2020-2021上海建平实验中学高三数学上期中模拟试卷(带答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021上海建平实验中学高三数学上期中模拟试卷(带答案)
一、选择题
1.已知A 、B 两地的距离为10 km,B 、C 两地的距离为20 km,现测得∠ABC=120°,则A 、C 两地的距离为 ( ) A .10 km B .3 km
C .105 km
D .107 km 2.设函数
是定义在
上的单调函数,且对于任意正数
有
,已知
,若一个各项均为正数的数列满足
,其中
是数列
的前项和,则数列
中第
18项( )
A .
B .9
C .18
D .36
3.若关于x 的不等式220x ax +->在区间[]1,5上有解,则a 的取值范围是( ) A .23,5⎛⎫
-
+∞ ⎪⎝⎭
B .23,15⎡⎤
-
⎢⎥⎣⎦
C .()1,+∞
D .23,
5⎛
⎤
-∞ ⎥⎝⎦
4.当()1,2x ∈时,不等式220x mx ++≥恒成立,则m 的取值范围是( ) A .()3,-+∞ B .()
22,-+∞
C .[)3,-+∞
D .)
22,⎡-+∞⎣
5.若ln 2ln 3ln 5
,,235
a b c =
==,则 A .a b c << B .c a b << C .c b a <<
D .b a c <<
6.如图,有四座城市A 、B 、C 、D ,其中B 在A 的正东方向,且与A 相距120km ,
D 在A 的北偏东30°方向,且与A 相距60km ;C 在B 的北偏东30°方向,且与B 相距
6013km ,一架飞机从城市D 出发以360/km h 的速度向城市C 飞行,飞行了15min ,
接到命令改变航向,飞向城市B ,此时飞机距离城市B 有( )
A .120km
B .606km
C .605km
D .3km
7.已知ABC ∆的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为( ) A .
34
B .
56
C .
78
D .
23
8.若a ,b ,c ,d∈R,则下列说法正确的是( )
A .若a >b ,c >d ,则ac >bd
B .若a >b ,c >d ,则a+c >b+d
C .若a >b >0,c >d >0,则
c d a b
> D .若a >b ,c >d ,则a ﹣c >b ﹣d
9.已知x ,y 满足条件0
{20
x y x
x y k ≥≤++≤(k 为常数),若目标函数z =x +3y 的最大值为8,则k =( ) A .-16
B .-6
C .-83
D .6
10.等比数列{}n a 的前三项和313S =,若123,2,a a a +成等差数列,则公比q =( ) A .3或13
- B .-3或
13
C .3或
13
D .-3或13
-
11.设{}n a 是首项为1a ,公差为-2的等差数列,n S 为其前n 项和,若1S ,2S ,4S 成等比数列,则1a = ( ) A .8
B .-8
C .1
D .-1
12.若01a <<,1b c >>,则( ) A .()1a
b c
<
B .
c a c
b a b
->- C .11a a c b --<
D .log log c b a a <
二、填空题
13.在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,若
3
2sin sin sin ,cos 5
B A
C B =+=,且6ABC S ∆=,则b =__________. 14.已知数列1111
12123123n
+++++++L L L ,,,,,,则其前n 项的和等于______. 15.在ABC V 中,角A B C ,,所对的边分别为,,a b c ,且满足222sin sin sin sin sin A B C A B +=+,若ABC V
,则ab =__
16.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a a n +=++,则
122016
111a a a +++=L _________. 17.定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥21,01,()22,1,x
x x f x x ⎧-+≤<=⎨-≥⎩
若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是 ____________
18.已知无穷等比数列{}n a 的各项和为4,则首项1a 的取值范围是__________.
19.点D 在ABC V 的边AC 上,且3CD AD =,2BD =,3
sin
23
ABC ∠=
,则3AB BC +的最大值为______.
20.在△ABC 中,已知sinA:sinB:sinC=3:5:7,则此三角形最大内角的大小..为________.
三、解答题
21.在ABC ∆中,内角、、A B C 的对边分别为a b c ,,,
()2cos cos cos 0C a B b A c ++=.
