静电场第1讲 电场的力的性质必备知识·自主排查一、 1.大小2.转移 转移 不变 摩擦起电 接触起电 得失电子 二、1.真空 电荷量的乘积 二次方 2.kq 1q 2r 29.0×1093.(1)真空 (2)点电荷 三、 1.比值 2. Fq 3.k Qr 24.正电荷 电场力 5.矢量 平行四边形 四、1.大小 方向 切线方向 疏密2.(1)正电荷 (2)相交 (3)场强 (4)场强方向 (5)降低 (6)垂直 五、(1)处处为零 (3)垂直 (4)外表面生活情境1.(1)× (2)√ (3)× (4)× 教材拓展2.解析:由感应起电可知,近端感应出异种电荷,故A 带负电,B 带正电,故A 项错误;处于静电平衡状态下的导体是等势体,故A 、B 电势相等,故B 项错误;先移去C ,则A 、B 两端的等量异种电荷又重新中和,而先分开A 、B ,后移走C ,则A 、B 两端的等量异种电荷就无法重新中和,故C 项正确,D 项错误.答案:C 3.答案:C关键能力·分层突破1.解析:根据库仑定律知:F =kQ·12Qr 2=12kQ 2r 2,用不带电的小球C 与A 接触,则A 、C 的电荷量为Q A =Q C =-14Q ,C 与B 再接触,则B 的电荷量为Q B =+38Q ,根据库仑定律知此时静电力大小:F ′=k14Q·38Q (2r )2=3128k Q 2r 2=364F ,故C 正确,A 、B 、D 错误.答案:C2.解析:根据库仑定律,当C 在A 的左侧时,C 受到A 、B 库仑力的合力才可能为0,则C 在A 的左边;为使A 受到B 、C 的库仑力的合力为0,C 应带负电;设C 在A 左侧距A 为x 处,由于C 处于平衡状态,所以k Qqx 2=9kQ·q(0.4+x )2,解得x =0.2 m ,C 正确.答案:C3.解析:根据题意可知,小球a 、c 之间存在排斥力,q a 、q c 同号,小球a 、b 之间存在吸引力,q a 、q b 异号,所以q b 和q c 异号,根据平行四边形法则,排斥力是吸引力的两倍,根据库仑定律F =kq 1q 2r 2,故F ac =kq a q c r 2、F ab =kq a q b r 2,根据题意得F ac =2F ab ,所以有q c =2q b ,故B 、C 、D 错误,A 正确.答案:A4.解析:当绝缘支架上的带电小球在A 位置时,轻绳的张力均为0,对其受力分析可知其只受重力和库仑力,因此两小球之间的库仑力为斥力,则A 处的带电小球带正电,故A 错误;根据库仑定律可得F =k Qqr 2,因此绝缘支架在A 处与在B 处时,两小球之间的库仑力大小之比F AF B=r 22 r 12 =1cos 230°=43,故B 错误;根据平衡条件知,F A =mg ,则支架在B 处时,两球间的库仑力为F B =34F A =34mg ,设左、右绳的张力分别为F 1和F 2,则由正交分解可得F 1cos 30°+34mg sin 30°=F 2cos 30°,F 1sin 30°+34mg cos 30°+F 2sin 30°=mg ,解得F 1=mg -√32mg, F 2=mg -√34mg ,故C 正确,D 错误.答案:C例 解析:(a ,0)和(0,a )两点处的电荷量为q 的点电荷在P 点产生的电场强度的矢量和E =√2kq a 2,方向如图所示[由点(a ,a )指向点(0,2a )],由在距P 点为√2a 的某点处放置的正点电荷Q 使得P 点电场强度为零可知,此正电荷位于(0,2a )点,且电荷量Q 满足kQ(√2a)2=√2kq a 2,解得Q =2√2q ,B 正确.答案:B5.解析:分析小球受力如图所示,重力mg竖直向下,丝线拉力F T沿丝线方向向上,因为小球处于平衡状态,还应受水平向左的电场力F,小球带负电,所受电场力方向与场强方向相反,所以场强方向水平向右,小球在三个力作用下处于平衡状态,三个力的合力必为零,所以F=mg tan 30°,又F=Eq,则E=mg tan30°q,代入数据得:E=1×107N/C,故选项B正确.答案:B6.解析:根据题述可知P点的电场强度为零,根据点电荷电场强度公式和场强叠加原理可知,+Q1的电荷量一定大于-Q2的电荷量,A、B连线上其余各点电场强度都不为零,故B、C错误;由于+Q1的电荷量大于-Q2的电荷量,可知P点右侧电场方向沿x轴正方向,故A正确;由于Q1>Q2,M点和P点关于O点对称,P点电场强度为零,由点电荷电场强度公式和场强叠加原理可知,M点电场强度一定不为零,D错误.答案:A7.解析:根据几何关系得ab间、bc间、ac间的距离r=√3R,根据库仑力的公式得a、b、c间的库仑力大小F=k q2r2=k q23R2,a受到的两个力夹角为120°,所以a受到的库仑力为F a=F=k q23R2,c受到的两个力夹角为60°,所以c受到的库仑力为F c=√3F=√3kq23R2,选项A错误,B正确;a、b在O点产生的场强大小相等,根据电场强度定义有E0=k qR2,a、b带正电,故a在O点产生的场强方向是由a指向O,b在O点产生的场强方向是由b指向O,由矢量合成得a、b在O点产生的场强大小E=k qR2,方向由O→c,选项C错误;同理c在O点产生的场强大小为E0=k qR2,方向由O→c,运用矢量合成法则得a、b、c在O点产生的场强E′=2k qR2,方向由O→c.选项D正确.答案:BD8.解析:O、M、N三点的电场强度方向相同,但大小不同,O点场强最大,E M=E N<E O,同一电荷在三点所受的电场力大小不同,方向相同,故选项A、C错误,B正确;把另一电荷从M点静止释放,由于受到水平的电场力作用不会沿MON做往复运动,故选项D错误.答案:B9.解析:负电荷的电场线是指向负电荷的直线,故A错误;电场线只是形象地描述电场,没有电场线的地方,场强不一定为零,故B错误;电场线的疏密表示电场的强弱,E A >E B,F=qE,所以F A>F B,故C正确;负电荷在B点所受电场力的方向与B点的切线方向相反,故D错误.答案:C10.解析:如果小球带正电,带电球体带负电,带电球体的电荷较分散,在小球右侧空间中,电场线应该始终不可能有向左的分量,故小球应带负电,带电球体带正电,A错误;带电球体不能看成点电荷,所以A点的电势一定不为零,B错误;根据对称性可知,B、C 两点的电场强度大小相等,电势也相等,所以将带电粒子从B点移到C点电势能变化量为零,电场力做功也为零,C正确;A点在小球和带电球体的连线上,且二者带异种电荷,结合库仑定律分析可知,A点的电场强度大小大于B、C两点的电场强度,D错误.答案:C11。
2025届高考物理总复习第七单元动量第1讲动量与冲量动量定理教师用书含解析
第1讲动量与冲量动量定理1.试题特点:从近几年高考来看,本单元考查的重点是动量定理和动量守恒定律这两大规律。
命题特点是:(1)若单独考查动量定理或动量守恒定律则以选择题的形式出现,难度不大,而且动量定理还可能与图象相结合考查。
(2)若动量定理与力学的主干学问综合,往往以计算题的形式出现,重在对建模实力的考查。
(3)动量与能量综合考查则以计算题的形式出现,这类问题具有过程错综困难、图景“扑朔迷离”、条件隐晦难辨、学问覆盖广的特点。
2.命题动向:2024年的高考考纲改《选修3-5》为必考内容,首考都以选择题的形式出现,且难度不大,随着各地对《选修3-5》教学的重视程度的逐步提高,预料2024年高考对动量考查的深度和题目的综合性有所增加,很有可能以计算题的形式出现。
综合应用动量和能量观点解决碰撞模型问题将仍是今后命题的热点。
第1讲动量与冲量动量定理1 冲量(1)定义:力与力的作用时间的乘积叫作力的冲量。
(2)公式:I=Ft,中学阶段只要求会用I=Ft计算恒力的冲量。
对于变力的冲量,中学阶段只能利用动量定理通过物体的动量变更间接求得。
(3)冲量是矢量,它的方向由力的方向确定(不能说和力的方向相同)。
1.1(2024江西南昌模拟考试)(多选)如图所示,一个物体在与水平方向成θ角的拉力F的作用下沿水平面匀速运动了时间t,则()。
A.拉力F对物体的冲量大小为FtB.拉力对物体的冲量大小为Ft sin θC.摩擦力对物体的冲量大小为Ft sin θD.合力对物体的冲量大小为零【答案】AD2 动量(1)定义:物体的质量和速度的乘积叫作动量。
(2)表达式:p=mv。
(3)单位:千克·米/秒。
符号:kg·m/s。
(4)动量是描述物体运动状态的一个状态量,它与时刻相对应。
(5)动量是矢量,它的方向和速度的方向相同。
(6)动量的变更:Δp=p t-p0。
由于动量为矢量,在求解动量的变更时,其运算遵循平行四边形定则。
高中物理高考 第7章 第1讲 动量定理及应用 2023年高考物理一轮复习(新高考新教材)
汽车剧烈碰撞瞬间,安全气囊弹出,立即跟司机身体接触.司机在很 短时间内由运动到静止,动量的变化量是一定的,由于安全气囊的 存在,作用时间变长,据动量定理Δp=FΔt知,司机所受作用力减 小;又知安全气囊打开后,司机受力面积变大,因此减小了司机单 位面积的受力大小;碰撞过程中,动能转化为内能.综上可知,选项 D正确.
生活实践类
安全行车(安全气囊)、交通运输(机车碰撞、喷气式飞机)、体育运动(滑冰接力、球类运动)、火箭发射、爆 炸、高空坠物
学习探究类
气垫导轨上滑块碰撞、斜槽末端小球碰撞
第1讲 动量定理及应用
目标 1.能用动量定理解释生活中的有关现象.2.能利用动量定理解决相关问题,会在流体力学中建立 要求 “柱状”模型.
