高中物理曲线运动易错剖析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理曲线运动易错剖析
一、高中物理精讲专题测试曲线运动
1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求
(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;
(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).
【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3
时,
22111
()22A A m v m M v -+ 【解析】 【分析】
(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;
(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】
(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:
0=A A B B m v m v - 由能量关系:22
11=22
P A A B B E m v m v -
解得v A =2m/s ;v B =4m/s
(2)设B 经过d 点时速度为v d ,在d 点:2d
B B v m g m R
=
由机械能守恒定律:22d 11=222
B B B B m v m v m g R +⋅ 解得R=0.32m
(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:
=()A A A m v m M v +由能量关系:()2
211122
A A A A m gL m v m M v μ=
-+ 解得μ1=0.2
讨论:
(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为
110A Q m gL μμ== (J )
(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为
()221111
22
A A Q m v m M v =
-+,解得Q 2=2J
2.高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性。

某滑雪轨道的完整结构可以简化成如图所示的示意图。

其中AB 段是助滑坡,倾角α=37°,BC 段是水平起跳台,CD 段是着陆坡,倾角θ=30°,DE 段是停止区,AB 段与BC 段平滑相连,轨道各部分与滑雪板间的动摩擦因数均为μ=0.03,图中轨道最高点A 处的起滑台距起跳台BC 的竖直高度h=47m 。

运动员连同滑雪板的质量m=60kg ,滑雪运动员从A 点由静止开始起滑,通过起跳台从C 点水平飞出,运动员在着陆坡CD 上的着陆位置与C 点的距离l =120m 。

设运动员在起跳前不使用雪杖助滑,忽略空气阻力的影响,取重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8。

求:
(1)运动员在助滑坡AB 上运动加速度的大小; (2)运动员在C 点起跳时速度的大小;
(3)运动员从起滑台A 点到起跳台C 点的过程中克服摩擦力所做的功。

【答案】(1) (2)
(3)
【解析】 【详解】
(1)运动员在助滑坡AB 上运动时,根据牛顿第二定律得:mgsinα-μmgcosα=ma 解得:a=g (sinα-μcosα)=10×(0.6-0.03×0.8)=5.76m/s 2.
(2)设运动员从C 点起跳后到落到着陆坡上的时间为t ,C 点到着陆坡上着陆点的距离为L .运动员从C 点起跳后做平抛运动,则有 竖直方向:Lsinθ=gt 2…① 水平方向:Lcosθ=v 0t…② 由①:②得:tanθ=
解得 t=2
s ,v 0=30m/s
(3)运动员从起滑台A 点到起跳台C 点的过程,根据动能定理得
mgh-W f =mv 02
解得克服摩擦力所做的功 W f =mgh-mv 02=60×10×47-×60×302=1200J 【点睛】
本题要分析清楚运动员的运动情况,知道运动员先做匀加速运动,后做匀减速运动,最后平抛运动,是动能定理和平抛运动的综合,要善于运用斜面的倾角研究平抛运动两个分位移之间的关系,求出时间.
3.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。

杆静止时,小环靠在杆上,细绳方向竖直;当杆绕竖直轴以角速度ω旋转时,如图所示,小环与Q 点等高,细绳恰好被绷断。

重力加速度g =10m /s 2,忽略一切摩擦。

求:
(1)杆静止时细绳受到的拉力大小T ; (2)细绳断裂时杆旋转的角速度大小ω; (3)小环着地点与O 点的距离D 。

【答案】(1)5N (2)53/rad s (3)1.6m 【解析】 【详解】
(1)杆静止时环受力平衡,有2T =mg 得:T =5N
(2)绳断裂前瞬间,环与Q 点间距离为r ,有r 2+d 2=(L -r )2 环到两系点连线的夹角为θ,有d sin L r θ=-,r
cos L r
θ=- 绳的弹力为T 1,有T 1sinθ=mg T 1cosθ+T 1=m ω2r 得53/rad s ω=
(3)绳断裂后,环做平抛运动,水平方向s =vt
竖直方向:2
12
H d gt -=
环做平抛的初速度:v =ωr
小环着地点与杆的距离:D 2=r 2+s 2
得D =1.6m 【点睛】
本题主要是考查平抛运动和向心力的知识,解答本题的关键是掌握向心力的计算公式,能清楚向心力的来源即可。