(Ⅰ)求角C 的大小; (Ⅱ)若22a b =
=,,求()sin 2B C -的值.
22.已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,
cos 3sin 0a C a C b c +--=.
(1)求A .
(2)若2a =,ABC △的面积为3,求b ,c .
23.在ABC V 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知()sin sin sin B C m A m +=∈R ,且
240a bc -=.
(1)当5
2,4
a m ==
时,求,b c 的值; (2)若角为锐角,求m 的取值范围.
24.已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设n S 为数列{}n a 的前n 项和,1
1
n n n n a b S S ++=
,求数列{}n b 的前n 项和n T . 25.已知数列{}n a 的前n 项和2
38n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.
(Ⅰ)求数列{}n b 的通项公式;
(Ⅱ)令1
(1)(2)
n n n n n a c b ++=+.求数列{}n c 的前
n 项和n T . 26.已知向量()
1
sin 2A =,m 与()
3sin 3A A =,
n 共线,其中A 是△ABC 的内角. (1)求角A 的大小;
(2)若BC=2,求△ABC 面积S 的最大值,并判断S 取得最大值时△ABC 的形状.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【解析】 【分析】
直接利用余弦定理求出A ,C 两地的距离即可. 【详解】
因为A ,B 两地的距离为10km ,B ,C 两地的距离为20km ,现测得∠ABC =120°, 则A ,C 两地的距离为:AC 2=AB 2+CB 2﹣2AB •BC cos ∠ABC =102+202﹣2110202⎛⎫
⨯⨯⨯-
= ⎪⎝⎭
700. 所以AC =107km . 故选D . 【点睛】
本题考查余弦定理的实际应用,考查计算能力.
2.C
解析:C 【解析】
∵f (S n )=f (a n )+f (a n +1)-1=f[a n (a n +1)]∵函数f (x )是定义域在(0,+∞)上的单调函数,数列{a n }各项为正数∴S n =a n (a n +1)①当n=1时,可得a 1=1;当n≥2时,S n-1=
a n-1(a n-1+1)②,①-②可得a n = a n (a n +1)-a n-1(a n-1+1)∴(a n +a n-1)(a n -a n-1-1)=0
∵a n >0,∴a n -a n-1-1=0即a n -a n-1=1∴数列{a n }为等差数列,a 1=1,d=1;∴a n =1+(n-1)×1=n 即a n =n 所以
故选C
3.A
解析:A 【解析】 【分析】
利用分离常数法得出不等式2a x x >
-在[]15x ∈,上成立,根据函数()2
f x x x
=-在[]15x ∈,上的单调性,求出a 的取值范围
【详解】
关于x 的不等式220x ax +->在区间[]
1,5上有解
22ax x ∴>-在[]15
x ∈,上有解
即2
a x x
>
-在[]15x ∈,上成立,
设函数数()2
f x x x
=
-,[]15x ∈,
()2
2
10f x x ∴'=-
-<恒成立 ()f x ∴在[]15x ∈,上是单调减函数
且()f x 的值域为2315⎡⎤
-
⎢⎥⎣⎦
, 要2a x x >
-在[]15x ∈,上有解,则23
5
a >- 即a 的取值范围是23,5⎛⎫
-+∞ ⎪⎝⎭
故选A 【点睛】
本题是一道关于一元二次不等式的题目,解题的关键是掌握一元二次不等式的解法,分离含参量,然后求出结果,属于基础题.
4.D
解析:D 【解析】
由()1,2x ∈时,220x mx ++≥恒成立得2m x x ⎛
⎫
≥-+
⎪⎝⎭
对任意()1,2x ∈恒成立,即max 2,m x x ⎡⎤⎛⎫≥-+ ⎪⎢⎥⎝
⎭⎣⎦Q
当x 时,2x x ⎛
⎫-+ ⎪⎝⎭
取得最大值m -∴≥-,m 的取
值范围是)
⎡-+∞⎣,故选D.