大一轮复习讲义
第七章 动量
考 情 分 析
试题 情境
考查内容 动量 动量定理
动量守恒定律
动量和能量的综合 实验:验证动量定理
自主命题卷
2021·湖南卷·T2 2019·北京卷·T24
2021·山东卷·T11 2021·广东卷·T13 2021·河北卷·T13 2020·江苏卷·T12(3) 2020·北京卷·T13 2019·江苏卷·T12(1) 2018·天津卷·T9(1) 2018·海南卷·T14 2020·天津卷·T11 2020·山东卷·T18 2021·江苏卷·T11
考向2 应用动量定理处理微粒类问题
例8 宇宙飞船在飞行过程中有很多技术问题需要解决,其中之一就是 当飞船进入宇宙微粒尘区时,如何保持速度不变的问题.假设一宇宙飞船 以v=2.0×103 m/s的速度进入密度ρ=2.0×10-6 kg/m3的微粒尘区,飞船 垂直于运动方向上的最大横截面积S=5 m2,且认为微粒与飞船相碰后都 附着在飞船上,则飞船要保持速度v不变,所需推力多大? 答案 40 N
高2021届高2018级高三物理一轮复习第七章第1讲
五年高考(全国卷)命题分析五年常考热点五年未考重点库仑定律及应用201920181卷15题1卷16题1.库仑定律的理解2.电场强度的矢量性及合成问题3.“三线问题”即电场线、等势线和轨迹线4.电场中的图象问题5.电容器两类动态问题的分析电场性质的理解201920182017201620152卷20题、3卷21题1卷21题、2卷21题、3卷21题1卷20题、3卷21题1卷20题、3卷15题1卷15题电容器201620151卷14题2卷14题带电粒子在电场中的运动2019201620152卷24题2卷15题2卷24题带电体在电场和重力场中运动的多过程问题201920173卷24题1卷25题、2卷25题1.考查方式:本章内容在高考中单独命题较多,有选择题也有计算题.选择题主要考查对基本概念和物理模型的理解,如电场的分布特点、电势、电势能的理解;计算题主要考查带电粒子或带电体在电场中的运动,常与牛顿运动定律、功能关系、能量守恒综合考查.2.命题趋势:常与实际生活、科学研究联系密切,通过某些情景或素材如喷墨打印机、静电除尘、示波管、加速器等进行命题考查.第1讲电场力的性质一、电荷电荷守恒定律1.元电荷、点电荷(1)元电荷:e=1.60×10-19 C,所有带电体的电荷量都是元电荷的整数倍.(2)点电荷:代表带电体的有一定电荷量的点,忽略带电体的大小、形状及电荷分布状况的理想化模型.2.电荷守恒定律(1)内容:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变.(2)三种起电方式:摩擦起电、感应起电、接触起电.(3)带电实质:物体得失电子.(4)电荷的分配原则:两个形状、大小相同且带同种电荷的同种导体,接触后再分开,二者带等量同种电荷,若两导体原来带异种电荷,则电荷先中和,余下的电荷再平分.自测1如图1所示,两个不带电的导体A和B,用一对绝缘柱支撑使它们彼此接触.把一带正电荷的物体C置于A附近,贴在A、B下部的金属箔都张开()图1A.此时A带正电,B带负电B.此时A带正电,B带正电C.移去C,贴在A、B下部的金属箔都闭合D.先把A和B分开,然后移去C,贴在A、B下部的金属箔都闭合[参考答案]C[试题解析] 由静电感应可知,A左端带负电,B右端带正电,选项A、B错误;若移去C,A、B两端电荷中和,则贴在A、B下部的金属箔都闭合,选项C正确;先把A和B分开,然后移去C,则A、B带的电荷不能中和,故贴在A、B下部的金属箔仍张开,选项D错误.二、库仑定律1.内容真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上. 2.表达式F =k q 1q 2r 2,式中k =9.0×109 N· m 2/C 2,叫做静电力常量.3.适用条件真空中的静止点电荷.(1)在空气中,两个点电荷的作用力近似等于真空中的情况,可以直接应用公式. (2)当两个带电体间的距离远大于其本身的大小时,可以把带电体看成点电荷. 判断正误 (1)由库仑定律公式F =k q 1q 2r 2可知,当r →0时,F 为无穷大.( × )(2)两个带电体之间的库仑力是一对相互作用力,大小相等,方向相反.( √ ) (3)库仑定律是通过实验总结出的规律.( √ ) 三、电场、电场强度 1.电场(1)定义:存在于电荷周围,能传递电荷间相互作用的一种特殊物质; (2)基本性质:对放入其中的电荷有力的作用. 2.电场强度(1)定义:放入电场中某点的电荷受到的电场力F 与它的电荷量q 的比值. (2)定义式:E =Fq;单位:N/C 或V/m.(3)矢量性:规定正电荷在电场中某点所受电场力的方向为该点电场强度的方向. 3.点电荷的电场:真空中距场源电荷Q 为r 处的场强大小为E =k Qr2.自测2 如图2所示,电荷量为q 1和q 2的两个点电荷分别位于P 点和Q 点.已知在P 、Q 连线上某点R 处的电场强度为零,且PR =2RQ .则( )图2A.q 1=2q 2B.q 1=4q 2C.q 1=-2q 2D.q 1=-4q 2[参考答案]B[试题解析] 由题意知q 1、q 2为同种电荷,设RQ =r ,则PR =2r ,有k q 1(2r )2=k q 2r 2,q 1=4q 2. 四、电场线的特点1.电场线从正电荷或无限远出发,终止于无限远或负电荷.2.电场线在电场中不相交.3.在同一幅图中,电场强度较大的地方电场线较密,电场强度较小的地方电场线较疏. 自测3 两个带电荷量分别为Q 1、Q 2的质点周围的电场线如图3所示,由图可知( )图3A.两质点带异号电荷,且Q 1>Q 2B.两质点带异号电荷,且Q 1<Q 2C.两质点带同号电荷,且Q 1>Q 2D.两质点带同号电荷,且Q 1<Q 2 [参考答案]A1.库仑定律适用于真空中静止点电荷间的相互作用.2.对于两个均匀带电绝缘球体,可将其视为电荷集中在球心的点电荷,r 为球心间的距离.3.对于两个带电金属球,要考虑表面电荷的重新分布,如图4所示.图4(1)同种电荷:F <k q 1q 2r 2;(2)异种电荷:F >k q 1q 2r2.4.不能根据公式错误地认为r →0时,库仑力F →∞,因为当r →0时,两个带电体已不能看做点电荷了.例1 (2018·全国卷Ⅰ·16)如图5,三个固定的带电小球a 、b 和c ,相互间的距离分别为ab =5 cm,bc =3 cm,ca =4 cm.小球c 所受库仑力的合力的方向平行于a 、b 的连线.设小球a 、b 所带电荷量的比值的绝对值为k ,则( )图5A.a 、b 的电荷同号,k =169B.a 、b 的电荷异号,k =169C.a 、b 的电荷同号,k =6427D.a 、b 的电荷异号,k =6427[参考答案]D[试题解析] 由小球c 所受库仑力的合力的方向平行于a 、b 的连线知a 、b 带异号电荷.a 对c 的库仑力F a =kq a q c(ac )2①b 对c 的库仑力F b =kq b q c(bc )2②设合力向左,如图所示,根据相似三角形得F a ac =F bbc③由①②③得k =⎪⎪⎪⎪q a q b =(ac )3(bc )3=6427,若合力向右,结果仍成立,D 正确.变式1 (2019·湖北宜昌市元月调考)如图6所示,在边长为l 的正方形的每个顶点都放置一个点电荷,其中a 和b 电荷量均为+q ,c 和d 电荷量均为-q .则a 电荷受到的其他三个电荷的静电力的合力大小是( )图6A.0B.2kq 2l 2C.kq 2l 2D.3kq 22l 2[参考答案]D[试题解析] a 和b 电荷量为+q ,c 和d 电荷量为-q ,则c 、d 电荷对a 电荷的库仑力为引力,b 电荷对a 电荷的库仑力为斥力.根据库仑定律,|F ca |=kq 2(2l )2;|F ba |=|F da |=k q 2l 2;根据力的合成法则,a电荷所受的电场力大小为:F =3kq 22l2,故A 、B 、C 错误,D 正确.1.解题思路涉及库仑力的平衡问题,其解题思路与力学中的平衡问题一样,只是在原来受力的基础上多了库仑力,具体步骤如下:2.特别提醒注意库仑力的方向:同性相斥,异性相吸,沿两电荷连线方向.例2(2019·安徽宣城市第二次模拟)如图7,光滑绝缘圆环竖直放置,a、b、c为三个套在圆环上可自由滑动的空心带电小球,已知小球c位于圆环最高点,ac连线与竖直方向成60°角,bc连线与竖直方向成30°角,三个小球均处于静止状态.下列说法正确的是()图7A.小球a、b、c带同种电荷B.小球a、b带异种电荷C.小球a、b电荷量之比为3 6D.小球a、b电荷量之比为3 9[参考答案]D[试题解析] 对c小球受力分析可得,a、b小球必须带同种电荷,c小球才能平衡;对b小球受力分析可得,b、c小球带异种电荷,b小球才能平衡,故A、B错误.设环的半径为R,a、b、c球的带电荷量分别为q1、q2和q3,由几何关系可得l ac=R,l bc=3R,a与b对c的作用力都是吸引力,它们对c的作用力在水平方向的分力大小相等,则有kq1q3l ac2·sin 60°=kq2q3l bc2·sin 30°,所以q1q2=39,故选项C错误,D正确.变式2(2019·全国卷Ⅰ·15)如图8,空间存在一方向水平向右的匀强电场,两个带电小球P和Q用相同的绝缘细绳悬挂在水平天花板下,两细绳都恰好与天花板垂直,则()图8A.P 和Q 都带正电荷B.P 和Q 都带负电荷C.P 带正电荷,Q 带负电荷D.P 带负电荷,Q 带正电荷 [参考答案]D[试题解析] 对P 、Q 整体进行受力分析可知,在水平方向上整体所受电场力为零,所以P 、Q 必带等量异种电荷,选项A 、B 错误;对P 进行受力分析可知,Q 对P 的库仑力水平向右,则匀强电场对P 的电场力应水平向左,所以P 带负电荷,Q 带正电荷,选项C 错误,D 正确.变式3 (2019·福建南平市第二次综合质检)如图9所示,倾角为θ的光滑绝缘斜面固定在水平面上.为了使质量为m ,带电荷量为+q 的小球静止在斜面上,可加一平行纸面的匀强电场(未画出),则( )图9A.电场强度的最小值为E =mg tan θqB.若电场强度E =mgq,则电场强度方向一定竖直向上C.若电场强度方向从沿斜面向上逐渐转到竖直向上,则电场强度逐渐增大D.若电场强度方向从沿斜面向上逐渐转到竖直向上,则电场强度先减小后增大 [参考答案]C[试题解析] 对小球受力分析,如图所示,电场力与支持力垂直时,所加的电场强度最小,此时场强方向沿斜面向上,mg sin θ=qE min ,解得电场强度的最小值为E min =mg sin θq,选项A 错误;若电场强度E =mgq ,则电场力与重力大小相等,由图可知,电场力方向可能竖直向上,也可能斜向左下,选项B 错误;由图可知,若电场强度方向从沿斜面向上逐渐转到竖直向上,则电场力逐渐变大,电场强度逐渐增大,选项C 正确,D 错误.例3 (多选)(2020·广东汕头市教学质量监测)质量均为m 的三个带电小球A 、B 、C 用三根长度均为l 的绝缘丝线相互连接,放置在光滑绝缘的水平面上,A 球的电荷量为+q .在C 球上施加一个水平向右的恒力F 之后,三个小球一起向右运动,三根丝线刚好都伸直且没有弹力,F 的作用线的反向延长线与A 、B 间的丝线相交于丝线的中点,如图10所示.已知静电力常量为k ,下列说法正确的是( )图10A.B 球的电荷量可能为+2qB.C 球的电荷量为-2qC.三个小球一起运动的加速度大小为3kq 2ml 2D.恒力F 的大小为23kq 2l 2[参考答案]BC[试题解析] 根据对称性可知,A 球的电荷量和B 球的电荷量相同,故A 错误;设C 球的电荷量大小为q C ,以A 球为研究对象,B 球对A 球的库仑斥力为F BA =kq 2l 2,C 球对A 球的库仑引力为F CA=kqq Cl 2,由题意可知小球运动的加速度方向与F 的作用线平行,则有:F CA sin 30°=F BA ,F CA cos 30°=ma ,解得:q C =2q ,a =3kq 2ml 2,C 球带负电,故C 球的电荷量为-2q ,故B 、C 正确;以三个小球整体为研究对象,根据牛顿第二定律可得:F =3ma =33kq 2l2,故D 错误.