4.如图所示,在竖直平面内固定有两个很靠近的同心圆形轨道,外圆ABCD 光滑,内圆的上半部分B′C′D′粗糙,下半部分B ′A′D′光滑.一质量m=0.2kg 的小球从轨道的最低点A 处以初速度v 0向右运动,球的直径略小于两圆间距,球运动的轨道半径R=0.2m ,取g=10m/s 2.
(1)若要使小球始终紧贴着外圆做完整的圆周运动,初速度v 0至少为多少? (2)若v 0=3m/s ,经过一段时间小球到达最高点,内轨道对小球的支持力F C =2N ,则小球在这段时间内克服摩擦力做的功是多少?
(3)若v 0=3.1m/s ,经过足够长的时间后,小球经过最低点A 时受到的支持力为多少?小球在整个运动过程中减少的机械能是多少?(保留三位有效数字) 【答案】(1)0v 10m/s (2)0.1J (3)6N ;0.56J 【解析】 【详解】
(1)在最高点重力恰好充当向心力
2C
mv mg R
= 从到机械能守恒
220112-22
C mgR mv mv =
解得
010m/s v =
(2)最高点
'2
-C
C mv mg F R
= 从A 到C 用动能定理
'22011-2--22
f C mgR W mv mv =
得=0.1J f W
(3)由0=3.1m/s<10m/s v 于,在上半圆周运动过程的某阶段,小球将对内圆轨道间有弹力,由于摩擦作用,机械能将减小.经足够长时间后,小球将仅在半圆轨道内做往复运动.设此时小球经过最低点的速度为A v ,受到的支持力为A F
2
12
A mgR mv =
2-A
A mv F mg R
= 得=6N A F
整个运动过程中小球减小的机械能
2
01-2
E mv mgR ∆=
得=0.56J E ∆
5.如图甲所示,粗糙水平面与竖直的光滑半圆环在N 点相切,M 为圈环的最高点,圆环半径为R =0.1m ,现有一质量m =1kg 的物体以v 0=4m/s 的初速度从水平面的某点向右运动并冲上竖直光滑半圆环,取g =10m/s 2,求:
(1)物体能从M 点飞出,落到水平面时落点到N 点的距离的最小值X m
(2)设出发点到N 点的距离为S ,物体从M 点飞出后,落到水平面时落点到N 点的距离为X ,作出X 2随S 变化的关系如图乙所示,求物体与水平面间的动摩擦因数μ
(3)要使物体从某点出发后的运动过程中不会在N 到M 点的中间离开半固轨道,求出发点到N 点的距离S 应满足的条件
【答案】(1)0.2m ;(2)0.2;(3)0≤x ≤2.75m 或3.5m ≤x <4m . 【解析】 【分析】
(1)由牛顿第二定律求得在M 点的速度范围,然后由平抛运动规律求得水平位移,即可得到最小值;
(2)根据动能定理得到M 点速度和x 的关系,然后由平抛运动规律得到y 和M 点速度的关系,即可得到y 和x 的关系,结合图象求解;
(3)根据物体不脱离轨道得到运动过程,然后由动能定理求解. 【详解】
(1)物体能从M 点飞出,那么对物体在M 点应用牛顿第二定律可得:mg ≤2
M mv R
,所以,v M
1m /s ;
物体能从M 点飞出做平抛运动,故有:2R =
12
gt 2
,落到水平面时落点到N 点的距离x =v M t
2R =0.2m ; 故落到水平面时落点到N 点的距离的最小值为0.2m ;
(2)物体从出发点到M 的运动过程作用摩擦力、重力做功,故由动能定理可得:−μmgx −2mgR =
12mv M 2−1
2
mv 02; 物体从M 点落回水平面做平抛运动,故有:2R =
12
gt 2
,M y v t === 由图可得:y 2=0.48-0.16x ,所以,μ=0.16
0.8
=0.2; (3)要使物体从某点出发后的运动过程中不会在N 到M 点的中间离开半圆轨道,那么物体能到达的最大高度0<h≤R 或物体能通过M 点;
物体能到达的最大高度0<h≤R 时,由动能定理可得:−μmgx −mgh =0−
1
2
mv 02, 所以,22001
22mv mgh
v h x mg g μμμ
--==,
所以,3.5m≤x <4m ;
物体能通过M 点时,由(1)可知v M
1m /s , 由动能定理可得:−μmgx −2mgR =
12mv M 2−1
2
mv 02; 所以22220011
24222M M mv mv mgR
v v gR x mg g
μμ----=
=, 所以,0≤x≤2.75m ; 【点睛】
经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解.
6.如图所示,圆弧轨道AB 是在竖直平面内的
1
4
