中考数学培优(含解析)之圆与相似含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学培优(含解析)之圆与相似含答案
一、相似
1.阅读下列材料,完成任务:
自相似图形
定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.
任务:
(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为________;
(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为________;
(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).
请从下列A、B两题中任选一条作答.
A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=________(用含b的式子表示);
②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=________(用含n,b的式子表示);
B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=________(用含b的式子表示);
②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n 个全等矩形,且分割得到的矩形与原矩形都相似,则a=________(用含m,n,b的式子表示).
【答案】(1)
(2)
(3);;或;或
【解析】【解答】(解:(1)∵点H是AD的中点,
∴AH= AD,
∵正方形AEOH∽正方形ABCD,
∴相似比为: == ;
故答案为:;
( 2 )在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:,
故答案为:;
( 3 )A、①∵矩形ABEF∽矩形FECD,
∴AF:AB=AB:AD,
即 a:b=b:a,
∴a= b;
故答案为:
②每个小矩形都是全等的,则其边长为b和 a,
则b: a=a:b,
∴a= b;
故答案为:
B、①如图2,
由①②可知纵向2块矩形全等,横向3块矩形也全等,
∴DN= b,
Ⅰ、当FM是矩形DFMN的长时,
∵矩形FMND∽矩形ABCD,
∴FD:DN=AD:AB,
即FD: b=a:b,
解得FD= a,
∴AF=a﹣ a= a,
∴AG= = = a,
∵矩形GABH∽矩形ABCD,
∴AG:AB=AB:AD
即 a:b=b:a
得:a= b;
Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,
∴FD:DN=AB:AD
即FD: b=b:a
解得FD= ,
∴AF=a﹣ = ,
∴AG= = ,
∵矩形GABH∽矩形ABCD,
∴AG:AB=AB:AD
即:b=b:a,
得:a= b;
故答案为:或;
②如图3,
由①②可知纵向m块矩形全等,横向n块矩形也全等,
∴DN= b,
Ⅰ、当FM是矩形DFMN的长时,
∵矩形FMND∽矩形ABCD,
∴FD:DN=AD:AB,
即FD: b=a:b,
解得FD= a,
∴AF=a﹣ a,
∴AG= = = a,
∵矩形GABH∽矩形ABCD,
∴AG:AB=AB:AD
即 a:b=b:a
得:a= b;
Ⅱ、当DF是矩形DFMN的长时,
∵矩形DFMN∽矩形ABCD,
∴FD:DN=AB:AD
即FD: b=b:a
解得FD= ,
∴AF=a﹣,
∴AG= = ,
∵矩形GABH∽矩形ABCD,
∴AG:AB=AB:AD
即:b=b:a,
得:a= b;
故答案为: b或 b.
【分析】由题意可知,用相似多边形的性质即可求解。
相似多边形的性质是;相似多边形的对应边的比相等。
相似多边形的对应边的比等于相似比。
(1)由题意知,小正方形的边长等于大正方形的边长的一半,所以其相似比为;
(2)在直角三角形BC中,由勾股定理易得AB=5,而CD AB,所以用面积法可求得CD=,所以相似比===;
(3)A、①由题意可得,解得;
②同理可得; ,解得,;
B、①最小的矩形的长和宽与大矩形的场和宽的对应方式有两种,所以分两种情况来解:Ⅰ、当FM是矩形DFMN的长时,由题意可得成比例线段,,,解得FD=,则
AF的长也可用含a的代数式表示,而AG=GF=AF,再根据矩形GABH∽矩形ABCD,得到相对应的比例式即可求得a=b;
Ⅱ、当DF是矩形DFMN的长时,同理可得a=b;
②同①中的两种情况类似。
2.如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.
(1)把△ABC绕点A旋转到图1,BD,CE的关系是(选填“相等”或“不相等”);简要说明理由;
(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,求PD的值,简要说明计算过程;
(3)在(2)的条件下写出旋转过程中线段PD的最小值为________,最大值为________.
【答案】(1)解:相等
理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,
∴BA=CA,∠BAD=∠CAE,DA=EA,
∴△ABD≌△ACE,
∴BD=CE;
(2)解:作出旋转后的图形,若点C在AD上,如图2所示:
∵∠EAC=90°,
∴CE= ,
∵∠PDA=∠AEC,∠PCD=∠ACE,
∴△PCD∽△ACE,
∴,
∴PD= ;
若点B在AE上,如图2所示:
∵∠BAD=90°,
∴Rt△ABD中,BD= ,BE=AE﹣AB=2,
∵∠ABD=∠PBE,∠BAD=∠BPE=90°,
∴△BAD∽△BPE,
∴,即,
解得PB= ,
∴PD=BD+PB= + = ,
(3)1;7
【解析】【解答】解:(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.
