高中物理带电粒子在电场中的运动解析版汇编及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理带电粒子在电场中的运动解析版汇编及解析
一、高考物理精讲专题带电粒子在电场中的运动
1.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(23a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;
(2)求粒子束射入电场的纵坐标范围;
(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.
【答案】(1)
0v Ba
(2)0≤y≤2a (3)78y a =,94a 【解析】
【详解】 (1)由题意可知, 粒子在磁场中的轨迹半径为r =a
由牛顿第二定律得
Bqv 0=m 20v r
故粒子的比荷
0v q m Ba
= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.
由几何关系知
O ′A =r ·
AB BC
=2a 则
OO ′=OA -O ′A =a
即粒子离开磁场进入电场时,离O 点上方最远距离为
OD =y m =2a
所以粒子束从y 轴射入电场的范围为0≤y ≤2a
(3)假设粒子没有射出电场就打到荧光屏上,有
3a =v 0·t 0 2019222
qE y t a a m =
=>, 所以,粒子应射出电场后打到荧光屏上 粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则
水平方向有
x =v 0·t
竖直方向有
212qE y t m
=
代入数据得 x
设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则
00tan y x qE x v m v v v θ⋅=== 有
H =(3a -x )·tan θ
=
当=y =
98a 时,H 有最大值 由于98
a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为 y =98
a -2a =-78a
2.
L 、间距为L 、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m 、电荷量为q 的带正电粒子流从两板左端连线的中点O 以初速度v 0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间
的磁场,使上板的电势φ随时间t 的变化规律如图所示,则t=0时刻,从O 点射人的粒子P 经时间t 0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.
(1)求两板间磁场的磁感应强度大小B .
(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P 经过右侧磁场偏转后在电场变化的第一个周期内能够回到O 点,求右侧磁场的宽度d 应满足的条件和电场周期T 的最小值T min .
【答案】(1)0mv B qL = (2
)223cos d R a R L ≥+= ;min 0(632)L T π+= 【解析】
【分析】
【详解】
(1)如图,设粒子在两板间做匀速圆周运动的半径为R 1,则0102qv B m v R = 由几何关系:222113(
)()22L L R R =+- 解得0mv B qL
=
(2)粒子P 从O 003L v t =
01122
y L v t = 解得03y v = 设合速度为v ,与竖直方向的夹角为α,则:0tan 3y
v v α==
则=3πα
0023sin v v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则
212sin L R α
= , 解得23L R = 右侧磁场沿初速度方向的宽度应该满足的条件为223cos d R R L α≥+=; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:
2min 0(22)2R T t v πα--=
解得()min 06323L T v π+=
【点睛】 带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.
3.在水平桌面上有一个边长为L 的正方形框架,内嵌一个表面光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.一带电小球从圆盘上的P 点(P 为正方形框架对角线AC 与圆盘的交点)以初速度v 0水平射入磁场区,小球刚好以平行于BC 边的速度从圆盘上的Q 点离开该磁场区(图中Q 点未画出),如图甲所示.现撤去磁场,小球仍从P 点以相同的初速度v 0水平入射,为使其仍从Q 点离开,可将整个装置以CD 边为轴向上抬起一定高度,如图乙所示,忽略小球运动过程中的空气阻力,已知重力加速度为g .求:
(1)小球两次在圆盘上运动的时间之比;
(2)框架以CD 为轴抬起后,AB 边距桌面的高度.
【答案】(1)小球两次在圆盘上运动的时间之比为:π:2;(2)框架以CD 为轴抬起
后,AB
边距桌面的高度为
2
22
v
g
.