【易错点晴】本题主要考查利用基本不等式求最值以及不等式恒成立问题,属于中档题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).
5.B
解析:B 【解析】 试题分析:因为
ln 2ln 3ln8ln 9ln 2ln 3
0,23623
--=<<,ln 2ln 5ln 32ln 25ln 2ln 5
0,251025
--=>>,故选B.
考点:比较大小.
6.D
解析:D 【解析】 【分析】
先判断三角形DAB 为直角三角形,求出BD ,然后推出CBD ∠为直角,可得CD ,进一步可得
cos BDF ∠,最后在三角形EDB 中用余弦定理可得BF . 【详解】
取AB 的中点E ,连DE ,设飞机飞行了15分钟到达F 点,连BF ,如图所示:则BF 即为所求.
因为E 为AB 的中点,且120AB km =,所以60AE km =, 又60DAE ∠=o ,60AD km =,所以三角形DAE 为等边三角形,所以
60DE km =,60ADE ∠=o ,
在等腰三角形EDB 中,120DEB ∠=o ,所以30EDB EBD ∠=∠=o , 所以90ADB ∠=o ,由勾股定理得2BD 22221206010800AB AD =-=-=, 所以3BD km =,
因为9030CBE ∠=+o o 120=o ,30EBD ∠=o ,所以CBD ∠90=o , 所以222108006013240CD BD BC =
+=+⨯=km ,
所以6033
cos BD BDC CD ∠===
, 因为1
360904
DF km =⨯
=, 所以在三角形BDF 中,
2222232cos (603)902603904
BF BD DF BD DF BDF =+-⋅⋅∠=+-⨯⨯
g 10800=,
所以603BF =km .
故一架飞机从城市D 出发以360/km h 的速度向城市C 飞行,飞行了15min ,接到命令改变航向,飞向城市B ,此时飞机距离城市B 有603km . 故选D . 【点睛】
本题考查了利用余弦定理解斜三角形,属于中档题.
7.A
解析:A 【解析】 【分析】
设三角形的三边分别为,1,2(*)n n n n N ++∈,根据余弦定理求出最小角的余弦值,然后再由正弦定理求得最小角的余弦值,进而得到n 的值,于是可得最小角的余弦值. 【详解】
由题意,设ABC ∆的三边长分别为,1,2(*)n n n n N ++∈,对应的三角分别为,,A B C , 由正弦定理得222
sin sin sin 22sin cos n n n n A C A A A
+++===, 所以2
cos 2n A n
+=
. 又根据余弦定理的推论得222(2)(1)5
cos 2(2)(1)2(2)
n n n n A n n n +++-+==+++.
所以
25
22(2)
n n n n ++=+,解得4n =, 所以453
cos 2(42)4
A +=
=+,
即最小角的余弦值为34
. 故选A . 【点睛】
解答本题的关键是求出三角形的三边,其中运用“算两次”的方法得到关于边长的方程,使得问题得以求解,考查正余弦定理的应用及变形、计算能力,属于基础题.
8.B
解析:B 【解析】 【分析】
利用不等式的性质和通过举反例否定一个命题即可得出结果. 【详解】
A 项,虽然41,12>->-,但是42->-不成立,所以不正确;
B 项,利用不等式的同向可加性得知,其正确,所以成立,即B 正确;
C 项,虽然320,210>>>>,但是
32
21
>不成立,所以C 不正确; D 项,虽然41,23>>-,但是24>不成立,所以D 不正确; 故选B. 【点睛】
该题考查的是有关正确命题的选择问题,涉及到的知识点有不等式的性质,对应的解题的方法是不正确的举出反例即可,属于简单题目.
9.B
解析:B 【解析】 【分析】 【详解】
由z =x +3y 得y =-1
3x +3
z
,先作出0{x y x ≥≤的图象,如图所示,
因为目标函数z =x +3y 的最大值为8,所以x +3y =8与直线y =x 的交点为C ,解得C (2,2),代入直线2x +y +k =0,得k =-6.