如图3所示,分两种情况讨论:
在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.
①当小三角形旋转到图中△ACB的位置时,
在Rt△ACE中,CE= =4,
在Rt△DAE中,DE= ,
∵四边形ACPB是正方形,
∴PC=AB=3,
∴PE=3+4=7,
在Rt△PDE中,PD= ,
即旋转过程中线段PD的最小值为1;
②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,
此时,DP'=4+3=7,
即旋转过程中线段PD的最大值为7.
故答案为:1,7.
【分析】(1)BD,CE的关系是相等,理由如下:根据同角的余角相等得出∠BAD=∠CAE,根据等腰直角三角形的性质得出BA=CA,DA=EA,从而利用SAS判断出△ABD≌△ACE,根据全等三角形对应边相等得出BD=CE;
(2)作出旋转后的图形,若点C在AD上,如图2所示:首先根据勾股定理算出CE的
长,然后判断出△PCD∽△ACE,根据相似三角形对应边成比例得出,根据比例式列出方程,求解得出PD的长;若点B在AE上,如图2所示:根据勾股定理算出BD的
长,然后判断出△BAD∽△BPE,根据相似三角形对应边成比例得出,根据比例式列出方程,求解得出PB的长,根据线段的和差即可得出PD的长;
(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD 的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.
如图3所示,分两种情况讨论:在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.①当小三角形旋转到图中△ACB的位置时,根据勾股定理算出CE,DE的长,根据正方形的性质得出PC=AB=3,进而得出PE的长,根据勾股定理算出PD 的长,即旋转过程中线段PD的最小值为1;②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,此时,DP'=4+3=7,即旋转过程中线段PD的最大值为7.
3.如图1,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.
(1)请直接写出PM与PN的数量关系及位置关系________;
(2)现将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H.请直接写出PM与PN的数量关系及位置关系________;
(3)若图2中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图3,写出PM与PN的数量关系,并加以证明.
【答案】(1)PM⊥PN,PM=PN
(2)PM=PN,PM⊥PN
(3)解:PM=kPN,
∵△ACB和△ECD是直角三角形,
∴∠ACB=∠ECD=90°.
∴∠ACB+∠BCE=∠ECD+∠BCE.
∴∠ACE=∠BCD.
∵BC=kAC,CD=kCE,
∴=k.
∴△BCD∽△ACE.
∴BD=kAE,
∵点P、M、N分别为AD、AB、DE的中点,
∴PM= BD,PN= AE.
∴PM=kPN.
【解析】【解答】解:(1)PM=PN,PM⊥PN,
理由如下:
∵△ACB和△ECD是等腰直角三角形,
∴AC=BC,EC=CD,∠ACB=∠ECD=90°.
在△ACE和△BCD中,
∴△ACE≌△BCD(SAS),
∴AE=BD,∠EAC=∠CBD,
∵∠BCD=90°,
∴∠CBD+∠BDC=90°,
∴∠EAC+∠BDC=90°
∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,
∴PM= BD,PN= AE,
∴PM=PN,
∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM∥BC,PN∥AE,
∴∠NPD=∠EAC,∠MPN=∠BDC,
∵∠EAC+∠BDC=90°,
∴∠MPA+∠NPC=90°,
∴∠MPN=90°,
即PM⊥PN,
故答案为:PM⊥PN,PM=PN;
( 2 )PM=PN,PM⊥PN,
理由:∵△ACB和△ECD是等腰直角三角形,
∴AC=BC,EC=CD,∠ACB=∠ECD=90°.
∴∠ACB+∠BCE=∠ECD+∠BCE.
∴∠ACE=∠BCD,
∴△ACE≌△BCD(SAS).
∴AE=BD,∠CAE=∠CBD.
又∵∠AOC=∠BOE,∠CAE=∠CBD,
∴∠BHO=∠ACO=90°.
∵点P、M、N分别为AD、AB、DE的中点,
∴PM= BD,PM∥BD;
PN= AE,PN∥AE.
∴PM=PN.
∴∠MGE+∠BHA=180°.
∴∠MGE=90°.
∴∠MPN=90°.
∴PM⊥PN.