【解析】
【分析】
【详解】
(1)小球在磁场中做匀速圆周运动,
由几何知识得:r2+r2=L2,
解得:r=
2
2
L,
小球在磁场中做圆周运的周期:T=
2r
v
π
,
小球在磁场中的运动时间:t1=
1
4
T=
2L
π
,
小球在斜面上做类平抛运动,
水平方向:x=r=v0t2,
运动时间:t2=
2
2
L
v
,
则:t1:t2=π:2;
(2)小球在斜面上做类平抛运动,沿斜面方向做初速度为零的匀加速直线运动,
位移:r=2
2
1
2
at,解得,加速度:a=
2
22v
L
,
对小球,由牛顿第二定律得:a=
mgsin
m
θ
=g si nθ,
AB 边距离桌面的高度:h =L sinθ=2022v g
;
4.如图所示,在平面直角坐标系xOy 平面内,直角三角形abc 的直角边ab 长为6d ,与y 轴重合,∠bac=30°,中位线OM 与x 轴重合,三角形内有垂直纸面向里的匀强磁场.在笫一象限内,有方向沿y 轴正向的匀强电场,场强大小E 与匀强磁场磁感应强度B 的大小间满足E=v 0B .在x=3d 的N 点处,垂直于x 轴放置一平面荧光屏.电子束以相同的初速度v 0从y 轴上-3d≤y≤0的范围内垂直于y 轴向左射入磁场,其中从y 轴上y=-2d 处射入的电子,经磁场偏转后,恰好经过O 点.电子质量为m,电量为e,电子间的相互作用及重力不计.求
(1)匀强磁杨的磁感应强度B
(2)电子束从y 轴正半轴上射入电场时的纵坐标y 的范围;
(3)荧光屏上发光点距N 点的最远距离L
【答案】(1)
0mv ed ; (2)02y d ≤≤;(3)94
d ; 【解析】 (1)设电子在磁场中做圆周运动的半径为r ;
由几何关系可得r =d
电子在磁场中做匀速圆周运动洛伦兹力提供向心力,由牛顿第二定律得:200v ev B m r
= 解得:0mv B ed
= (2)当电子在磁场中运动的圆轨迹与ac 边相切时,电子从+ y 轴射入电场的位置距O 点最远,如图甲所示.
设此时的圆心位置为O ',有:sin 30r O a '=︒
3OO d O a ='-'
解得OO d '= 即从O 点进入磁场的电子射出磁场时的位置距O 点最远
所以22m y r d ==
电子束从y 轴正半轴上射入电场时的纵坐标y 的范围为02y d ≤≤
设电子从02y d ≤≤范围内某一位置射入电场时的纵坐标为y ,从ON 间射出电场时的位置横坐标为x ,速度方向与x 轴间夹角为θ,在电场中运动的时间为t ,电子打到荧光屏上产生的发光点距N 点的距离为L ,如图乙所示:
根据运动学公式有:0x v t =
212eE y t m =⋅ y eE v t m = 0tan y v v θ=
tan 3L d x
θ=- 解得:(32)2L d y y =即98
y d =时,L 有最大值 解得:94L d =
当322d y y
【点睛】本题属于带电粒子在组合场中的运动,粒子在磁场中做匀速圆周运动,要求能正确的画出运动轨迹,并根据几何关系确定某些物理量之间的关系;粒子在电场中的偏转经常用化曲为直的方法,求极值的问题一定要先找出临界的轨迹,注重数学方法在物理中的应用.
5.如图,第一象限内存在沿y 轴负方向的匀强电场,电场强度大小为E ,第二、三、四象限存在方向垂直xOy 平面向外的匀强磁场,其中第二象限的磁感应强度大小为B ,第三、四象限磁感应强度大小相等,一带正电的粒子,从P (-d ,0)点沿与x 轴正方向成α=60°角平行xOy 平面入射,经第二象限后恰好由y 轴上的Q 点(图中未画出)垂直y 轴进入第一象限,之后经第四、三象限重新回到P 点,回到P 点时速度方向与入射方时相同,不计粒子重力,求:
(1)粒子从P 点入射时的速度v 0;
(2)第三、四象限磁感应强度的大小B /;
【答案】(1)3E B (2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 23603d d d r sin sin α=
==︒ 根据200mv qv B r =得023qBd v = 粒子在第一象限中做类平抛运动,则有21602qE r cos t m -︒=
(); 00y v qEt tan v mv α== 联立解得03E v B
=
(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第
三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.
则有:x=v 0t , 2y v y t =
得03222
y v y tan x v α=== 由几何知识可得 y=r-rcosα=
132r d = 则得23
x d = 所以粒子在第三、四象限圆周运动的半径为125323d d R d sin α⎛⎫+ ⎪⎝⎭== 粒子进入第三、四象限运动的速度00432v qBd v v cos α=== 根据2
'v qvB m R
= 得:B′=2.4B
考点:带电粒子在电场及磁场中的运动
6.如图所示,在不考虑万有引力的空间里,有两条相互垂直的分界线MN 、PQ ,其交点为O .MN 一侧有电场强度为E 的匀强电场(垂直于MN ),另一侧有匀强磁场(垂直纸面向里).宇航员(视为质点)固定在PQ 线上距O 点为h 的A 点处,身边有多个质量均为m 、电量不等的带负电小球.他先后以相同速度v0、沿平行于MN 方向抛出各小球.其中第1个小球恰能通过MN 上的C 点第一次进入磁场,通过O 点第一次离开磁场,OC=2h .求:
(1)第1个小球的带电量大小;
(2)磁场的磁感强度的大小B ;
(3)磁场的磁感强度是否有某值,使后面抛出的每个小球从不同位置进入磁场后都能回到宇航员的手中?如有,则磁感强度应调为多大.