10.C
解析:C 【解析】
很明显等比数列的公比1q ≠,由题意可得:(
)2
31113S a q q =++=,①
且:()21322a a a +=+,即()2
11122a q a a q +=+,②
①②联立可得:113a q =⎧⎨=⎩或1
9
13a q =⎧⎪⎨=
⎪⎩
,
综上可得:公比q =3或13
. 本题选择C 选项.
11.D
解析:D 【解析】 【分析】
利用等差数列的通项公式,以及等比中项公式和前n 项和公式,准确运算,即可求解. 【详解】
由题意,可得等差数列{}n a 的通项公式为11(1)(2)2(1)n a a n a n =+-⨯-=--, 所以112141,22,412S a S a S a ==-=-,
因为1S ,2S ,4S 成等比数列,可得2
111(22)(412)a a a -=-,解得11a =-.
故选:D . 【点睛】
本题主要考查了等差数列通项公式,以及等比中项公式与求和公式的应用,其中解答中熟记等差数列的通项公式和等比中项公式,准确计算是解答的关键,着重考查了推理与计算能力,属于基础题.
12.D
解析:D 【解析】 【分析】
运用不等式对四个选项逐一分析 【详解】
对于A ,1b c >>Q ,1b c ∴>,01a <<Q ,则1a
b c ⎛⎫> ⎪⎝⎭
,故错误 对于B ,若c a c
b a b
->-,则bc ab cb ca ->-,即()0a c b ->,这与1b c >>矛盾,故错误
对于C ,01a <<Q ,10a ∴-<,1b c >>Q ,则11a a c b -->,故错误 对于D ,1b c >>Q ,c b log a log a ∴<,故正确 故选D 【点睛】
本题考查了不等式的性质,由未知数的范围确定结果,属于基础题.
二、填空题
13.4【解析】已知等式利用正弦定理化简得:可得可解得余弦定理可得可解得故答案为
解析:4 【解析】
已知等式2sin sin B A sinC =+,利用正弦定理化简得:2b a c =+,3
cos ,5
B =∴Q 可
得4sin 5B ==,114
sin 6225
ABC S ac B ac ∆∴==⨯=,可解得15ac =,∴余弦定理可得,
2222cos b a c ac B =+-()()221cos a c ac B =+-+=2
3421515b ⎛⎫-⨯⨯+ ⎪⎝⎭
,∴可解得
4b =,故答案为4.
14.【解析】【分析】由题意可知此数列为将代入根据数列特点将通项公式化简利用裂项相消的求和方法即可求出前n 项和【详解】由题意可知此数列分母为以1为首项以1为公差的等差数列的前n 项和由公式可得:所以数列通项
解析:
21
n
n + 【解析】 【分析】
由题意可知此数列为1n S ⎧⎫
⎨⎬⎩⎭
,将n S 代入,根据数列特点,将通项公式化简,利用裂项相消
的求和方法即可求出前n 项和. 【详解】
由题意可知此数列分母为以1为首项,以1为公差的等差数列的前n 项和, 由公式可得:()12n n n S +=,所以数列通项:()1211211n
S n n n n ⎛⎫==- ⎪++⎝⎭, 求和得:122111
n
n n ⎛
⎫-=
⎪++⎝⎭. 【点睛】
本题考查数列通项公式与数列求和,当通项公式为分式且分母为之差为常数时,可利用裂项相消的方法求和,裂项时注意式子的恒等,有时要乘上系数.
15.4【解析】【分析】由正弦定理化简已知等式可得由余弦定理可得根据同角三角函数基本关系式可得进而利用三角形面积公式即可计算得解【详解】由正弦定理可得即:由余弦定理可得可得的面积为可得解得故答案为4【点睛
解析:4 【解析】 【分析】
由正弦定理化简已知等式可得222a b c ab +-=,由余弦定理可得cos C ,根据同角三角函数基本关系式可得sin C ,进而利用三角形面积公式即可计算得解. 【详解】
222sin sin sin sin sin A B C A B +=+Q ,
∴由正弦定理可得,222ab c a b +=+,即:222a b c ab +-=,
∴由余弦定理可得,2221
cos 222
a b c ab C ab ab +-===,
可得sin C ==
,
ABC QV 1sin 2ab C ==,
∴解得4ab =,故答案为4. 【点睛】
本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的综合应用,属于中档题.解三角形时,有时可用正弦定理,有时也可用余弦定
理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.