变式4 (多选)(2019·安徽蚌埠市第三次质量检测)如图11所示,带电小球甲固定在光滑的水平绝缘桌面上,在桌面上距甲一定距离有另一个带电小球乙,乙在桌面上运动,甲、乙均可视为质点.某时刻乙的速度沿垂直于甲、乙的连线方向,则( )图11A.若甲、乙带同种电荷,以后乙一定做速度变大的曲线运动B.若甲、乙带同种电荷,以后乙一定做加速度变大的曲线运动C.若甲、乙带异种电荷,以后乙可能做匀速圆周运动D.若甲、乙带异种电荷,以后乙可能做加速度和速度都变小的曲线运动 [参考答案]ACD[试题解析] 若甲、乙带同种电荷,甲、乙之间的库仑力为排斥力,且力的方向和速度的方向不在一条直线上,所以乙一定做曲线运动,由于两者之间的距离越来越大,它们之间的库仑力也就越来越小,所以乙的加速度在减小,速度增大,故A 正确,B 错误;若甲、乙带异种电荷,甲、乙之间的库仑力为吸引力,当甲、乙之间的库仑力恰好等于乙做圆周运动的向心力,则乙球若绕着甲球做匀速圆周运动,此时乙球速度的大小和加速度的大小都不变,当甲、乙之间的库仑力小于需要的向心力时,乙球做离心运动,速度和加速度都要减小,故C 、D 正确.类型1 点电荷电场强度的叠加及计算1.电场强度的性质(1)矢量性:规定正电荷在电场中某点所受电场力的方向为该点场强的方向;(2)唯一性:电场中某一点的电场强度E 是唯一的,它的大小和方向与放入该点的电荷q 无关,它决定于形成电场的电荷(场源电荷)及空间位置;(3)叠加性:如果有几个静止点电荷在空间同时产生电场,那么空间某点的场强是各场源电荷单独存在时在该点所产生的场强的矢量和. 2.三个计算公式公式 适用条件 说明定义式E =Fq任何电场某点的场强为确定值,大小及方向与q 无关 决定式 E =k Q r 2真空中点电荷的电场E 由场源电荷Q 和场源电荷到某点的距离r 决定 关系式 E =U d匀强电场d 是沿电场方向的距离3.等量同种和异种点电荷的电场强度的比较比较项目等量异种点电荷等量同种点电荷电场线的分布图连线中点O 处的场强 连线上O 点场强最小,指向负电荷一方 为零连线上的场强大小(从左到右) 沿连线先变小,再变大 沿连线先变小,再变大 沿连线的中垂场线由O 点向外强大小O 点最大,向外逐渐变小O 点最小,向外先变大后变小关于O 点对称的A 与A ′,B 与B ′的场强 等大同向 等大反向例4 如图12所示,E 、F 、G 、H 为矩形ABCD 各边的中点,O 为EG 、HF 的交点,AB 边的长度为d .E 、G 两点各固定一等量正点电荷,另一电荷量为Q 的负点电荷置于H 点时,F 点处的电场强度恰好为零.若将H 点的负电荷移到O 点,则F 点处场强的大小和方向为(静电力常量为k )( )图12A.4kQd 2,方向向右 B.4kQd 2,方向向左 C.3kQd 2,方向向右 D.3kQd2,方向向左 [参考答案]D[试题解析] 当负点电荷在H 点时,F 点处电场强度恰好为零,根据公式E =k Qr 2可得负点电荷在F 点产生的电场强度大小为E =k Qd 2,方向水平向左,故两个正点电荷在F 点的合场强大小为E =k Q d 2,方向水平向右;负点电荷移到O 点,在F 点产生的电场强度大小为E 1=k 4Qd 2,方向水平向左,所以F 点的合场强为k 4Q d 2-k Q d 2=k 3Qd 2,方向水平向左,故D 正确,A 、B 、C 错误.变式5 如图13所示,四个点电荷所带电荷量的绝对值均为Q ,分别固定在正方形的四个顶点上,正方形边长为a ,则正方形两条对角线交点处的电场强度( )图13A.大小为42kQa 2,方向竖直向上B.大小为22kQa 2,方向竖直向上C.大小为42kQa 2,方向竖直向下D.大小为22kQa 2,方向竖直向下[参考答案]C[试题解析] 一个点电荷在两条对角线交点O 产生的场强大小为E =kQ (22a )2=2kQa 2,对角线上的两异种点电荷在O 处的合场强为E 合=2E =4kQa 2,故两等大的场强互相垂直,合场强为E O =E 合2+E 合2=42kQa 2,方向竖直向下,故选C.类型2 非点电荷电场强度的叠加及计算 1.等效法在保证效果相同的前提下,将复杂的电场情景变换为简单的或熟悉的电场情景.例如:一个点电荷+q 与一个无限大薄金属板形成的电场,等效为两个异种点电荷形成的电场,如图14甲、乙所示.图14例5 一无限大接地导体板MN 前面放有一点电荷+Q ,它们在周围产生的电场可看作是在没有导体板MN 存在的情况下,由点电荷+Q 与其像电荷-Q 共同激发产生的.像电荷-Q 的位置就是把导体板当作平面镜时,电荷+Q 在此镜中的像点位置.如图15所示,已知+Q 所在位置P 点到金属板MN 的距离为L ,a 为OP 的中点,abcd 是边长为L 的正方形,其中ab 边平行于MN .则( )图15A.a 点的电场强度大小为E =4k QL2B.a 点的电场强度大小大于b 点的电场强度大小C.b 点的电场强度和c 点的电场强度相同D.一正点电荷从a 点经b 、c 运动到d 点的过程中电势能的变化量为零 [参考答案]B[试题解析] 由题意可知,点电荷+Q 和金属板MN 周围空间电场与等量异种点电荷产生的电场等效,所以a 点的电场强度E =k Q (L 2)2+k Q (3L 2)2=40kQ9L 2,A 错误;等量异种点电荷周围的电场线分布如图所示由图可知E a >E b ,B 正确;图中b 、c 两点的场强方向不同,C 错误;由于a 点的电势大于d 点的电势,所以一正点电荷从a 点经b 、c 运动到d 点的过程中电场力做正功,电荷的电势能减小,D 错误. 2.对称法利用空间上对称分布的电荷形成的电场具有对称性的特点,使复杂电场的叠加计算问题大为简化.例如:如图16所示,均匀带电的34球壳在O 点产生的场强,等效为弧BC 产生的场强,弧BC 产生的场强方向,又等效为弧的中点M 在O 点产生的场强方向.图16例6 (2019·四川成都市第二次诊断)如图17所示,边长为L 的正六边形 ABCDEF 的5条边上分别放置5根长度也为L 的相同绝缘细棒.每根细棒均匀带上正电.现将电荷量为+Q 的点电荷置于BC 中点,此时正六边形几何中心O 点的场强为零.若移走+Q 及AB 边上的细棒,则O 点电场强度大小为(k 为静电力常量,不考虑绝缘棒及+Q 之间的相互影响)( )图17A.kQ L 2B.4kQ 3L 2C.23kQ 3L 2D.43kQ 3L 2 [参考答案]D[试题解析] 由题意,+Q 的点电荷在O 点的电场强度大小为E =kQ (32L )2=4kQ 3L 2;那么每根细棒在O 点的电场强度大小也为E =4kQ3L 2;因此+Q 及AB 边上的细棒在O 点的合电场强度大小E 合=43kQ 3L 2,其方向如图所示:若移走+Q 及AB 边上的细棒,那么其余棒在O 点的电场强度大小为E 合′=43kQ3L 2,故A 、B 、C 错误,D 正确. 3.填补法将有缺口的带电圆环或圆板补全为完整的圆环或圆板,或将半球面补全为球面,从而化难为易、事半功倍.例7 (多选)(2019·云南大姚县一中一模)已知均匀带电球壳内部电场强度处处为零,电势处处相等.如图18所示,正电荷均匀分布在半球面上,Ox 为通过半球顶点与球心O 的轴线,A 、B 为轴上的点,且AO =OB ,则下列判断正确的是( )图18A.A 、B 两点的电势相等B.A 、B 两点的电场强度相同C.点电荷从A 点移动到B 点,电场力一定做正功D.同一个负电荷放在B 点比放在A 点的电势能大 [参考答案]BD[试题解析] 根据电场的叠加原理可知,x 轴上电场线方向向右,则A 点的电势高于B 点的电势,故A 错误;将半球壳补成一个完整的球壳,且带电均匀,设左、右半球在A 点产生的场强大小分别为E 1和E 2.由题知,均匀带电球壳内部电场强度处处为零,则知 E 1=E 2.根据对称性可知,左、右半球在B 点产生的场强大小分别为E 2和E 1,且 E 1=E 2.则在图示电场中,A 的场强大小为E 1,方向向右,B 的场强大小为E 2,方向向右,所以A 点的电场强度与B 点的电场强度相同,故B 正确.点电荷从A 点移到B 点,电势降低,由于点电荷的电性未知,则电场力不一定做正功,故C 错误.A 点的电势高于B 点的电势,根据负电荷在电势高处电势能小,在电势低处电势能大,知同一个负电荷放在B 点比放在A 点的电势能大,故D 正确.1.三个相同的金属小球1、2、3分别置于绝缘支架上,各球之间的距离远大于小球的直径.球1的带电荷量为+q ,球2的带电荷量为+nq ,球3不带电且离球1和球2很远,此时球1、2之间作用力的大小为F .现使球3先与球2接触,再与球1接触,然后将球3移至远处,此时球1、2之间作用力的大小仍为F ,方向不变.由此可知( ) A.n =3 B.n =4 C.n =5 D.n =6[参考答案]D[试题解析] 由于各球之间距离远大于小球的直径,小球带电时可视为点电荷.由库仑定律 F =k Q 1Q 2r 2知,两点电荷间距离不变时,两电荷间静电力大小与两点电荷所带电荷量的乘积成正比.由于三个小球相同,则两球接触时平分总电荷量,故有q ·nq =nq2· q +nq 22,解得n =6,D 正确.2.(多选)在电场中的某点A 放一电荷量为+q 的试探电荷,它所受到的电场力大小为F ,方向水平向右,则A 点的场强大小E A =Fq ,方向水平向右.下列说法正确的是( )A.在A 点放置一个电荷量为-q 的试探电荷,A 点的场强方向变为水平向左B.在A 点放置一个电荷量为+2q 的试探电荷,则A 点的场强变为2E AC.在A 点放置一个电荷量为-q 的试探电荷,它所受的电场力方向水平向左D.在A 点放置一个电荷量为+2q 的试探电荷,它所受的电场力为2F[试题解析] E =Fq 是电场强度的定义式,某点的场强大小和方向与场源电荷有关,与放入的试探电荷无关,故选项A 、B 错误;因负电荷受到的电场力的方向与场强方向相反,故选项C 正确;A 点场强E A 一定,放入的试探电荷所受电场力大小为F ′=q ′E A ,当放入电荷量为+2q 的试探电荷时,试探电荷所受电场力应为2F ,故选项D 正确.3.(多选)在光滑绝缘的水平桌面上,存在着方向水平向右的匀强电场,电场线如图1中实线所示.一初速度不为零的带电小球从桌面上的A 点开始运动,到C 点时,突然受到一个外加的水平恒力F 作用而继续运动到B 点,其运动轨迹如图中虚线所示,v 表示小球经过C 点时的速度,则( )图1A.小球带正电B.恒力F 的方向可能水平向左C.恒力F 的方向可能与v 方向相反D.在A 、B 两点小球的速率不可能相等 [参考答案]AB[试题解析] 由小球从A 点到C 点的轨迹可知,小球受到的电场力方向向右,带正电,选项A 正确;小球从C 点到B 点,所受合力指向轨迹凹侧,当水平恒力F 水平向左时,合力可能向左,符合要求,当恒力F 的方向与v 方向相反时,合力背离CB 段轨迹凹侧,不符合要求,选项B 正确,C 错误;小球从A 点到B 点,由动能定理,当电场力与恒力F 做功的代数和为零时,在A 、B 两点小球的速率相等,选项D 错误.4.如图2所示,一电子沿等量异种点电荷连线的中垂线由A →O →B 匀速飞过,电子重力不计,则电子所受另一个力的大小和方向变化情况是( )图2A.先变大后变小,方向水平向左B.先变大后变小,方向水平向右C.先变小后变大,方向水平向左D.先变小后变大,方向水平向右[试题解析] 根据等量异种点电荷周围的电场线分布知,从A →O →B ,电场强度的方向不变,水平向右,电场强度的大小先增大后减小,则电子所受电场力的大小先变大后变小,方向水平向左,则外力的大小先变大后变小,方向水平向右,故B 正确,A 、C 、D 错误.5. (2019·四川攀枝花市第二次统考)如图3所示,真空中三个质量相等的小球A 、B 、C ,带电荷量大小分别为Q A = 6q ,Q B =3q ,Q C =8q .