人教版八年级数学上册 第15章 15.2.3 整数指数幂2 第1课时 整数指数幂 导学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.2.3整数指数幂 第1课时 整数指数幂
一、新课导入
1.导入课题:
同学们还记得正整数指数幂的运算性质吗?由a m ÷a n =a m -n ,当m<n 时,底数a 的指数(m-n)是负整数,那么它表示什么呢?
2.学习目标:
(1)知道负整数指数幂的意义及表示法.
(2)能运用分式的有关知识推导整数指数幂的意义. 3.学习重、难点:
重点:整数指数幂的意义的推广.
难点:用负整数指数幂的意义进行有关计算和变式. 二、自学
1.自学指导:
(1)自学内容:教材第142页到第143页“思考”之前的内容. (2)自学时间:5分钟.
(3)自学方法:认真阅读课本,回顾正整数指数幂的意义,思考a m 中当m<0时,a m 表示什么?
(4)自学参考提纲: ①a -2=
2
1
a 是如何得来的? 一方面a 3
÷a 5
=a 3-5
=a -2
,另一方面,a3÷a5=35a a =323a a a =21
a
.
∴a -2=
2
1
a
②当n是正整数时,a-n=1
n
a
(n≥1), 即a-n(a≠0)是a n的倒数.
③试说说当m分别是正整数、0、负整数时,am各表示什么意义?
当m是正整数时,a m表示m个a相乘.当m是0时,a0表示一个数的n次方除以这个数的n次方,所以特别规定,任何除0以外的实数的0次方都是1.
当m是负整数时,am表示|m|个1
a
相乘.
2.自学:请同学们结合自学指导进行自学.
3.助学:
(1)师助生:
①明了学情:了解学生的自学情况,收集学生自学中存在的问题.
②差异指导:对学困生进行学习方法和认知方法的指导.
(2)生助生:结合实例讨论如何得出a-n=1an(a≠0)
4.强化:
(1)当n为正整数时,a-n=1
n
a
(a≠0),即a-n(a≠0)是a n的倒数.
(2)a m的意义(m为正整数、0、负整数).
(3)口答:4-1=1
4(1
4
)-1=4 (-1
4
)2=1
16
-2-2=-1
4(1
3
)-3=27 (-1
3
)3=-1
27
-2)0=1
1.自学指导:
(1)自学内容:教材第143页“思考”到第144页例9上面的内容.
(2)自学时间:5分钟.
(3)自学方法:尝试教材上的方法,用负整数幂或0指数幂,验证正整数幂的性质.
(4)自学参考提纲:
①教材第143页几个具体实例说明了什么?a m·a n=a m+n
②换其他整数指数验证①中的规律.
a7·a-7=a7-7=a0=1,a-8·a-2=a-8-2=a-10
③试用教材第143页的方法,计算a-5÷a-3、(ab)-4、(1
)-3,
2
验证并归纳相应的运算性质.
④综合①②③实例说明了什么?a m·a n=a m+n,这条性质对于m,n是任意整数的情形仍然适用.
⑤试用你找到的规律填空(结果写成分式的形式):
⑥由以上的试验运算说明:正整数指数幂的运算性质可以推广到整数指数幂的运算.
2.自学:请同学们结合自学提纲进行自学.
3.助学:
(1)师助生:
①明了学情:了解学生的自学情况,看是否真正理解正整数指数幂的运算性质可推广到整数指数幂.
②差异指导:对部分学生进行学习方法和认知方法的引导.
(2)生助生:学生之间相互交流帮助.
4.强化:
(1)交流同学们的验证结果,归纳a m·a n;a m÷a n;(a m)n;(ab)n中m、n 的适用范围.
(2)练习:
1.自学指导:
(1)自学内容:教材第144页例9及以下内容
(2)自学时间:10分钟.
(3)自学方法:阅读例9之前,回顾一下整数指数幂的运算性质.
(4)自学参考提纲:
①研究例9思考如何进行整数指数幂的运算,计算结果一般应化成怎样的形式?
运用整数指数幂的运算性质进行运算,结果一般化为最简分式或整式形式.
②引入负整数指数幂后,指数的范围就扩大到了全体整数,那么整数指数幂的性质有哪些?
上述式子中,m,n均为任意整数.
2.自学:同学们结合自学指导进行自学.
3.助学:
(1)师助生:
①明了学情:了解学生的自学情况,收集学生自学中存在的问题.
②差异指导:对例题中运算过程不熟知的学生进行引导,引导运算性质的识记和运用.
(2)生助生:学生之间相互交流帮助.
4.强化:
(1)整数指数幂的运算性质(式子表示)
(2)计算:
(3)整数指数幂的运算步骤及要求.
三、评价
1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和学后体验.
2.教师对学生的评价:
(1)表现性评价:对学生的学习态度、方法、成果及不足进行归纳点评.
(2)纸笔评价:课堂评价检测.
3.教师的自我评价(教学反思):
整数指数幂是在学生学习了分式的基本性质及乘除法之后的教学,教材中利用同底数幂相除的性质给出负整数指数及零指数的意义.在教学中,教师可在复习幂的有关运算性质后提出问题:“幂的这些运算性质中指数都要求是正整数,如果是负数又表示什么意义呢?”通过提问让学生寻找规律,猜想出零指数幂和负整数指数幂的意义,这不但可以调动学生学习的积极性,还可以达到预期效果.
自测小练习
一、基础巩固(每题10分,共70分)
1.填空:
2.若m,n 为正整数,则下列各式错误的是(D )
3.下列计算正确的是(C)
4.计算:
5.若(x-3)-2有意义,则x≠3;若(
1
x
x )-1有意义,则x≠0且x≠-1.
7.下列等式一定正确的是(D)
二、综合应用(每题10分,共20分)
三、拓展延伸(10分)
10.若a+a-1=3,试求a2+a-2的值.
解:∵a+a-1=3,
∴(a+a-1)2=9,
∴a2+a-2+2=9,
∴a2+a-2=7.。