16.【解析】试题分析:所以所以考点:累加法;裂项求和法 解析:
4032
2017
【解析】
试题分析:111,n n n n a a n a a n +--=+-=,所以
()11221112
n n n n n n n a a a a a a a a ---+=-+-++-+=
L ,所以
11121n a n n ⎛⎫=- ⎪+⎝⎭
,122016111140322120172017
a a a ⎛
⎫+++=-= ⎪⎝⎭L . 考点:累加法;裂项求和法.
17.【解析】【分析】先根据解析式以及偶函数性质确定函数单调性再化简不等式分类讨论分离不等式最后根据函数最值求m 取值范围即得结果【详解】因为当时为单调递减函数又所以函数为偶函数因此不等式恒成立等价于不等式
解析:13
-
【解析】 【分析】
先根据解析式以及偶函数性质确定函数单调性,再化简不等式()()1f x f x m -≤+,分类讨论分离不等式,最后根据函数最值求m 取值范围,即得结果. 【详解】
因为当0x ≥时 ()21,01,
22,1,
x
x x f x x ⎧-+≤<=⎨-≥⎩为单调递减函数,又()()f x f x -=,所以函数()f x 为偶函数,因此不等式()()1f x f x m -≤+恒成立,等价于不等式
()()1f x f x m -≤+恒成立,即1x x m -≥+,平方化简得()2211m x m +≤-,
当10m +=时,x R ∈; 当10m +>时,12
m
x -≤
对[],1x m m ∈+恒成立,111
11233
m m m m -+≤
∴≤-∴-<≤-; 当10m +<时,12m x -≥
对[],1x m m ∈+恒成立,11
23
m m m -≥
∴≥(舍); 综上113
m -≤≤-,因此实数m 的最大值是1
3
-.
【点睛】
解函数不等式:首先根据函数的性质把不等式转化为()()()()
f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内.
18.【解析】【分析】由无穷等比数列的各项和为4得且从而可得的范围【详解】由题意可得且且 故答案为【点睛】本题主要考查了等比数列的前n 项和而无穷等比数列的各项和是指当且时前n 项和的极限属于基础题 解析:(0,4)(4,8)⋃
【解析】 【分析】
由无穷等比数列{}n a 的各项和为4得,1
41a q
=-,,||1q <且0q ≠,从而可得1a 的范围. 【详解】 由题意可得,1
4,||11a q q
=<- , 且0q ≠
14(1)a q =- 108a ∴<<且14a ≠
故答案为(0,4)(4,8)⋃ 【点睛】
本题主要考查了等比数列的前n 项和,而无穷等比数列的各项和是指当,||1q <且0q ≠时前 n 项和的极限,属于基础题.
19.【解析】【分析】根据条件可得利用余弦定理即可得到的关系再利用基本不等式即可得解【详解】设三角形的边为由由余弦定理得所以①又所以化简得②①②相除化简得故当且仅当成立所以所以的最大值为故答案为:【点睛】
解析:【解析】 【分析】
根据条件可得1
cos 3
ABC ∠=
, cos cos 0ADB BDC ∠+∠=,利用余弦定理即可得到AB 、AC 的关系,再利用基本不等式即可得解.
【详解】
设AD x =,3CD x =,三角形ABC 的边为a ,b ,c ,
由2
1
cos 12sin
23
ABC ABC ∠∠=-=, 由余弦定理得222161
cos 23
a c x ABC ac +-∠==,
所以2
2
2
2
163
x a c ac =+-
, ① 又cos cos 0ADB BDC ∠+∠=,
2222
2262x x
=2221238x c a =+-, ②
①②相除化简得2232296ac a c ac -=+≥, 故4ac ≤,当且仅当3a c =成立,
所以()()2
2
22339632448AB BC c a c a ac ac +=+=++=+≤, 所以3AB BC +的最大值为3 故答案为:3 【点睛】
本题考查了余弦定理和基本不等式的应用,考查了方程思想和运算能力,属于中档题.