现用适当大小的恒力F 拉C ,可使A 、B 、C 沿光滑水平面做匀加速直线运动,运动过程中 A 、B 、C 保持相对静止,且A 、B 间距离与B 、C 间距离相等.不计电荷运动产生磁场的影响,小球可视为点电荷,则此过程中B 、C 之间的作用力大小为( )图3A.43FB.FC.23FD.13F [参考答案]A[试题解析] 设小球的质量为m ,以三个球为整体:F =3ma ; 以A 、B 为整体:F 1=2ma ,解得F 1=23F ;由牛顿第三定律知A 、B 对C 的库仑力的合力大小为23F .根据库仑定律得F BC F AC =k 3q ·8q L 2∶k 6q ·8q 4L 2=21,A 、B 所受C 的库仑力方向不可能相同,结合牛顿第三定律可知:F BC -F AC =23F ,解得F BC =43F .6.如图4,xOy 平面直角坐标系所在空间有沿x 轴负方向的匀强电场(图中未画出),电场强度大小为E .坐标系上的A 、B 、C 三点构成边长为L 的等边三角形.若将两电荷量相等的正点电荷分别固定在A 、B 两点,C 点处的电场强度恰好为零.则A 处的点电荷在C 点产生的电场强度大小为( )图4A.EB.33E C.3E D.32E [参考答案]B[试题解析] C 点三个电场方向如图所示,根据题意可知E 1cos 30°+E 2cos 30°=E ,又E 1=E 2,解得E 2=33E ,B 正确.7.如图5所示,一个绝缘圆环,当它的14段均匀带电且电荷量为+q 时,圆心O 处的电场强度大小为E ,现使半圆ABC 均匀带电+2q ,而另一半圆ADC 均匀带电-2q ,则圆心O 处电场强度的大小和方向为( )图5A.22E ,方向由O 指向DB.4E ,方向由O 指向DC.22E ,方向由O 指向BD.0 [参考答案]A[试题解析] 当圆环的14段均匀带电且电荷量为+q 时,圆心O 处的电场强度大小为E ,当半圆ABC 均匀带电+2q 时,由如图所示的矢量合成可得,在圆心O 处的电场强度大小为2E ,方向由O 指向D ;当另一半圆ADC 均匀带电-2q 时,同理,在圆心O 处的电场强度大小为2E ,方向由O 指向D ;根据矢量的合成法则,圆心O 处的电场强度的大小为22E ,方向由O 指向D .8.(2019·广东广州市4月综合测试)如图6,在光滑绝缘水平桌面上,三个带电小球a 、b 和c 分别固定于正三角形顶点上.已知a 、b 带电荷量均为+q ,c 带电荷量为-q ,则( )图6A.ab 连线中点场强为零B.三角形中心处场强为零C.a 所受库仑力方向垂直于ab 连线D.a 、b 、c 所受库仑力大小之比为1∶1∶ 3 [参考答案]D[试题解析] 在ab 连线的中点处,a 、b 两电荷在该点的合场强为零,则该点的场强等于c 在该点的场强,大小不为零,选项A 错误.在三角形的中心处,a 、b 两电荷在该点的场强大小相等,方向夹120°角,则合场强竖直向下,电荷c 在该点的场强也是竖直向下,则三角形中心处场强不为零,选项B 错误.a 受到b 的斥力沿ba 方向,受到c 的引力沿ac 方向,则其合力方向斜向左下方与ab 连线成60°角,选项C 错误.设三角形的边长为l ,a 、b 所受库仑力大小相等,F a =F b =2kq 2l 2cos60°=kq 2l 2;c 所受库仑力:F c =2kq 2l 2cos 30°=3kq 2l 2,则 a 、b 、c 所受库仑力大小之比为1∶1∶3,选项D 正确.9.(多选)如图7所示,光滑绝缘的水平面上有一带电荷量为-q 的点电荷,在距水平面高h 处的空间内存在一场源点电荷+Q ,两电荷连线与水平面间的夹角θ=30°,现给-q 一水平初速度,使其恰好能在水平面上做匀速圆周运动(恰好不受支持力),已知重力加速度为g ,静电力常量为k ,则( )图7A.点电荷-q 做匀速圆周运动的向心力为3kQq4h 2 B.点电荷-q 做匀速圆周运动的向心力为3kQq8h 2C.点电荷-q 做匀速圆周运动的线速度为3ghD.点电荷-q 做匀速圆周运动的线速度为3gh 2[参考答案]BC[试题解析] 点电荷-q 恰好能在水平面上做匀速圆周运动,点电荷-q 受到竖直向下的重力以及点电荷+Q 的引力,如图所示,电荷之间的引力在水平方向上的分力充当向心力,两点电荷间。
2018高考物理步步高 第七章 第1讲
第1讲 电路的基本概念和规律一、电流的理解及三个表达式 1.定义:电荷的定向移动形成电流.2.条件:(1)有自由移动的电荷;(2)导体两端存在电压.3.两个表达式(1)定义式:I =qt,q 为在时间t 内通过导体横截面的电荷量.(2)微观表达式:I =nqS v ,其中n 为导体中单位体积内自由电荷的个数,q 为每个自由电荷的电荷量,S 为导体的横截面积,v 为自由电荷定向移动的速率.4.方向:电流是标量,为研究问题方便,规定正电荷定向移动的方向为电流的方向.在外电路中电流由电源正极到负极,在内电路中电流由电源负极到正极.深度思考 若一个电子,电荷量为e ,绕核运动的周期为T ,则等效电流I 的表达式是________. 答案 I =eT解析 电子绕原子核做圆周运动,形成等效的环形电流,电子电荷量为e ,运动一周的时间为T ,则I =eT.二、欧姆定律及电阻定律 1.电阻定律(1)内容:同种材料的导体,其电阻与它的长度成正比,与它的横截面积成反比,导体的电阻还与构成它的材料有关. (2)表达式:R =ρlS .(3)电阻率①物理意义:反映导体的导电性能,是表征材料性质的物理量. ②电阻率与温度的关系:a .金属:电阻率随温度升高而增大.b .半导体(负温度系数):电阻率随温度升高而减小.c .一些合金:几乎不受温度的影响. 2.部分电路欧姆定律(1)内容:导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比. (2)表达式:I =UR .(3)适用范围①金属导电和电解液导电(对气体导电、半导体导电不适用). ②纯电阻电路(不含电动机、电解槽等的电路). 3.导体的伏安特性曲线(1)I -U 图线:以电流为纵轴、电压为横轴所画出的导体上的电流随电压的变化曲线称为I -U 图线,如图1所示.图1(2)电阻的大小:图线的斜率k =I U =1R,图中R 1>R 2.(3)线性元件:伏安特性曲线是直线的电学元件,适用欧姆定律. (4)非线性元件:伏安特性曲线为曲线的电学元件,不适用欧姆定律. 三、电功、电功率、电热及热功率 1.电功(1)定义:导体中的恒定电场对自由电荷的电场力做的功. (2)公式:W =qU =IUt (适用于任何电路).(3)电流做功的实质:电能转化成其他形式能的过程. 2.电功率(1)定义:单位时间内电流所做的功,表示电流做功的快慢. (2)公式:P =Wt =IU (适用于任何电路).3.焦耳定律(1)电热:电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻及通电时间成正比.(2)公式:Q =I 2Rt .4.电功率P =IU 和热功率P =I 2R 的应用(1)不论是纯电阻电路还是非纯电阻电路,电流的电功率均为P 电=UI ,热功率均为P 热=I 2R . (2)对于纯电阻电路而言:P 电=P 热=IU =I 2R =U 2R.(3)对于非纯电阻电路而言:P 电=IU =P 热+P 其他=I 2R +P 其他≠U 2R+P 其他.深度思考 电动机正常工作时,电功率大于热功率,当电动机通电卡住不转时,则电功率与热功率满足什么关系?为什么?答案 相等,电动机通电卡住不转时相当于一个发热的纯电阻,故电功率与热功率相等.1.判断下列说法是否正确.(1)电流越大,单位时间内通过导体横截面的电荷量就越多.( √ )(2)电流I 随时间t 变化的图象与坐标轴所围面积表示通过导体横截面的电荷量.( √ ) (3)电功率越大,电流做功越快,电路中产生的焦耳热一定越多.( × )(4)W =UIt 适用于任何电路,而W =I 2Rt =U 2Rt 只适用于纯电阻电路.( √ )(5)由R =UI 可知,导体的电阻与导体两端的电压成正比,与流过导体的电流成反比.( × )(6)由R =ρlS 可知,导体的电阻与导体的长度成正比,与导体的横截面积成反比.( √ )2.(人教选修3-1P43第3题改编)安培提出了著名的分子电流假说,根据这一假说,电子绕核运动可等效为一环形电流.设电荷量为e 的电子以速率v 绕原子核沿顺时针方向做半径为r 的匀速圆周运动,关于该环形电流的说法,正确的是( ) A .电流大小为v e2πr ,电流方向为顺时针B .电流大小为v er ,电流方向为顺时针C .电流大小为v e,电流方向为逆时针D .电流大小为v er ,电流方向为逆时针答案 C解析 电子做圆周运动的周期T =2πrv ,由I =eT 得I =v e 2πr,电流的方向与电子运动方向相反,故为逆时针.3.(人教选修3-1P52第4题改编)图2是有两个量程的电压表,当使用a 、b 两个端点时,量程为0~10 V ,当使用a 、c 两个端点时,量程为0~100 V .已知电流表的内阻R g 为500 Ω,满偏电流I g 为1 mA ,则电阻R 1、R 2的值( )图2A .9 500 Ω 90 000 ΩB .90 000 Ω 9 500 ΩC .9 500 Ω 9 000 ΩD .9 000 Ω 9 500 Ω 答案 A解析 接a 、b 时,串联R 1,由串联电路特点有R 总=R 1+R g =U 1I g 得R 1=U 1I g -R g =9 500 Ω.接a 、c 时串联R 1、R 2,同理有R 总′=R 1+R 2+R g =U 2I g 得R 2=U 2I g-R g -R 1=90 000 Ω.4.(人教选修3-1P63第1题)一个电源接8 Ω电阻时,通过电源的电流为0.15 A ,接13 Ω电阻时,通过电源的电流为0.10 A ,则电源的电动势和内阻分别为( ) A .2 V 1.5 Ω B .1.5 V 2 Ω C .2 V 2 Ω D .1.5 V 1.5 Ω答案 B解析 由闭合电路欧姆定律得 E =I 1(R 1+r ) E =I 2(R 2+r )代入数据联立得r =2 Ω,E =1.5 V .命题点一 利用“柱体微元”模型求电流利用“柱体微元”模型求解电流的微观问题时,注意以下基本思路:设柱体微元的长度为L ,横截面积为S ,单位体积内的自由电荷数为n ,每个自由电荷的电荷量为q ,电荷定向移动的速率为v ,则: (1)柱体微元中的总电荷量为Q =nLSq . (2)电荷通过横截面的时间t =Lv . (3)电流的微观表达式I =Qt=nq v S .例1 如图3所示,一根长为L 、横截面积为S 的金属棒,其材料的电阻率为ρ,棒内单位体积自由电子数为n ,电子的质量为m 、电荷量为e .在棒两端加上恒定的电压时,棒内产生电流,自由电子定向运动的平均速率为v ,则金属棒内的电场强度大小为( )图3A.m v 22eLB.m v 2Sn eC .ρne vD.ρe v SL①棒两端加上恒定的电压;②棒内产生电流.答案 C解析 由电流定义可知:I =q t =n v tSe t =neS v .由欧姆定律可得:U =IR =neS v ·ρLS=ρneL v ,又E =UL,故E =ρne v ,选项C 正确.1.在长度为l 、横截面积为S 、单位体积内自由电子数为n 的金属导体两端加上电压,导体中就会产生匀强电场.导体内电荷量为e 的自由电子在电场力作用下先做加速运动,然后与做热运动的阳离子碰撞而减速,如此往复……所以,我们通常将自由电子的这种运动简化成速率为v (不随时间变化)的定向运动.已知阻碍电子运动的阻力大小与电子定向移动的速率v 成正比,即F f =k v (k 是常量),则该导体的电阻应该等于( ) A.kl neS B.kl ne 2S C.kS nel D.kS ne 2l 答案 B解析 电子定向移动,由平衡条件得,k v =e Ul ,则U =k v l e ,导体中的电流I =neS v ,电阻R=U I =klne 2S,选项B 正确. 2.