【答案】(1)
2
0 12
mv
q
Eh
=;(2)
2E
B
v
=;(3)存在,
E
B
v
'=
【解析】
【详解】
(1)设第1球的电量为1q,研究A到C的运动:
2
1
1
2
q E
h t
m
=
2h v t
=
解得:
2
12
mv
q
Eh
=;
(2)研究第1球从A到C的运动:
1
2
y
q E
v h
m
=
解得:0
y
v v
=
tan1
y
v
v
θ==,45o
θ=,
2
v v
=;
研究第1球从C作圆周运动到达O的运动,设磁感应强度为B 由
2
1
v
q vB m
R
=得
1
mv
R
q B
=
由几何关系得:2
2sin
R h
θ=
解得:
2E
B
v
=;
(3)后面抛出的小球电量为q,磁感应强度B'
①小球作平抛运动过程
02hm
x v t v qE
== 2
y qE v h m
= ②小球穿过磁场一次能够自行回到A ,满足要求:sin R x θ=,变形得:sin mv
x qB θ'
= 解得:0
E B v '=
.
7.从宏观现象中总结出来的经典物理学规律不一定都能适用于微观体系。
但是在某些问题中利用经典物理学规律也能得到与实际比较相符合的结论。
根据玻尔的氢原子模型,电子的运动看做经典力学描述下的轨道运动,原子中的电子在库仑力作用下,绕原子核做圆周运动。
已知电子质量为m ,电荷量为e ,静电力常量为k 。
氢原子处于基态(n =1)时电子
的轨道半径为r 1,电势能为2
1
P e E k r =-(取无穷远处电势能为零)。
第n 个能级的轨道半
径为r n ,已知r n =n 2 r 1,氢原子的能量等于电子绕原子核运动的动能、电子与原子核系统的电势能的总和。
(1)求氢原子处于基态时,电子绕原子核运动的速度; (2)证明:氢原子处于第n 个能级的能量为基态能量的
21
n
(n =1,2,3,…); (3)1885年,巴尔末对当时已知的在可见光区的四条谱线做了分析,发现这些谱线的波长能够用一个公式表示,这个公式写做
22
1
11
(
)2R n λ
=-,n = 3,4,5,…。
式中R 叫做里德伯常量,这个公式称为巴尔末公式。
已知氢原子基态的能量为E 1,用h 表示普朗克常量,c 表示真空中的光速, 求: a .里德伯常量R 的表达式;
b .氢原子光谱巴尔末系最小波长与最大波长之比。
【答案】(1)2
11
ke v mr =
(2)设电子在第1轨道上运动的速度大小为v 1,根据牛顿第二
定律有221211v e k m r r =,电子在第1轨道运动的动能2
2111122k ke E mv r ==,电子在第1轨道运
动时氢原子的能量21111222
e ke e E k k r r 2r =-+=-,同理,电子在第n 轨道运动时氢原子的能量2222n n n n n e ke e E k k r r 2r =-+=-,又因为2
1n r n r =,则有 2122122n n E e e E k k r 2n r n
=-=-=,命题得证。
(3)a :1
E R hc
=- b :5:9 【解析】 【详解】
(1)电子绕氢原子核在第1轨道上做圆周运动
根据牛顿第二定律有22
211
e v k m r r =
则有1v =
(2)设电子在第1轨道上运动的速度大小为v 1,根据牛顿第二定律有22
1211v e k m r r =
电子在第1轨道运动的动能2
2111
122k ke E mv r ==
电子在第1轨道运动时氢原子的能量222
1111
22e ke e E k k r r r =-+=- 同理,电子在第n 轨道运动时氢原子的能量22222n n n n n e ke e E k k r r r =-+=-,又因为2
1n r n r = 则有 22
122122n n E e e E k k r n r n
=-=-=,命题得证。
(3)a :从n 能级向2能级跃迁放出光的波长为2n c
E E h λ
-=
由12n E E n = 122
2E E = 代入得:1E R hc
=- b :由
221
1
12
R n λ⎛⎫
=- ⎪⎝⎭
可知当n =3时波长最大,当n =∞时波长最小 代入可得,最小波长与最大波长之比为5:9。
8.如图所示,轻质绝缘细绳上端固定,下端连接一个可视为质点的带电小球,小球静止在水平向左的匀强电场中,绳与竖直方向的夹角θ=37°.已知绳长l =l.0m ,小球所带电荷量q =+l.0×104C ,质量m =4.0×10-3kg 。
不计空气阻力,取重力加速度g =10m/s 2,sin37°=0.60,
cos37°=0.80.求:
(l)电场强度的大小E ;
(2)将电场撤去,小球摆动到最低点时速度的大小v ; (3)将电场撤去,小球摆动到最低点时绳中拉力的大小T .