20.【解析】由正弦定理得由余弦定理得故也就是最大内角为 解析:
23
π
【解析】
由正弦定理得::3:5:7a b c =,由余弦定理得2223571
cos 2352
C +-==-⨯⨯,故2π3C =,也就是最大内角为
2π
3
. 三、解答题
21.(Ⅰ)34C π=(Ⅱ)210
- 【解析】 【分析】
(I )利用正弦定理化简已知条件,求得cos C 的值,由此求得C 的大小.(II )根据余弦定理求得c ,利用正弦定理求得sin B ,利用同角三角函数关系式求得cos B ,由二倍角公式
求得sin 2,cos 2B B 的值,再由两角差的正弦公式求得()sin 2B C -的值. 【详解】
()sin cos sin cos sin 0C A B B A C ++=
sin sin 0C C C +=,∴cos 2
C =-,∵0C π<<,∴34C π=
(Ⅱ)因为2a b =
=,34
C π
=
,由余弦定理得
2
2
2
2cos 242210
2c a b ab C ⎛⎫
=+-=+-⨯-= ⎪ ⎪⎝⎭
,∴c =
由
sin sin sin c b B C B =⇒=
,因为B 为锐角,所以cos B =
4sin 225
B ==
,22
3cos 2cos sin 5B B B =-=
()43sin 2sin 2cos cos 2sin 525210B C B C B C ⎛-=-=⨯--⨯=- ⎝⎭
【点睛】
本小题主要考查利用正弦定理和余弦定理解三角形,考查同角三角函数的基本关系式,考查二倍角公式以及两角差的正弦公式,属于中档题. 22.(1)60A =︒;(2)2b c ==. 【解析】 试题分析:
(1)由题意利用正弦定理边化角可得
()
sinAcosC sinB sinC sin A C sinC =+=++,化简可得
()1
302
sin A -︒=
,则60A =︒.
(2)由题意结合三角形面积公式可得1
2
S bc sinA =⋅=4bc =,结合余弦定理计算可得4b c +=,则2b c ==. 试题解析:
(1)∵在ABC V 中,0acosC b c --=,
利用正弦定理可得()sinAcosC sinB sinC sin A C sinC =+=++,
1cosA -=, 即()1302
sin A -︒=
, ∴3030A -︒=︒, ∴60A =︒.
(2)若2a =,ABC V 的面积为3, 则13324
S bc sinA bc =
⋅==, ∴4bc =,
又由余弦定理可得()2
222234a b c bccosA b c bc =+-=+-=, ∴4b c +=, 故2b c ==.