在显像管的电子枪中,从炽热的金属丝不断放出的电子进入电压为U 的加速电场,设其初速度为零,经加速后形成横截面积为S 、电流为I 的电子束.已知电子的电荷量为e 、质量为m ,则在刚射出加速电场时,一小段长为Δl 的电子束内的电子个数是( ) A.I Δl eS m 2eU B.I Δl e m 2eU C.I eSm 2eUD.IS Δl em 2eU答案 B解析 在加速电场中有eU =12m v 2,得v =2eUm.在刚射出加速电场时,一小段长为Δl 的电子束内电量为q =I Δt =I Δl v ,则电子个数n =q e =I Δle m2eU.B 正确.命题点二 欧姆定律及电阻定律1.电阻的决定式和定义式的比较2.对伏安特性曲线的理解(如图4甲、乙所示)图4(1)图线a 、e 、d 、f 表示线性元件,b 、c 表示非线性元件. (2)在图甲中,斜率表示电阻的大小,斜率越大,电阻越大,R a >R e . 在图乙中,斜率表示电阻倒数的大小.斜率越大,电阻越小,R d <R f .(3)图线b 的斜率变小,电阻变小,图线c 的斜率变大,电阻变小.注意:曲线上某点切线的斜率不是电阻或电阻的倒数.根据R =UI ,电阻为某点和原点连线的斜率或斜率的倒数.例2 如图5所示,厚薄均匀的矩形金属薄片边长为ab =10 cm ,bc =5 cm ,当将C 与D 接入电压恒为U 的电路时,电流强度为2 A ,若将A 与B 接入电压恒为U 的电路中,则电流为( )A .0.5 AB .1 AC .2 AD .4 A图5电压恒为U 的电路.答案 A解析 设金属薄片厚度为d ′,根据电阻定律公式R =ρl S ,有R CD =ρl bc l ab ·d ′,R AB =ρl abl bc ·d ′,故R CD R AB =12×12=14;根据欧姆定律,电压相同时,电流与电阻成反比.故两次电流之比为4∶1,故第二次电流为0.5 A ,故选A.3.用电器到发电站的距离为l ,线路上的电流为I ,已知输电线的电阻率为ρ.为使线路上的电压降不超过U ,那么,输电线的横截面积的最小值为( ) A.ρl R B.2ρlI U C.U ρlI D.2Ul Iρ 答案 B解析 输电线的总长为2l ,由公式R =U I 、R =ρl S 得S =2ρlIU,故B 正确.4.(多选)小灯泡通电后其电流I 随所加电压U 变化的图线如图6所示,P 为图上一点,PN 为图线在P 点的切线,PM 为I 轴的垂线.则下列说法中正确的是()图6A .随着所加电压的增大,小灯泡的电阻不变B .对应P 点,小灯泡的电阻R =U 1I 2C .对应P 点,小灯泡的电阻R =U 1I 2-I 1D .对应P 点,小灯泡的功率为图中矩形PQOM 所围的“面积” 答案 BD解析 由欧姆定律知,I -U 图中任意一点的电阻为该点与坐标原点O 点的连线的斜率的倒数,随着所加电流的增大,小灯泡的电阻增大,A 错误.对应P 点,小灯泡的电阻为O 、P 连线斜率的倒数,即R =U 1I 2,B 正确,C 错误.对应P 点,小灯泡的功率P =U 1I 2,即图中矩形PQOM 所围的“面积”,D 正确. 命题点三 电功、电功率、电热及热功率 电功和电热、电功率和热功率的区别与联系例3 (多选)如图7所示,电源电动势E =3 V ,小灯泡L 的规格为“2 V ,0.4 W ”,开关S 接1,当滑动变阻器调到R =4 Ω时,小灯泡L 正常发光,现将开关S 接2,小灯泡L 和电动机M 均正常工作.则( )图7A .电源内阻为1 ΩB .电动机的内阻为4 ΩC .电动机正常工作电压为1 VD .电源效率约为93.3%①S 接1,L 正常发光;②S 接2,L 和M 均正常工作.答案 AD解析 小灯泡正常工作时的电阻R L =U 2P =10 Ω,流过小灯泡的电流I =PU =0.2 A ,当开关S接1时,R 总=EI =15 Ω,电源内阻r =R 总-R -R L =1 Ω,A 正确;当开关S 接2时,电动机M 两端的电压U M =E -Ir -U =0.8 V ;电源的效率η=E -Ir E =2.8 V3 V≈93.3%,D 正确.非纯电阻电路的分析方法1.抓住两个关键量:确定电动机的电压U M 和电流I M 是解决所有问题的关键.若能求出U M 、I M ,就能确定电动机的电功率P =U M I M ,根据电流I M 和电动机的电阻r 可求出热功率P r =I 2M r ,最后求出输出功率P 出=P -P r .2.坚持“躲着”求解U M 、I M :首先,对其他纯电阻电路、电源的内电路等,利用欧姆定律进行分析计算,确定相应的电压或电流.然后,利用闭合电路的电压关系、电流关系间接确定非纯电阻电路的工作电压和电流.3.应用能量守恒定律分析:要善于从能量转化的角度出发,紧紧围绕能量守恒定律,利用“电功=电热+其他能量”寻找等量关系求解.5.如图8所示,电源电动势为12 V ,电源内阻为1.0 Ω,电路中的电阻R 0为1.5 Ω,小型直流电动机M 的内阻为0.5 Ω,闭合开关S 后,电动机转动,电流表的示数为2.0 A .则以下判断中正确的是( )图8A .电动机的输出功率为14 WB .电动机两端的电压为7.0 VC .电动机产生的热功率为4.0 WD .电源输出的功率为24 W 答案 B解析 由题意得电动机两端的电压U =E -I (R 0+r )=7 V ,则电动机的输入功率P =UI =14 W .热功率P 热=I 2R M =2 W ,则输出功率P 出=P -P 热=12 W .电源的输出功率P ′=EI -I 2r =20 W ,故B 正确,A 、C 、D 错误.6.如图9所示是某款理发用的电吹风的电路图,它主要由电动机M 和电热丝R 构成.当闭合开关S 1、S 2后,电动机驱动风叶旋转,将空气从进风口吸入,经电热丝加热,形成热风后从出风口吹出.已知电吹风的额定电压为220 V ,吹冷风时的功率为120 W ,吹热风时的功率为1 000 W .关于该电吹风,下列说法正确的是( )图9A .电热丝的电阻为55 ΩB .电动机的电阻为1 2103ΩC .当电吹风吹冷风时,电热丝每秒钟消耗的电能为120 JD .当电吹风吹热风时,电动机每秒钟消耗的电能为880 J 答案 A解析 电吹风吹热风时电热丝消耗的功率为P =1 000 W -120 W =880 W ,对电热丝,由P =U 2R 可得电热丝的电阻为R =U 2P =2202880 Ω=55 Ω,选项A 正确;由于不知道电动机线圈的发热功率,所以电动机线圈的电阻无法计算,选项B 错误;当吹冷风时,电热丝没有工作,选项C 错误;当电吹风吹热风时,电动机每秒钟消耗的电能为120 J ,选项D 错误.电阻的串、并联1.串、并联电路的特点2.四个有用的结论(1)串联电路的总电阻大于电路中的任意一个电阻,串联电阻增多时,总电阻增大.(2)并联电路的总电阻小于任意支路的电阻,并联支路增多时,总电阻减小.(3)不论串联电路还是并联电路,只要某个电阻增大,总电阻就增大,反之则减小.(4)不论串联电路还是并联电路,电路消耗的总功率等于各电阻消耗的电功率之和.3.一个典型的极值电路图10如图10所示,如果R1=R2,当P从a→b时,R AB先增大后减小,且当R aP=R Pb(即P位于a、b的中点)时R AB最大.典例1(多选)在如图11所示的电路中,电阻R1=10 Ω,R2=120 Ω,R3=40 Ω.另有一测试电源,电动势为100 V,内阻忽略不计.则()图11A.当cd端短路时,ab之间的等效电阻是40 ΩB.当ab端短路时,cd之间的等效电阻是40 ΩC.当ab两端接通测试电源时,cd两端的电压为80 VD.当cd两端接通测试电源时,ab两端的电压为80 V答案AC解析当cd端短路时,R2与R3的并联电阻为30 Ω,两电阻并联后与R1串联,ab间的等效电阻为40 Ω,选项A正确;当ab端短路时,R1与R3的并联电阻为8 Ω,两电阻并联后与R2串联,cd间等效电阻为128 Ω,选项B错;当ab两端接通测试电源时,电阻R2未接入电路,cd 两端的电压即R 3两端的电压,为U cd =4010+40×100 V =80 V ,选项C 对;当cd两端接通测试电源时,电阻R 1未接入电路,ab 两端电压即R 3两端的电压,为U ab =40120+40×100 V =25 V ,选项D 错.典例2 如图12所示,电路两端的电压U 保持不变,电阻R 1、R 2、R 3消耗的电功率一样大,则电阻之比R 1∶R 2∶R 3是( )图12A .1∶1∶1B .4∶1∶1C .1∶4∶4D .1∶2∶2答案 C解析 因为三个电阻消耗的功率一样大,则有U 223R 2=U 223R 3得R 2=R 3,所以通过R 1的电流是通过R 2电流的2倍,则有(2I )2R 1=I 2R 2得R 1=R 24.故R 1∶R 2∶R 3=1∶4∶4,C 正确.1.处理串、并联电路以及简单的混联电路的方法:(1)准确地判断出电路的连接方式,画出等效电路图;(2)正确利用串、并联电路的基本规律、性质;(3)灵活选用恰当的公式进行计算.2.简化电路的原则:(1)无电流的支路去除;(2)电势相等的各点合并;(3)理想导线可任意改变长短;(4)理想电流表的电阻为零,理想电压表的电阻为无穷大;(5)电压稳定时电容器可看作断路.题组1 电流的理解及三个表达式 1.关于电流,下列说法中正确的是( ) A .通过导体横截面的电荷量越多,电流越大 B .电子运动的速率越大,电流越大C .单位时间内通过导体横截面的电荷量越多,导体中的电流越大D .因为电流有方向,所以电流是矢量解析 电流的大小等于单位时间内流过导体横截面的电荷量,故A 错,C 对;电流的微观表达式I =neS v ,电流的大小由单位体积的电荷数、每个电荷所带电量、导体的横截面积和电荷定向移动的速率共同决定,故B 错;矢量运算遵循平行四边形定则,标量的运算遵循代数法则,电流的运算遵循代数法则,故电流是标量,故D 错.2.(多选)铅蓄电池的电动势为2 V ,内阻不为零,以下说法中正确的是( ) A .电路中每通过1 C 电量,铅蓄电池能把2 J 的化学能转变为电能 B .体积大的铅蓄电池比体积小的铅蓄电池的电动势大 C .电路中每通过1 C 电量,铅蓄电池内部非静电力做功为2 JD .该铅蓄电池把其他形式能转化为电能的本领比一节干电池(电动势为1.5 V)的强 答案 ACD解析 由W =UIt =UQ =2×1 J =2 J ,可知A 正确;电动势的大小由电源将其他形式的能转化为电能的能力大小决定,与体积无关,故B 错误;电源输出的电能大小为电源将其他形式的能转化为电能大小,电路中每通过1 C 电量时,电源输出的电能大小为2 J ,故C 正确;电动势的大小表示电源将其他形式的能转化为电能的能力大小,故D 正确.3.来自质子源的质子(初速度为零),经一加速电压为800 kV 的直线加速器加速,形成电流大小为1 mA 的细柱形质子流.已知质子电荷量e =1.60×10-19C .这束质子流每秒打到靶上的质子数为________个,假定分布在质子源到靶之间的加速电场是均匀的,在质子束中与质子源相距L 和4L 的两处,各取一段极短的相等长度的质子流,其中的质子数分别为n 1和n 2,则n 1∶n 2=________. 答案 6.25×1015 2∶1解析 根据电流的定义可得I =ne t ,所以n =Ite =6.25×1015(个).由于各处电流相同,设所取长度为l ,其中的质子数为n ′,则由I =neS v 得n ′∝1v ,又v 2=2as ,v ∝s ,所以n 1n 2=s 2s 1=21. 题组2 欧姆定律及电阻定律4.