【答案】(1)33.010N /C E =⨯ (2) 2.0m/s v = (3)25.610N T -=⨯ 【解析】 【详解】
(1)对带电小球受力分析,得关系:tan tan37qE
mg
θ==o 代入已知数据后,解得33.010/E N C =⨯ (2)根据机械能守恒定律有:(
)2
11cos372
mgl mv -=o
解得:()
21cos37 2.0/v gl m s =
-=o
(3)根据牛顿第二定律:2
v T mg m l
-=
解得:25.610N T -=⨯
9.如图所示,在一光滑绝缘水平面上,静止放着两个可视为质点的小球,两小球质量均为m ,相距l ,其中A 球带正电,所带电荷量为q ,小球B 不带电.若在A 球开始向右侧区域加一水平向右的匀强电场,场强为E ,A 球受到电场力的作用向右运动与B 球碰撞.设每次碰撞为弹性碰撞,碰撞前后两球交换速度,且碰撞过程无电荷转移.求:
(1)小球A 在电场中的加速度大小和第一次与B 碰撞前的速度;
(2)若两小球恰在第二次碰撞时离开电场,求电场在电场线方向上的宽度; (3)若两小球恰在第三次碰撞时离开电场,求电场在电场线方向上的宽度及小球A 从进入电场到离开电场的过程中电势能的变化量.
【答案】(1) a=qE/m ;13Eql 【解析】 【详解】
(1)根据牛顿运动定律:qE=ma ,则a=qE/m
设第一次碰撞时小球A 的速度为v :根据动能定理:212
Eql mv =
解得:v =
(2)第一次碰撞前后小球A 的速度为v A1和v A1′,小球B 碰撞前后的速度为v B1和v B1′所以v A1=v v B1=0 v A1′=0 v B1′=v
A 球运动的距离为l 第一次碰撞后,小球A 做初速度为零的匀加速直线运动,小球
B 做速度为v 的匀速直线运动.设第二次碰撞前后A 球的速度为v A2和v A2′小球B 碰撞前后的速度为v B2和v B2′
第一次碰撞后至第二次碰撞前:vt= (0+v A2)t/2 所以:v A2=2v ;碰后v A2′= v
而B 球碰前为v ,碰后为2v .从第一次碰撞后到第二次碰撞前的过程中,A 球运动的距离
为l 2.()2
2120? 2
Eql m v =
- 2
4l l = 电场宽度为:L=l+4l=5l
(3)二次碰撞后,A 球做初速度为v 的匀加速直线运动,B 球以速度2v 匀速直线运动.设A 球第三次碰前后的速度为v A3和 v A3′,小球B 碰撞前后的速度为v B3和v B3′ 所以:
3
223232
A A v v t vt v v +==
从第二次碰撞到第三次碰撞过程中,A 球运动的距离为l 3 :qEl 3 = 12m ()23v -1
2
m 2v l 3=8l
所以:电场的宽度:L=l 1+l 2+l 3=13l A 球减少的电势能 △ε=Eq×13l=13Eql
10.如图所示,在xOy 平面的第一象限有一匀强磁场,方向垂直于纸面向外;在第四象限有一匀强电场,方向平行于y 轴向下.一电子以速度v 0从y 轴上的P 点垂直于y 轴向右飞入电场,经过x 轴上M 点进入磁场区域,又恰能从y 轴上的Q 点垂直于y 轴向左飞出磁场
已知P 点坐标为(0,-L),M 点的坐标为,0).求 (1)电子飞出磁场时的速度大小v (2)电子在磁场中运动的时间t
【答案】(1)02v v =;(2)20
4
9L
t v π= 【解析】 【详解】
(1)轨迹如图所示,设电子从电场进入磁场时速度方向与x 轴夹角为θ,
(1)在电场中x 轴方向:0133
L
v t =,y 轴方向1
2y v L t =:,0tan 3y v v θ==得60θ=o ,0
02cos v v v θ
=
= (2)在磁场中,234
3
L r L =
= 磁场中的偏转角度为2
3
απ=
20
2439r
L t v v ππ==
11.如图所示,在光滑绝缘的水平面上,用长为2L 的绝缘轻杆连接两个质量均为m 的带电小球A 和B ,A 球的电荷量为+2q ,B 球的电荷量为-3q ,组成一静止的带电系统。
虚线NQ 与MP 平行且相距3L ,开始时MP 恰为杆的中垂线。
视小球为质点,不计轻杆的质量,现在在虚线MP 、NQ 间加上水平向右的匀强电场E ,求:
(1)B球刚进入电场时带电系统的速度大小;
(2)B球向右运动的最大位移以及从开始到最大位移处时B球电势能的变化量;
(3)带电系统运动的周期。
【答案】(1)(2);(3)
【解析】
【分析】
(1)对系统运用动能定理,根据动能定理求出B球刚进入电场时,带电系统的速度大小.