故答案为:PM⊥PN,PM=PN
【分析】(1)利用等腰直角三角形的性质得出结论判断出△ACE≌△BCD,得出AE=BD,再用三角形的中位线即可得出结论;(2)同(1)的方法即可得出结论;(3)利用两边对应成比例夹角相等,判断出△BCD∽△ACE,得出BD=kAE,最后用三角形的中位线即可得出结论.
4.已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.
(1)用含x的代数式表示线段CF的长;
(2)如果把△CAE的周长记作C△CAE,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;
(3)当∠ABE的正切值是时,求AB的长.
【答案】(1)解:∵AD=CD.
∴∠DAC=∠ACD=45°,
∵∠CEB=45°,
∴∠DAC=∠CEB,
∵∠ECA=∠ECA,
∴△CEF∽△CAE,
∴,
在Rt△CDE中,根据勾股定理得,CE= ,
∵CA= ,
∴,
∴CF= ;
(2)解:∵∠CFE=∠BFA,∠CEB=∠CAB,
∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,
∵∠ABF=180°﹣∠CAB﹣∠AFB,
∴∠ECA=∠ABF,
∵∠CAE=∠ABF=45°,
∴△CEA∽△BFA,
∴(0<x<2)
(3)解:由(2)知,△CEA∽△BFA,
∴,
∴,
∴AB=x+2,
∵∠ABE的正切值是,
∴tan∠ABE= ,
∴x= ,
∴AB=x+2= .
【解析】【分析】(1)根据等腰直角三角形的性质,求得∠DAC=∠ACD=45°,进而根据两角对应相等的两三角形相似,可得△CEF∽△CAE,然后根据相似三角形的性质和勾股定理可求解;(2)根据相似三角形的判定与性质,由三角形的周长比可求解;(3)由(2)中的相似三角形的对应边成比例,可求出AB的关系,然后可由∠ABE的正切值求解.
5.两个全等的直角三角形ABC 和DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:
(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC、CF、FB,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.
(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.
(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使 DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE,请你求出sinα的值.
【答案】(1)解:)过点C作CG⊥AB于G
在Rt△ACG中∵∠A=60°
∴sin60°=∴
在Rt△ABC中∠ACB=90°∠ABC=30°
∴AB=2
∴
(2)解:菱形
∵D是AB的中点∴AD=DB=CF=1
在Rt△ABC中,CD是斜边中线∴CD=1
同理 BF=1 ∴CD=DB=BF=CF
∴四边形CDBF是菱形
(3)解:在Rt△ABE中
∴
过点D作DH⊥AE 垂足为H
则△ADH∽△AEB ∴
即∴ DH=
在Rt△DHE中
sinα= =…=
【解析】【分析】(1)根据平移的性质得到AD=BE,再结合两条平行线间的距离相等,则三角形ACD的面积等于三角形BEF的面积,所以要求的梯形的面积等于三角形ABC的面积.根据60度的直角三角形ABC中AC=1,即可求得BC的长,从而求得其面积;(2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形;(3)过D点作DH⊥AE于H,可以把要求的角构造到直角三角形中,根据三角形ADE的面积的不同计算方法,可以求得DH的长,进而求解.
6.如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速
度向点B运动,运动时间为t秒,连接MN.
(1)若△BMN与△ABC相似,求t的值;
(2)连接AN,CM,若AN⊥CM,求t的值.
【答案】(1)解:∵∠ACB=90°,AC=6cm,BC=8cm,∴BA==10(cm).
由题意得BM=3tcm,CN=2tcm,∴BN=(8-2t)cm.
当△BMN∽△BAC时,,∴=,解得t=;
当△BMN∽△BCA时,=,∴=,解得t= .
综上所述,△BMN与△ABC相似时,t的值为或
(2)解:如图,过点M作MD⊥CB于点D,
∴∠BDM=∠ACB=90°,又∵∠B=∠B,∴△BDM∽△BCA,
∴== . ∵AC=6cm,BC=8cm,BA=10cm,BM=3tcm,
∴DM= tcm,BD= tcm,∴CD= cm.
∵AN⊥CM,∠ACB=90°,∴∠CAN+∠ACM=90°,∠MCD+∠ACM=90°,
∴∠CAN=∠MCD. ∵MD⊥CB,∴∠MDC=∠ACB=90°,∴△CAN∽△DCM,
∴=,∴=,解得t=.