如图1所示均匀的长薄片合金电阻板abcd ,ab 边长为L 1,ad 边长为L 2,当端点1、2或3、4接入电路中时,R 12∶R 34为( )图1A .L 1∶L 2C .1∶1D .L 21∶L 22答案 D解析 设长薄片合金电阻板厚度为h ,根据电阻定律R =ρl S ,R 12=ρL 1hL 2,R 34=ρL 2hL 1,R 12R 34=L 21L 22,故选D.5.用图2所示的电路可以测量电阻的阻值.图中R x 是待测电阻,R 0是定值电阻,是灵敏度很高的电流表,MN 是一段均匀的电阻丝.闭合开关,改变滑动头P 的位置,当通过电流表的电流为零时,测得MP =l 1,PN =l 2,则R x 的阻值为( )图2A.l 1l 2R 0B.l 1l 1+l 2R 0C.l 2l 1R 0D.l 2l 1+l 2R 0答案 C解析 当灵敏电流表的电流为零时,有R 0l 1=R x l 2,可得R x =l 2l 1R 0.6.(多选)两电阻R 1和R 2的伏安特性曲线如图3所示.从图线可判断( )图3A .两电阻阻值的关系是R 1>R 2B .电阻一定时,电流随着电压的增大而减小C .电压相同时,通过R 1的电流较大D .两电阻串联接入电路时,R 1消耗的功率小 答案 CD解析 图象的斜率k =I U =1R ,即图象的斜率越大,电阻越小,故有R 1<R 2,A 错误;根据图象可得电阻一定时,电流随电压的增大而增大,B 错误;从图象中可得电压相同时,通过电阻R 1的电流较大,C 正确;两电阻串联接入电路时,通过两电阻的电流相同,根据公式P=I 2R 可得电阻越大,消耗的电功率越大,故D 正确.7.某一导体的伏安特性曲线如图4AB 段(曲线)所示,关于导体的电阻,以下说法正确的是( )图4A .B 点的电阻为12 Ω B .B 点的电阻为40 ΩC .导体的电阻因温度的影响改变了1 ΩD .导体的电阻因温度的影响改变了9 Ω 答案 B解析 A 点电阻R A =31.0×10-1 Ω=30 Ω,B 点电阻R B =61.5×10-1 Ω=40 Ω,故A 错误,B正确.ΔR =R B -R A =10 Ω,故C 、D 错误. 题组3 电功、电功率、电热及热功率8.(多选)在研究微型电动机的性能时,可采用如图5所示的实验电路.当调节滑动变阻器R ,使电动机停止转动时,电流表和电压表的示数分别为1.0 A 和1.0 V ;重新调节R ,使电动机恢复正常运转时,电流表和电压表的示数分别为2.0 A 和15.0 V .则当这台电动机正常运转时( )图5A .电动机的内阻为7.5 ΩB .电动机的内阻为1.0 ΩC .电动机的输出功率为30.0 WD .电动机的输出功率为26.0 W 答案 BD解析 因为电动机停止转动时,电流表和电压表的示数分别为1.0 A 和1.0 V ,电动机在没有将电能转化为机械能时属于纯电阻电路,故说明电动机的内阻r =U I =1.0 V1.0 A =1.0 Ω,选项A 错误,B 正确;当电动机正常运转时,电流表和电压表的示数分别为2.0 A 和15.0 V ,则电动机的总功率为P 总=2.0 A ×15.0 V =30.0 W ,此时电动机的发热功率为P 热=(2.0 A)2×1.0Ω=4.0 W ,故电动机的输出功率为P 出=P 总-P 热=30.0 W -4.0 W =26.0 W ,选项D 正确. 9.图6如图6所示,电源电动势E =10 V ,内阻r =1 Ω,闭合开关S 后,标有“8 V ,12 W ”的灯泡恰能正常发光,电动机M 绕组的电阻R 0=4 Ω,求: (1)电源的输出功率P 出; (2)10 s 内电动机产生的热量Q ; (3)电动机的机械功率. 答案 (1)16 W (2)10 J (3)3 W解析 (1)由题意知,并联部分电压为U =8 V ,内电压应为U 内=E -U =2 V 总电流I =U 内r=2 A ,电源的输出功率P 出=UI =16 W ; (2)流过灯泡的电流I 1=P 1U =1.5 A则流过电动机的电流I 2=I -I 1=0.5 A 电动机的热功率P 0=I 22R 0=1 W 10 s 内产生的热量Q =P 0t =10 J ; (3)电动机的总功率P =UI 2=4 W 电动机的机械功率P 机=P -P 0=3 W.10.有一个直流电动机,把它接入0.2 V 电压的电路时,电动机不转,此时测得流过电动机的电流是0.4 A ;若把电动机接入2.0 V 电压的电路中,电动机正常工作,工作电流是1.0 A .求: (1)电动机线圈的电阻;(2)电动机正常工作时的输出功率;(3)在发动机正常工作时,转子突然被卡住,此时电动机的发热功率. 答案 (1)0.5 Ω (2)1.5 W (3)8 W解析 (1)电动机不转时,电动机电路为纯电阻电路,根据欧姆定律可得线圈的电阻R =U 0I 0=0.5 Ω;(2)电动机正常工作时的输入功率P 输入=UI =2.0×1.0 W =2 W ,此时线圈的发热功率为P 热=I 2R =0.5 W ,电动机的输出功率P 输出=P 输入-P 热=2 W -0.5 W =1.5 W ;(3)当转子被卡住之后,电动机为纯电阻电路,电动机的发热功率P 热′=U 2R =220.5W =8 W.。
2018版高考物理(新课标)一轮复习课件:第七章 恒定电流 7-1
第1讲 欧姆定律 电阻定律 电功率 焦耳定律
知识点一 1.电流
电流、欧姆定律
(1)定义:自由电荷的
定向移动
形成电流.
(2)方向:规定为 正电荷 (3)两个公式 ①定义式:I=
q t
定向移动的方向.
nqSv .
;②微观式:I=
2.欧姆定律 (1)内容: 导体中的电流 I 跟导体两端的电压 U 成 跟导体的电阻 R 成 (2)公式:I=
)
对电阻、电阻定律的理解和应用
1.电阻与电阻率的区别 (1)电阻是反映导体对电流阻碍作用大小的物理量,电阻大 小与导体的长度、横截面积及材料等有关,电阻率是描述材料 导电性能好坏的物理量,与导体长度、横截面积无关. (2)导体的电阻大,导体材料的导电性能不一定差;导体的 电阻率小,电阻不一定小. (3)导体的电阻、电阻率均与温度有关.
对伏安特性曲线的理解
1.定义:用纵坐标表示电流 I、横坐标表示电压 U,画出的 IU 图象. 2.图线的意义 (1)由于导体的导电性能不同,所以不同的导体有不同的的 伏安特性曲线. (2)伏安特性曲线上每一点的电压坐标与电流坐标的比值, 对应这一状态下的电阻.
3.应用:IU 图象中图线上某点与 O 点连线的斜率表示电 阻的倒数,斜率越大,电阻越小. 4.两类图线 (1)线性元件的伏安特性曲线(图甲中 a、 b)是过原点的直线, 表明它的电阻是不变的. (2)非线性元件的伏安特性曲线(图乙中 c、d)是曲线,表明 它的电阻是变化的.
2.电阻的决定式和定义式的区别
U R= I 电阻的定义式 提供了一种测定电阻 说明了电阻的决定因 的方法,并不说明电 素 区别 阻与 U 和 I 有关 只适用于粗细均匀的 适用于任何纯电阻导 金属导体和浓度均匀 体 的电解质溶液 公式 l R=ρS 电阻的决定式
高考物理总复习 8.第1讲 光的折射 全反射
【生活情境】 1.(1)渔民叉鱼时,由于光的折射,不是正对着看到的鱼去叉,而是对着 所看到鱼的下方叉.( √ )
(2)落山的太阳看上去正好在地平线上,但实际上太阳已处于地平线以下, 观察者的视觉误差大小取决于当地大气的状况.造成这种现象的原因是光 的折射.( √ )
【教材拓展】
2.[人教版选择性必修第一册P84T1改编]光线由空气透过半圆形玻璃 砖,再射入空气的光路图中,正确的是(玻璃的折射率为1.5)( )
正弦 大于
sin θ1 频率
正弦
完全消失 大于 光密介质 小
2.全反射棱镜 (1)定义:横截面为等腰直角三角形的棱镜叫全反射棱镜. (2)全反射棱镜的优点: 全反射棱镜和平面镜在改变光路方面,效果是相同的,相比之下,
全反射棱镜成像更清晰,光能损失更少. 3.光导纤维:光导纤维的原理是利用光的__全_反__射___,如图所示.
使得成像不完整,如图所示.现在孔洞中填充厚度等于洞深的某种均
匀透明介质,不考虑光在透明介质中的反射. (1)若该人通过小孔能成完整的像,透明介质的折射率最小为多少? (2)若让掠射进入孔洞的光能成功出射,透明介质的折射率最小为多
少?
考点二 光的全反射 求解全反射问题的四点提醒: (1)光密介质和光疏介质是相对而言的.同一种介质,相对于其他不 同的介质,可能是光密介质,也可能是光疏介质. (2)如果光线从光疏介质进入光密介质,则无论入射角多大,都不会 发生全反射现象. (3)在全反射现象中,遵循光的反射定律,光路均是可逆的. (4)当光射到两种介质的界面上时,往往同时发生光的折射和反射现 象,但在全反射现象中,只发生反射,不发生折射.
命题分析
试题情境
属于基础性题目,以脉冲激光展宽器为素材创设学习探 索问题情境
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[高考命题解读]第1讲 库仑定律 电场力的性质一、库仑定律 电荷守恒定律 1.点电荷有一定的电荷量,忽略形状和大小的一种理想化模型. 2.电荷守恒定律(1)起电方式:摩擦起电、接触起电、感应起电. (2)带电实质:物体带电的实质是得失电子.(3)内容:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量保持不变. 3.库仑定律(1)内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上.(2)表达式:F =k q 1q 2r 2,式中k =9.0×109N·m 2/C 2,叫做静电力常量.(3)适用条件:①真空中;②点电荷.[深度思考] 计算两个带电小球之间的库仑力时,公式中的r 一定是指两个球心之间的距离吗?为什么?答案 不一定.当两个小球之间的距离相对于两球的直径较小时,两球不能看做点电荷,这时公式中的r 大于(带同种电荷)或小于(带异种电荷)两个球心之间的距离. 二、电场、电场强度 1.电场(1)定义:存在于电荷周围,能传递电荷间相互作用的一种特殊物质. (2)基本性质:对放入其中的电荷有力的作用. 2.电场强度(1)定义:放入电场中某点的电荷受到的电场力F 与它的电荷量q 的比值. (2)定义式:E =Fq,q 为试探电荷.(3)矢量性:规定正电荷在电场中某点所受电场力的方向为该点电场强度的方向. 3.场强公式的比较4.电场的叠加(1)电场叠加:多个电荷在空间某处产生的电场强度为各电荷单独在该处所产生的电场强度的矢量和.(2)运算法则:平行四边形定则.5.等量同种和异种点电荷的电场强度的比较1.定义为了形象地描述电场中各点场强的强弱及方向,在电场中画出一些曲线,曲线上每一点的切线方向都跟该点的场强方向一致,曲线的疏密表示电场的强弱.2.电场线的三个特点(1)电场线从正电荷或无限远处出发,终止于无限远或负电荷处;(2)电场线在电场中不相交;(3)在同一幅图中,电场强度较大的地方电场线较密,电场强度较小的地方电场线较疏.1.如图1所示,两个不带电的导体A和B,用一对绝缘柱支持使它们彼此接触.把一带正电荷的物体C置于A附近,贴在A、B下部的金属箔都张开()图1A.此时A带正电,B带负电B.此时A电势低,B电势高C.移去C,贴在A、B下部的金属箔都闭合D.先把A和B分开,然后移去C,贴在A、B下部的金属箔都闭合答案 C解析由静电感应可知,A左端带负电,B右端带正电,A、B的电势相等,选项A、B错误;若移去C,则两端的感应电荷消失,则贴在A、B下部的金属箔都闭合,选项C正确;先把A和B分开,然后移去C,则A、B带的电荷仍然存在,故贴在A、B下部的金属箔仍张开,选项D错误.2.(教科版选修3-1P15第1题)把检验电荷放入电场中的不同点a、b、c、d,测得的检验电荷所受电场力F与其电荷量q之间的函数关系图象如图2所示,则a、b、c、d四点场强大小的关系为()图2A.E a>E b>E c>E dB.E a>E b>E d>E cC.E d>E a>E b>E cD.E c>E a>E b>E d答案 D3.(人教版选修3-1P5演示实验改编)在探究两电荷间相互作用力的大小与哪些因素有关的实验中,一同学猜想可能与两电荷的间距和电荷量有关.