(2)带电系统经历了三个阶段:B球进入电场前、带电系统在电场中、A球出电场,根据动能定理求出A球离开PQ的最大位移,从而求出带电系统向右运动的最大距离.根据B 球在电场中运动的位移,求出电场力做的功,从而确定B球电势能的变化量.
(3)根据运动学公式和牛顿第二定律分别求出带电系统B球进入电场前做匀加速直线运动的时间,带电系统在电场中做匀减速直线运动的时间,A球出电场带电系统做匀减速直线运动的时间,从而求出带电系统从静止开始向右运动再次速度为零的时间,带电系统的运动周期为该时间的2倍.
【详解】
(1)设B球刚进入电场时带电系统速度为v1,由动能定理2qEL=×2mv12
解得
(2)带电系统向右运动分三段:B球进入电场前、带电系统在电场中、A球出电场.
设A球离开NQ的最大位移为x,由动能定理得2qEL-qEL-3qEx=0
解得x=;则s总=
B球从刚进入电场到带电系统从开始运动到速度第一次为零时位移为
其电势能的变化量为△E P=W=3qE•=4qEL
(3)向右运动分三段,取向右为正方向,
第一段加速,,
第二段减速,
设A球出电场电速度为v2,由动能定理得-qEL=
解得,
则
第三段再减速则其加速度a 3及时间t 3为:,
所以带电系统运动的周期为:T=2(t 1+t 2+t 3)=
.
12.容器A 中装有大量的质量、电荷量不同但均带正电的粒子,粒子从容器下方的小孔S 1不断飘入加速电场(初速度可视为零)做直线运动,通过小孔S 2后从两平行板中央沿垂直电场方向射入偏转电场.粒子通过平行板后沿垂直磁场方向进入磁感应强度为B 、方向垂直纸面向里的匀强磁场区域,最后打在感光片上,如图所示.已知加速电场中S 1、S 2间的加速电压为U ,偏转电场极板长为L ,两板间距也为L ,板间匀强电场强度E =
2U
L
,方向水平向左(忽略板间外的电场),平行板f 的下端与磁场边界ab 相交于点P ,在边界ab 上实线处固定放置感光片.测得从容器A 中逸出的所有粒子均打在感光片P 、Q 之间,且Q 距P 的长度为3L ,不考虑粒子所受重力与粒子间的相互作用,求:
(1)粒子射入磁场时,其速度方向与边界ab 间的夹角; (2)射到感光片Q 处的粒子的比荷(电荷量q 与质量m 之比); (3)粒子在磁场中运动的最短时间. 【答案】(1)4
π
θ=,其速度方向与边界ad 间的夹角为4
π
θ=
(2)
222q U m L B
= (3)2
316BL U
π
【解析】
试题分析:(1)设质量为m ,电量为q 的粒子通过孔2S 的速度为0v 则:2012
qU mv =
粒子在平行板间:0L t v =,x qE
v t m
=
,0tan x v v θ=
联立可以得到:tan 1θ=,则4
π
θ=
,其速度方向与边界ad 间的夹角为4
π
θ=
.
(2)粒子从e 板下端与水平方向成45o 的角射入匀强磁场,设质量为m ,电量为q 的粒子射入磁场时的速度为v ,做圆周运动的轨道半径为r
,则0v ===
由几何关系:()2
2
2
4r r L +=
,则r =,则mv r qB
=
联立可以得到:
222q U
m L B
=. (2)设粒子在磁场中运动的时间为t ,则m t qB θ=
,mv r qB ==联立可以得到:2
4Br t U
θ=
因为所以粒子在磁场中运动的偏转角3
2R θ=,所以粒子打在P 处时间最短 由几何可以知道:222r r L +=
,则2
r L =
联立可以得到:22
332
2416L B BL t U U
ππ⨯==. 考点:带电粒子在匀强磁场中的运动、牛顿第二定律、向心力
【名师点睛】本题考查了粒子在电场中的加速和在磁场中的偏转,知道粒子通过速度选择器时,所受的洛伦兹力和电场力平衡,掌握粒子在磁场中的半径公式,并能灵活运用.。