23.(1)2 12b c =⎧⎪⎨=⎪⎩或122
b c ⎧
=⎪⎨
⎪=⎩; (2)6
2m <<. 【解析】
试题分析: 本题考查正弦定理和余弦定理;(1)先利用正弦定理将角角关系转化为边边关系,再通过解方程组求解;(2)利用余弦定理进行求解. 试题解析:由题意得2
,40b c ma a bc +=-=. (1)当52,4a m ==
时,5
,12
b c bc +==, 解得212b c =⎧⎪
⎨=⎪⎩
或122b c ⎧=⎪⎨
⎪=⎩; (2)()22222
2cos 22b c bc a b c a A bc bc
+--+-===()22
2
22
2232
a ma a m a --=-, ∵为锐角,∴()2cos 230,1A m =-∈,∴2
322
m <<,
又由b c ma +=可得0m >, 6
2m << 点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:
第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果. 24.(Ⅰ)1
2n n a -=(Ⅱ)112221
n n ++--
【解析】
试题分析:(1)设等比数列{}n a 的公比为q ,,根据已知由等比数列的性质可得
32311(1)9,8a q a q +==,联立解方程再由数列{}n a 为递增数列可得11
{2
a q ==则通项公式可
得
(2)根据等比数列的求和公式,有122112
n
n n s -==--所以
11
12(21)(21)
n
n n n n n n a b s s +++==--,裂项求和即可 试题解析:(1)设等比数列{}n a 的公比为q ,所以有
323141231(1)9,8a a a q a a a q +=+===
联立两式可得11{2a q ==或者18
{12
a q ==
又因为数列{}n a 为递增数列,所以q>1,所以11
{
2a q == 数列{}n a 的通项公式为1
2n n a -=
(2)根据等比数列的求和公式,有122112
n
n n s -==--
所以1111211
(21)(21)2121
n n n n n n n n n a b s s ++++===----- 所以1111
11111122
1 (133721212121)
n n n n n n T ++++-=-+-++-=-=---- 考点:等比数列的通项公式和性质,数列求和
25.(Ⅰ);(Ⅱ)
【解析】
试题分析:(1)先由公式1n n n a S S -=-求出数列{}n a 的通项公式;进而列方程组求数列
{}n b 的首项与公差,得数列{}n b 的通项公式;(2)由(1)可得()1312n n c n +=+⋅,再利
用“错位相减法”求数列{}n c 的前n 项和n T .
试题解析:(1)由题意知当2n ≥时,165n n n a S S n -=-=+, 当1n =时,1111a S ==,所以65n a n =+. 设数列{}n b 的公差为d ,
由112223{a b b a b b =+=+,即11112{1723b d b d
=+=+,可解得14,3b d ==, 所以31n b n =+. (2)由(1)知()
()
()116631233n n n n
n c n n +++=
=+⋅+,又123n n T c c c c =+++⋅⋅⋅+,得
()2341
322324212n n T n +⎡⎤=⨯⨯+⨯+⨯+⋅⋅⋅++⨯⎣⎦,
()34522322324212n n T n +⎡⎤=⨯⨯+⨯+⨯+⋅⋅⋅++⨯⎣⎦,两式作差,得
()()
()2341222
42132222212341232
21n
n n n n n T n n n ++++⎡⎤-⎡⎤⎢⎥-=⨯⨯+++⋅⋅⋅+-+⨯=⨯+-+⨯=-⋅⎣⎦-⎢⎥⎣⎦
所以2
32n n T n +=⋅.
考点 1、待定系数法求等差数列的通项公式;2、利用“错位相减法”求数列的前n 项和. 【易错点晴】本题主要考查待定系数法求等差数列的通项公式、利用“错位相减法”求数列的前n 项和,属于难题. “错位相减法”求数列的前n 项和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项 的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以1q -. 26.(1)π
3
A =(2)△ABC 为等边三角形 【解析】
分析:(1)由//m n u r r ,得3
sin (sin )02
A A A ⋅-=,利用三角恒等变换的公式,
求解πsin 216A ⎛⎫
-
= ⎪⎝
⎭
,进而求解角A 的大小; (2)由余弦定理,得22
4b c bc =+-和三角形的面积公式,利用基本不等式求得
4bc ≤,即可判定当b c =时面积最大,得到三角形形状.
详解:(1)因为m//n,所以()
3
sin sin 02
A A A ⋅-=.
所以
1cos23022A A --=1
cos212
A A -=, 即 πsin 216A ⎛⎫
-
= ⎪⎝
⎭
. 因为()0,πA ∈ , 所以ππ11π2666A ⎛⎫
-∈- ⎪⎝⎭
,. 故ππ262A -
=,π
3
A =. (2)由余弦定理,得 22
4b c bc =+-
又1sin 24
ABC S bc A bc ∆=
=, 而222424b c bc bc bc bc +≥⇒+≥⇒≤,(当且仅当b c =时等号成立)
所以1sin 42ABC S bc A ∆=
=≤=.
当△ABC 的面积取最大值时,b c =.又π
3
A =
,故此时△ABC 为等边三角形 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.。