他选用带正电的小球A和B,A球放在可移动的绝缘座上,B球用绝缘丝线悬挂于玻璃棒C点,如图3所示.实验时,先保持两球电荷量不变,使A球从远处逐渐向B球靠近,观察到两球距离越小,B 球悬线的偏角越大;再保持两球距离不变,改变小球所带的电荷量,观察到电荷量越大,B 球悬线的偏角越大.图3实验表明:两电荷之间的相互作用力,随其距离的______而增大,随其所带电荷量的________而增大.此同学在探究中应用的科学方法是________(选填“累积法”“等效替代法”“控制变量法”或“演绎法”).答案 减小 增大 控制变量法解析 对B 球进行受力分析,球受重力、电场力和线的拉力,线与竖直方向间的夹角变大时,说明电场力变大.电荷量不变时,两球距离变小,悬线偏角变大,电场力变大;距离不变时,电荷量变大,线的偏角变大,电场力变大.4.(人教版选修3-1P15第6题)用一条绝缘轻绳悬挂一个带电小球,小球质量为1.0×10-2kg ,所带电荷量为+2.0×10-8C .现加一水平方向的匀强电场,平衡时绝缘绳与铅垂线成30°夹角(图4).求这个匀强电场的电场强度.图4答案 2.9×106N/C解析 小球受到重力mg 、静电力F ,轻绳拉力F T 的作用处于平衡状态,它的受力情况如图所示,则F mg =Eqmg=tan 30° E =mg q tan 30°=1.0×10-2×102.0×10-8×33 N /C ≈2.9×106 N/C 5.(人教版选修3-1P15第7题)如图5所示,真空中有两个点电荷Q 1=+4.0×10-8C 和Q 2=-1.0×10-8C ,分别固定在x 坐标轴的x =0和x =6cm 的位置上.图5(1)x 坐标轴上哪个位置的电场强度为零?(2)x 坐标轴上哪些地方的电场强度方向是沿x 轴正方向的? 答案 (1)x 2=12cm 处(2)0<x <6cm 和x >12cm 的地方解析 因为|Q 1|>|Q 2|,所以,在Q 1左侧的x 轴上,Q 1产生的电场的电场强度总是大于Q 2产生的电场的电场强度,且方向总是指向x 轴负半轴,在x =0和x =6 cm 之间,电场强度总是指向x 轴的正方向.所以,只有在Q 2右侧的x 轴上,才有可能出现电场强度为0的点. (1)设该点距离原点的距离为x ,则k Q 1x 2-k Q 2(x -6)2=0,即4(x -6)2-x 2=0,解得x 1=4 cm(不合题意,舍去)和x 2=12 cm.所以,在x 2=12 cm 处电场强度等于0.(2)在x 坐标轴上0<x <6 cm 和x >12 cm 的地方,电场强度的方向总是沿x 轴正方向的.命题点一 库仑定律的理解及应用1.库仑定律适用于真空中静止点电荷间的相互作用.2.对于两个均匀带电绝缘球体,可将其视为电荷集中在球心的点电荷,r 为球心间的距离. 3.对于两个带电金属球,要考虑表面电荷的重新分布,如图6所示.图6(1)同种电荷:F <k q 1q 2r 2;(2)异种电荷:F >k q 1q 2r2.4.不能根据公式错误地认为r →0时,库仑力F →∞,因为当r →0时,两个带电体已不能看做点电荷了.例1 (多选)如图7所示,把A 、B 两个相同的导电小球分别用长为0.10m 的绝缘细线悬挂于O A 和O B 两点.用丝绸摩擦过的玻璃棒与A 球接触,棒移开后将悬点O B 移到O A 点固定.两球接触后分开,平衡时距离为0.12m .已测得每个小球质量是8.0×10-4kg ,带电小球可视为点电荷,重力加速度g =10 m/s 2,静电力常量k =9.0×109 N·m 2/C 2,则( )图7A .两球所带电荷量相等B .A 球所受的静电力为1.0×10-2NC .B 球所带的电荷量为46×10-8CD .A 、B 两球连线中点处的电场强度为0①用丝绸摩擦过的玻璃棒接触;②平衡;③可视为点电荷.答案 ACD解析 两相同的小球接触后电量均分,故两球所带电荷量相等,选项A 正确;由几何关系可知,两球分开后,悬线与竖直方向的夹角为37°,A 球所受的电场力F =mg tan37°=8.0×10-4×10×0.75N =6.0×10-3N ,选项B 错误;根据库仑定律得,F =k q A q B l 2=k q 2B l2,解得q B =Fl 2k=6×10-3×0.1229×109C =46×10-8C ,选项C 正确;A 、B 两球带等量的同种电荷,故在A 、B 两球连线中点处的电场强度为0,选项D 正确.两个完全相同的带电金属球接触时电荷的分配规律1.如果接触前两金属球带同种电荷,电荷量分别为q 1和q 2,两球接触时,总电荷量平均分配,两球的电荷量都等于q 1+q 22.2.如果接触前两金属球带异种电荷,电荷量分别为q 1和q 2,且q 1>q 2,接触时,先中和再将剩余的电荷量(q 1-q 2)平均分配,两球的电荷量都等于q 1-q 22.1.(多选)两个半径相同的金属小球(视为点电荷),带电荷量之比为1∶7,相距为r ,两者相互接触后再放回原来的位置上,则相互作用力可能为原来的( ) A.47 B.37C.97D.167答案 CD解析 设两小球的电荷量分别为q 和7q ,则原来相距r 时的相互作用力F =k q ×7q r 2=k 7q 2r 2.由于两球的电性未知,接触后相互作用力的计算可分为两种情况:(1)两球电性相同.相互接触时两球电荷量平均分配,每球带电荷量为7q +q2=4q .放回原处后的相互作用力F 1=k 4q ×4q r 2=k 16q 2r 2,故F 1F =167. (2)两球电性不同.相互接触时电荷先中和再平分,每球带电荷量为7q -q2=3q .放回原处后的相互作用力F 2=k 3q ×3q r 2=k 9q 2r 2,故F 2F =97.2.根据科学研究表明,地球是一个巨大的带电体,而且表面带有大量的负电荷.如果在距离地球表面高度为地球半径一半的位置由静止释放一个带负电的尘埃,恰好能悬浮在空中,若将其放在距离地球表面高度与地球半径相等的位置时,则此带电尘埃将( ) A .向地球表面下落 B .远离地球向太空运动 C .仍处于悬浮状态 D .无法判断 答案 C解析 地球表面带负电,故可等效为一个带负电的且位于地球球心处的点电荷,这样地球和带电尘埃间的作用就可等效为点电荷间的作用,可以用库仑定律进行定量分析.由于尘埃与地球之间的位置变化很大,故尘埃的重力是变化的,所以需要先将地球与尘埃等效为两质点,才可用万有引力进行定量分析.设带电尘埃的质量为m ,电荷量为q ;地球的质量为M ,地球所带负电荷总量Q ,地球半径为R ,当尘埃放在距离地球表面高度为地球半径一半时,恰好悬浮,由库仑定律和万有引力定律可得:kQq (1.5R )2=G Mm(1.5R )2,得kQq =GMm①当尘埃放在距离地球表面高度与地球半径相等时,受到的万有引力F =GMm(2R )2;受到的库仑力为:F ′=kQq (2R )2,则F F ′=GMmkQq②联立①②可知:F F ′=1,故C 正确.命题点二 电场强度的理解及叠加 1.求解电场强度的常规方法电场强度是静电学中极其重要的概念,也是高考考点分布的重点区域之一.求电场强度常见的有定义式法、点电荷电场强度公式法、匀强电场公式法、矢量叠加法. 2.求解电场强度的非常规思维方法(1)等效法:在保证效果相同的前提下,将复杂的电场情景变换为简单的或熟悉的电场情景. 例如:一个点电荷+q 与一个无限大薄金属板形成的电场,等效为两个异种点电荷形成的电场,如图8甲、乙所示.图8(2)对称法:利用空间上对称分布的电荷形成的电场具有对称性的特点,使复杂电场的叠加计算问题大为简化.图9例如:如图9,均匀带电的34球壳在O 点产生的场强,等效为弧BC 产生的场强,弧BC 产生的场强方向,又等效为弧的中点M 在O 点产生的场强方向.(3)填补法:将有缺口的带电圆环补全为圆环,或将半球面补全为球面,从而化难为易、事半功倍.(4)微元法:将带电体分成许多元电荷,每个元电荷看成点电荷,先根据库仑定律求出每个元电荷的场强,再结合对称性和场强叠加原理求出合场强.例2 (2015·山东理综·18)直角坐标系xOy 中,M 、N 两点位于x 轴上,G 、H 两点坐标如图10.M 、N 两点各固定一负点电荷,一电荷量为Q 的正点电荷置于O 点时,G 点处的电场强度恰好为零.静电力常量用k 表示.若将该正点电荷移到G 点,则H 点处场强的大小和方向分别为( )图10A.3kQ4a 2,沿y 轴正向 B.3kQ4a 2,沿y 轴负向 C.5kQ4a 2,沿y 轴正向 D.5kQ4a2,沿y 轴负向 答案 B解析 因正电荷Q 在O 点时,G 点的场强为零,则可知两负电荷在G 点形成的电场的合场强与正电荷Q 在G 点产生的场强等大反向大小为E 合=k Qa 2;若将正电荷移到G 点,则正电荷在H 点的场强为E 1=k Q (2a )2=kQ4a 2,因两负电荷在G 点的场强与在H 点的场强等大反向,则H 点的合场强为E =E 合-E 1=3kQ4a2,方向沿y 轴负向,故选B.例3 如图11所示,xOy 平面是无穷大导体的表面,该导体充满z <0的空间,z >0的空间为真空.将电荷量为q 的点电荷置于z 轴上z =h 处,则在xOy 平面上会产生感应电荷.空间任意一点处的电场皆是由点电荷q 和导体表面上的感应电荷共同激发的.已知静电平衡时导体内部场强处处为零,则在z 轴上z =h2处的场强大小为(k 为静电力常量)( )图11A .k 4q h2B .k 4q 9h2C .k 32q 9h2D .k 40q 9h2静电平衡导体内部场强处处为零.答案 D解析 该电场可等效为分别在z 轴h 处与-h 处的等量异种电荷产生的电场,如图所示,则在z =h 2处的场强大小E =k q (h 2)2+k q (3h 2)2=k 40q 9h2,故D 正确.电场强度叠加问题的求解思路电场强度是矢量,叠加时应遵从平行四边形定则,分析电场的叠加问题的一般步骤是:(1)确定分析计算场强的空间位置;(2)分析该处有几个分电场,先计算出各个分电场在该点的电场强度的大小和方向;(3)依次利用平行四边形定则求出矢量和.3.已知均匀带电球体在球的外部产生的电场与一个位于球心的、电荷量相等的点电荷产生的电场相同.如图12所示,半径为R 的球体上均匀分布着电荷量为Q 的电荷,在过球心O 的直线上有A 、B 两个点,O 和B 、B 和A 间的距离均为R .现以OB 为直径在球内挖一球形空腔,若静电力常量为k ,球的体积公式为V =43πr 3,则A 点处场强的大小为()图12A.5kQ 36R 2B.7kQ 36R 2C.7kQ 32R 2D.3kQ 16R 2答案 B解析 由题意知,半径为R 的均匀带电球体在A 点产生的场强E 整=kQ (2R )2=kQ 4R 2.挖出的小球半径为R 2,因为电荷均匀分布,其带电荷量Q ′=43π(R 2)343πR 3Q =Q 8.则其在A 点产生的场强E 挖=kQ ′(12R +R )2=k ·Q 894R 2=kQ 18R 2.所以剩余空腔部分电荷在A 点产生的场强E =E 整-E 挖=kQ 4R 2-kQ 18R 2=7kQ 36R 2,故B 正确. 4.(多选)如图13所示,一半径为R 的圆盘上均匀分布着电荷量为Q 的电荷,在垂直于圆盘且过圆心c 的轴线上有a 、b 、d 三个点,a 和b 、b 和c 、c 和d 间的距离均为R ,在a 点有一电荷量为q (q >0)的固定点电荷.已知b 点处的场强为零,则d 点处场强的大小为(k 为静电力常量)( )图13A .k 3q R 2B .k 10q 9R 2C .k Q +q R 2D .k 9Q +q 9R 2答案 B解析 由b 点处场强为零知,圆盘在b 点处产生的场强E 1大小与q 在b 点处产生的场强E 2大小相等,即E 1=E 2=k q R 2,但方向相反.由对称性,圆盘在d 点产生的场强E 3=k q R 2,q 在d 点产生的场强E 4=k q 9R 2,方向与E 3相同,故d 点的合场强E d =E 3+E 4=k 10q 9R 2,B 正确,A 、C 、D 错误.