圆周,B 点离地面的高度h =0.8m ,该处切线是水平的,一质量为m =200g 的小球(可视为质点)自A 点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B 点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D 到C 点的距离为x =4m ,重力加速度为g =10m /s 2.求:
(1)圆弧轨道的半径
(2)小球滑到B 点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m .
(2)小球滑到B 点时对轨道的压力为6N ,方向竖直向下. 【解析】
(1)小球由B 到D 做平抛运动,有:h=12
gt 2 x =v B t 解得: 10410/220.8
B g v x
m s h ==⨯=⨯ A 到B 过程,由动能定理得:mgR=1
2
mv B 2-0 解得轨道半径 R =5m
(2)在B 点,由向心力公式得:2B
v N mg m R
-=
解得:N =6N
根据牛顿第三定律,小球对轨道的压力N =N =6N ,方向竖直向下
点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.
7.如图所示,粗糙水平地面与半径 1.6m R =的光滑半圆轨道BCD 在B 点平滑连接, O 点是半圆轨道BCD 的圆心, B O D 、、三点在同一竖直线上,质量2kg m =的小物块(可视为质点)静止在水平地面上的A 点.某时刻用一压缩弹簧(未画出)将小物块沿AB 方向水平弹出,小物块经过B 点时速度大小为10m/s (不计空气阻力).已知10m AB x =,小物块与水平地面间的
动摩擦因数=0.2μ,重力加速度大小2
10m/s g =.求:
(1)压缩弹簧的弹性势能;
(2)小物块运动到半圆轨道最高点时,小物块对轨道作用力的大小; (3)小物块离开最高点后落回到地面上的位置与B 点之间的距离. 【答案】(1)140J (2)25N (3)4.8m 【解析】
(1)设压缩弹簧的弹性势能为P E ,从A 到B 根据能量守恒,有
2
12
P B AB E mv mgx μ=
+ 代入数据得140J P E =
(2)从B 到D ,根据机械能守恒定律有
22
11222
B D mv mv mg R =+⋅ 在D 点,根据牛顿运动定律有2
D
v F mg m R
+=
代入数据解得25N F =
由牛顿第三定律知,小物块对轨道作用力大小为25N (3)由D 点到落地点物块做平抛运动竖直方向有2122
R gt = 落地点与B 点之间的距离为D x v t = 代入数据解得 4.8m x =
点睛:本题是动能定理、牛顿第二定律和圆周运动以及平抛运动规律的综合应用,关键是确定运动过程,分析运动规律,选择合适的物理规律列方程求解.
8.如图所示,一质量为m =1kg 的小球从A 点沿光滑斜面轨道由静止滑下,不计通过B 点时的能量损失,然后依次滑入两个相同的圆形轨道内侧,其轨道半径R =10cm ,小球恰能通过第二个圆形轨道的最高点,小球离开圆形轨道后可继续向E 点运动,E 点右侧有一壕沟,E 、F 两点的竖直高度d =0.8m ,水平距离x =1.2m ,水平轨道CD 长为L 1=1m ,DE 长为L 2=3m .轨道除CD 和DE 部分粗糙外,其余均光滑,小球与CD 和DE 间的动摩擦因数μ=0.2,重力加速度g =10m/s 2.求:
(1)小球通过第二个圆形轨道的最高点时的速度; (2)小球通过第一个圆轨道最高点时对轨道的压力的大小;
(3)若小球既能通过圆形轨道的最高点,又不掉进壕沟,求小球从A 点释放时的高度的范围是多少?
【答案】(1)1m/s (2)40N (3)0.450.8m h m ≤≤或 1.25h m ≥ 【解析】
⑴小球恰能通过第二个圆形轨道最高点,有:
22
v mg m R
=
求得:υ2gR ①
⑵在小球从第一轨道最高点运动到第二圆轨道最高点过程中,应用动能定理有: −μmgL 1=
12mv 22−1
2
mv 12 ② 求得:υ12
212gL υμ+5
在最高点时,合力提供向心力,即F N +mg=2
1m R
υ ③ 求得:F N = m(
2
1R
υ−g)= 40N
根据牛顿第三定律知,小球对轨道的压力为:F N ′=F N =40N ④
⑵若小球恰好通过第二轨道最高点,小球从斜面上释放的高度为h1,在这一过程中应用动能定理有:mgh 1 −μmgL 1 −mg 2R =
1
2