命题点三 电场中的平衡和加速问题1.电场力方向正电荷受力方向与场强方向相同,负电荷受力方向与场强方向相反.2.恰当选取研究对象,用“整体法”或“隔离法”进行分析.3.基本思路:(1)平衡问题利用平衡条件列式求解.(2)非平衡问题利用牛顿第二定律求解.4.库仑力作用下电荷的平衡问题与力学中物体的平衡问题相同,可以将力进行合成与分解.5.列平衡方程,注意电荷间的库仑力与电荷间的距离有关.例4 (多选)如图14所示,用两根长度相同的绝缘细线把一个质量为0.1kg 的小球A 悬挂到水平板的M 、N 两点,A 上带有Q =3.0×10-6C 的正电荷.两线夹角为120°,两线上的拉力大小分别为F 1和F 2.A 的正下方0.3m 处放有一带等量异种电荷的小球B ,B 与绝缘支架的总质量为0.2kg(重力加速度g 取10 m/s 2;静电力常量k =9.0×109 N·m 2/C 2,A 、B 球可视为点电荷),则( )图14A .支架对地面的压力大小为2.0NB .两线上的拉力大小F 1=F 2=1.9NC .将B 水平右移,使M 、A 、B 在同一直线上,此时两线上的拉力大小F 1=1.225N ,F 2=1.0ND .将B 移到无穷远处,两线上的拉力大小F 1=F 2=0.866N①夹角120°;②等量异种电荷.答案 BC解析 小球A 、B 间的库仑力为F 库=k Q ·Q r 2=9.0×109×3.0×10-6×3.0×10-60.32N =0.9N ,以B 和绝缘支架整体为研究对象,受力分析图如图甲所示,地面对支架支持力为F N =mg -F 库=1.1N ,由牛顿第三定律知,A 错误;以A 球为研究对象,受力分析图如图乙所示,F 1=F 2=m A g +F 库=1.9N ,B 正确;B 水平向右移,当M 、A 、B 在同一直线上时,A 、B 间距为r ′=0.6m ,F 库′=k Q ·Q r ′2=0.225N ,以A 球为研究对象受力分析图如图丙所示,可知F 2′=1.0N ,F 1′-F 库′=1.0N ,F 1′=1.225N ,所以C 正确;将B移到无穷远,则F 库″=0,可求得F 1″=F 2″=1N ,D 错误.例5 如图15所示,光滑绝缘的正方形水平桌面边长为d =0.48m ,离地高度h =1.25m .桌面上存在一水平向左的匀强电场(除此之外其余位置均无电场),电场强度E =1×104 N/C .在水平桌面上某一位置P 处有一质量m =0.01 kg ,电荷量q =1×10-6 C 的带正电小球以初速度v 0=1 m/s 向右运动.空气阻力忽略不计,重力加速度g =10 m/s 2.求:图15(1)小球在桌面上运动时加速度的大小和方向?(2)P 处距右端桌面多远时,小球从开始运动到最终落地的水平距离最大?并求出该最大水平距离?答案 (1)1.0m/s 2 方向水平向左 (2)38m 58m 解析 (1)对小球受力分析,受到重力、支持力和电场力,重力和支持力平衡,根据牛顿第二定律,有:a =F m =qE m =10-6×1040.01 m /s 2=1.0 m/s 2,方向水平向左. (2)设球到桌面右边的距离为x 1,球离开桌面后做平抛运动的水平距离为x 2,则:x 总=x 1+x 2 由:v 2-v 02=2ax 1;代入,解得:v =1-2x 1设平抛运动的时间为t ,根据平抛运动的分位移公式,有:h =12gt 2,代入得:t =0.5 s. 水平方向,有x 2=v t =0.51-2x 1,故x 总=x 1+0.51-2x 1令:y =1-2x 1;则:x 总=1-y 2+y 2故y =12,即:x 1=38时,水平距离最大,最大值为 x max =58m5.(2013·新课标全国Ⅱ·18)如图16,在光滑绝缘水平面上,三个带电小球a 、b 和c 分别位于边长为l 的正三角形的三个顶点上;a 、b 带正电,电荷量均为q ,c 带负电.整个系统置于方向水平的匀强电场中.已知静电力常量为k .若三个小球均处于静止状态,则匀强电场场强的大小为( )图16 A.3kq 3l 2 B.3kq l 2 C.3kq l 2 D.23kq l2 答案 B6.如图17所示,水平面有方向向右的匀强电场,将质量相等的两个带异种电荷小球a 、b (可视为点电荷),且电荷量大小分别为q a =3q ,q b =q ,由静止释放,二者之间距为r ,位置关系如图,发现两个小球始终处于相对静止状态.则下列说法正确的是( )图17A .a 一定带正电,且电场强度大小为E =3kq 2r2 B .a 一定带负电,且电场强度大小为E =3kq 2r2 C .a 一定带正电,且电场强度大小为E =3kq r2D .a 一定带负电,且电场强度大小为E =3kq r 2 答案 B解析 由于两小球始终处于相对静止状态,且二者之间的电荷量又不相等,说明二者受到的电场力一定不相等,而二者间的静电力一定相等,说明二者不可能是静止,而是一起做匀加速直线运动,根据电荷量关系可知,a 受的电场力较大,若a 为正电荷,受电场力和静电力均向右,则b 必为负电荷,而b 受的电场力和静电力都向左,二者不可能相对静止,所以a 一定为负电荷.且二者都具有相同的加速度,由牛顿第二定律可得:对ab 整体有:E (q a -q b )=2ma ,即Eq =ma ,对b 有kq a q b r 2-Eq b =ma ,即3kq 2r 2-Eq =ma 联立得:E =3kq 2r 2,所以B 正确.7.如图18所示,ABCD 为竖直放在场强为E =104 V/m 的水平匀强电场中的绝缘光滑轨道,其中轨道的BCD 部分是半径为R 的半圆环,轨道的水平部分与半圆环相切,A 为水平轨道的一点,而且AB =R =0.2 m .把一质量m =100 g 、带电量q =+10-4 C 的小球,放在水平轨道的A 点,由静止开始被释放后,在轨道的内侧运动.求:(g =10 m/s 2)图18(1)它到达C 点时的速度是多大?(2)它到达C 点时对轨道的压力是多大?答案 (1)2m/s (2)3N解析 (1)设小球在C 点的速度大小是v C ,对轨道的压力大小为F N C ,则对于小球由A →C 的过程中,应用动能定理列出:2qER -mgR =12m v C 2;解得v C =2 m/s (2)在C 点时,小球受到轨道对它的弹力和电场力,应用牛顿第二定律,有:F N C ′-qE =m v 2C R;解得:F N C ′=3 N 由牛顿第三定律知F N C =F N C ′=3 N.一、整体法与隔离法整体法是指对整个系统进行研究的方法,即从部分与整体的联系中揭示整个系统的运动规律,使部分与整体辩证地统一起来,从而解决问题的科学思维方法.当我们研究整体的运动规律,而不涉及系统内部之间的相互作用时,可采用整体法从而使问题得到简捷巧妙的解答.所谓隔离法是指把所研究的对象(包括物体或物体的一部分),从系统中隔离开来,进行分析研究的方法.当我们要研究系统中的某个物体与其他物体(或物体中的某一部分与其他部分)的相互作用,寻求待求量与已知量的关系时,宜采用隔离法,将此物体(或物体中的某一部分)隔离出来,单独进行分析研究.典例1如图所示,甲、乙两带电小球的质量均为m,所带电荷量分别为+q和-q,两球间用绝缘细线2连接,甲球用绝缘细线1悬挂在天花板上,在两球所在空间有沿水平方向向左的匀强电场,场强为E,且有qE=mg,平衡时细线都被拉直.则平衡时的可能位置是哪个图()答案 A解析先用整体法,把两个小球视为一个整体.整体受到的外力有竖直向下的重力2mg、水平向左的电场力qE、水平向右的电场力qE和细线1的拉力F T1.由平衡条件知,水平方向受力平衡,细线1的拉力F T1一定与重力2mg等大反向,即细线1一定竖直.再隔离分析乙球,如图所示.乙球受到的力为:向下的重力mg、水平向右的电场力qE、细线2的拉力F T2和甲球对乙球的吸引力F引.要使乙球所受合力为零,细线2必须倾斜.设细线2与竖直方向的夹角为θ,则有tanθ=qEmg=1,θ=45°,故A图正确.二、对称法对称性普遍存在于各种物理现象和物理过程之中,用对称法构建模型,就是在物理问题具有对称性的特点或经过变换具有对称性的特点时,把实际的、复杂的物理现象和物理过程简单化,构建出新的模型,从而分析求解的方法.典例2 (多选)如图19所示,A 、B 为两个等量的正点电荷,O 为其连线的中点,MON 为其连线的中垂线,在中垂线上靠近O 点的O ′点放一带电荷量为+q 的小球(可视为点电荷,不计重力),将此小球由静止释放,下列说法正确的是( )图19A .将小球由O ′点从静止释放后,向无穷远处运动的过程中,加速度一定越来越大,速度也一定越来越大B .将小球由O ′点从静止释放后,向无穷远处运动的过程中,加速度先变大后变小,速度越来越大C .从O ′点到无穷远处,电势逐渐降低D .从O ′点到无穷远处,小球的电势能逐渐减小答案 BCD解析 A 、B 两个等量的正点电荷形成的电场关于直线MN 对称.在O 点,两个电荷产生的电场强度大小相等,方向相反,叠加为零,故O ′点的电场强度接近于零.在MON 中垂线上距离O 点无穷远处,电场强度也为零,所以在MON 中垂线上从O ′点到无穷远处,电场强度先变大,后变小.从O ′点到无穷远处,带电荷量为+q 的小球受到的电场力先变大,后变小,其加速度也是先变大,后变小.由于电场力一直对小球做正功,故小球的速度越来越大,选项B 正确,A 错误.由于从O ′点到无穷远处电场力一直对小球做正功,故小球的电势能E p 逐渐减小,电势φ=E p q,故从O ′点到无穷远,电势逐渐降低,故C 、D 正确.题组1 库仑定律的理解及应用1.保护知识产权,抵制盗版是我们每个公民的责任与义务.盗版书籍影响我们的学习效率,甚至给我们的学习带来隐患.小华有一次不小心购买了盗版的物理参考书,做练习时,他发现有一个关键数字看不清,拿来问老师,如果你是老师,你认为可能是下列数字中的( )A.6.2×10-19C B.6.4×10-19CC.6.6×10-19C D.6.8×10-19C答案 B解析任何带电体的电荷量都是元电荷的整数倍,即是1.6×10-19 C的整数倍,由计算可知,只有B选项是1.6×10-19 C的整数倍,故选项B正确.2.(多选)如图1所示,A、B为相互接触的用绝缘支架支撑的金属导体,起初它们不带电,在它们的下部贴有金属箔片,C是带正电的小球,下列说法正确的是()图1A.把C移近导体A时,A、B上的金属箔片都张开B.把C移近导体A,先把A、B分开,然后移去C,A、B上的金属箔片仍张开C.先把C移走,再把A、B分开,A、B上的金属箔片仍张开D.先把A、B分开,再把C移走,然后重新让A、B接触,A上的金属箔片张开,B上的金属箔片闭合答案AB解析C移近A时,带正电的小球C对A、B内的电荷有力的作用,使A、B中的自由电子向左移动,使得A上积累了负电荷,B上积累了正电荷,其下部的金属箔片也分别带上了与A、B同种性质的电荷.由于同种电荷间的斥力作用,所以金属箔片都张开,选项A正确.C 靠近后保持不动,把A、B分开,A、B上的电荷因受C的作用力不可能中和,因而A、B仍带等量的异种感应电荷,此时再移走C,因A、B已经绝缘,所带电荷量不会变,金属箔片仍张开,选项B正确.先移走C,A、B上的感应电荷会马上在其相互之间的引力作用下中和,不再带电,所以金属箔片都不会张开,选项C错误.先把A、B分开,移走C,然后重新让A、B接触,A、B所带的异种电荷马上中和,金属箔片都不会张开,选项D错误.3.三个相同的金属小球1、2、3分别置于绝缘支架上,各球之间的距离远大于小球的直径.球1的带电荷量为q,球2的带电荷量为nq,球3不带电且离球1和球2很远,此时球1、2之间作用力的大小为F.现使球3先与球2接触,再与球1接触,然后将球3移至远处,此进1、2之间作用力的大小仍为F,方向不变.因此可知()A.n=3 B.n=4C.n=5 D.n=6答案 D解析由于各球之间距离远大于小球的直径,小球带电时可视为点电荷.由库仑定律F=。