mv 22 ⑤ 求得:h 1=2R +μL 1+2
22g
υ=0.45m 若小球恰好能运动到E 点,小球从斜面上释放的高度为h 1,在这一过程中应用动能定理有:
mgh 2−μmg(L 1+L 2)=0−0 ⑥ 求得: h 2=μ(L 1+L 2)=0.8m
使小球停在BC 段,应有h 1≤h≤h 2,即:0.45m≤h≤0.8m 若小球能通过E 点,并恰好越过壕沟时,则有
d =
12gt 2 →t =2d g
= 0.4s ⑦ x=v E t →υE =
x
t
=3m/s ⑧ 设小球释放高度为h 3,从释放到运动E 点过程中应用动能定理有: mgh 3 −μmg(L 1+L 2)=
2
12
E mv −0 ⑨ 求得:h 3=μ(L 1+L 2)+22E
g
υ=1.25m 即小球要越过壕沟释放的高度应满足:h≥1.25m
综上可知,释放小球的高度应满足:0.45m≤h≤0.8m 或 h≥1.25m ⑩
9.如图1所示是某游乐场的过山车,现将其简化为如图2所示的模型:倾角θ=37°、L =60cm 的直轨道AB 与半径R =10cm 的光滑圆弧轨道BCDEF 在B 处平滑连接,C 、F 为圆轨道最低点,D 点与圆心等高,E 为圆轨道最高点;圆轨道在F 点与水平轨道FG 平滑连接,整条轨道宽度不计,其正视图如图3所示.现将一质量m =50g 的滑块(可视为质点)从A 端由静止释放.已知滑块与AB 段的动摩擦因数μ1=0.25,与FG 段的动摩擦因数μ2=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2.
(1) 求滑块到达E 点时对轨道的压力大小F N ;
(2)若要滑块能在水平轨道FG 上停下,求FG 长度的最小值x ;
(3)若改变释放滑块的位置,使滑块第一次运动到D 点时速度刚好为零,求滑块从释放到它第5次返回轨道AB 上离B 点最远时,它在AB 轨道上运动的总路程s . 【答案】(1)F N =0.1N (2)x =0.52m (3)93
m 160
s = 【解析】 【详解】
(1)滑块从A 到E ,由动能定理得:
()]211sin 1cos 2cos 2E mg L R R mgL mv θθμθ⎡+--
-=
⎣ 代入数据得:30m/s E v = 滑块到达E 点:2N E v mg F m R
+= 代入已知得:F N =0.1N
(2)滑块从A 下滑到停在水平轨道FG 上,有
()12sin 1cos cos 0mg L R mgL mgx θθμθμ⎡⎤+---=⎣⎦
代入已知得:x =0.52m
(3)若从距B 点L 0处释放,则从释放到刚好运动到D 点过程有:
010sin +(1cos )]cos 0mg L R R mgL θθμθ---=[
代入数据解得:L 0=0.2m
从释放到第一次返回最高点过程,若在轨道AB 上上滑距离为L 1,则:
()()01101sin cos 0mg L L mg L L θμθ--+=
解得:11001sin cos 1sin cos 2
L L L θμθθμθ-==+ 同理,第二次返回最高点过程,若在斜轨上上滑距离为L 2,有: 2121101sin cos 11sin cos 22L L L L θμθθμθ-⎛⎫=== ⎪+⎝⎭
故第5次返回最高点过程,若在斜轨上上滑距离为L 5,有: 5
5012L L ⎛⎫= ⎪⎝⎭
所以第5次返回轨道AB 上离B 点最远时,它在AB 轨道上运动的总路程 012345932222m 160
L L L L L L s =+++++=
10.如图所示,AB 是光滑的水平轨道,B 端与半径为l 的光滑半圆轨道BCD 相切,半圆的直径BD 竖直,将弹簧水平放置,一端固定在A 点.现使质量为m 的小滑块从D 点以速度v 0=进入轨道DCB ,然后沿着BA 运动压缩弹簧,弹簧压缩最短时小滑块处于P 点,重力加速度大小为g ,求:
(1)在D点时轨道对小滑块的作用力大小F N;
(2)弹簧压缩到最短时的弹性势能E p;
(3)若水平轨道AB粗糙,小滑块从P点静止释放,且PB=5l,要使得小滑块能沿着轨道BCD运动,且运动过程中不脱离轨道,求小滑块与AB间的动摩擦因数μ的范围.
【答案】(1)(2)(3)μ≤0.2或0.5≤μ≤0.7
【解析】(1)
解得
(2)根据机械能守恒
解得
(3)小滑块恰能能运动到B点
解得μ=0.7
小滑块恰能沿着轨道运动到C点
解得μ=0.5
所以0.5≤μ≤0.7
小滑块恰能沿着轨道运动D点
解得μ=0.2
所以μ≤0.2
综上μ≤0.2或0.5≤μ≤0.7。

相关文档
最新文档