【解析】【分析】(1)在直角三角形ABC中,由已知条件用勾股定理可求得AB的长,再根据路程=速度时间可将BM、CN用含t的代数式表示出来,则BN=BC-CN也可用含t 的代数式表示出来,因为△BMN与△ABC相似,由题意可分两种情况,①当
△BMN∽△BAC时,由相似三角形的性质可得比例式:,将已知的线段代入计算
即可求解;②当△BMN∽△BCA时,由相似三角形的性质可得比例式:,将已知的线段代入计算即可求解;
(2)过点M作MD⊥CB于点D,根据有两个角对应相等的两个三角形相似可得
△BDM∽△BCA,于是可得比例式,将已知的线段代入计算即可用含t的代数式表示DM、BD的长,则CD=CB-BD也可用含t的代数式表示出来,同理易证
△CAN∽△DCM,可得比例式,将已表示的线段代入计算即可求得t的值。
7.抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
【答案】(1)解:当x=0,y=3,
所以C(0,3)
设抛物线的解析式为y=a(x+1)(x- ).
将C(0,3)代入得- a=3,解得a=-2
所以抛物线的解析式为y=-2x2+x+3
(2)解:过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N,如图1,
∵OC=3,AO=1,
∴tan∠CAO=3.
∴直线AC的解析式为y=3x+3.
∵AC⊥BM,
∴BM的一次项系数为- .
设BM的解析式为y=- x+b,将点B的坐标代入得:- × +b=0,解得b= .
∴BM的解析式为y=- x+ .
将y=3x+3与y=- x+ 联立解得:x=- ,y= .
∴MC=BM= = .
∴∆MCB为等腰三角形.
∴∠ACB=45°.
(3)解:如图2所示,延长CD,交x轴于点F.
∵∠ACB=45°,点D是第一象限抛物线上一点,
∴∠ECD>45°.
又∵∆DCE与∆AOC相似,∠AOC=∠DEC=90°,
∴∠CAO=∠ECD.
∴CF=AF.
设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.
∴F(4,0).
设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得k=- .
∴CF的解析式为y=- x+3.
将y=- x+3与y=-2x2+x+3联立,解得x=0(舍去)或x= .
将x= 代入y=- x+3得y=
∴D(,).
【解析】【分析】(1)结合已知抛物线与x轴的交点AB,设抛物线的解析式为顶点式,代入点C的坐标求出系数,在回代化成抛物线解析式的一般形式。
(2)作垂线转化到直角三角形中利用锐角函数关系解出直线南AC的解析式,再利用待定系数法求出系数得出直线BC的解析式,联立方程得出点M的坐标,根据勾股定理求出MC,BM的长判断出是等腰直角三角形,得出角的度数 .
(3)根据相似三角形的性质的出两角相等,再利用待定系数法求出系数得出直线CF的解析式,再联立方程得出点D的坐标。
8.如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.
(1)求证:PG与⊙O相切;
(2)若 = ,求的值;
(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.【答案】(1)解:如图,连接OB,则OB=OD,
∴∠BDC=∠DBO,
∵∠BAC=∠BDC、∠BAC=∠GBC,
∴∠GBC=∠BDO,
∵CD是⊙O的直径,
∴∠DBO+∠OBC=90°,
∴∠GBC+∠OBC=90°,
∴∠GBO=90°,
∴PG与⊙O相切。
(2)解:过点O作OM⊥AC于点M,连接OA,
则∠AOM=∠COM= ∠AOC,
∵
∴∠ABC= ∠AOC=∠COM,
又∵∠EFB=∠OMC=90°,
∴△BEF∽△OCM,
∴,
∵CM= AC,
∴,
又∵,
∴
(3)解:由(2)可知=,则BE=10.
∵PD=OD,∠PBO=90°,
∴BD=OD=8,
在Rt△DBC中,BC= =8 ,
又∵OD=OB,
∴△DOB是等边三角形,
∴∠DOB=60°,
∵∠DOB=∠OBC+∠OCB,OB=OC,
∴∠OCB=30°,
∴, = ,
∴可设EF=x,则EC=2x、FC= x,
∴BF=8 ﹣ x,
在Rt△BEF中,BE2=EF2+BF2,
∴100=x2+(8 ﹣ x)2,
解得:x=6± ,
∵6+ >8,舍去,
∴x=6﹣,
∴EC=12﹣2 ,
∴OE=8﹣(12﹣2 )=2 ﹣4
【解析】【分析】(1)连接OB,则需要证明∠GBO=∠GBC+∠OBC=90°;由CD是⊙O的直径,则∠DBO+∠OBC=90°,即需要证明∠GBC=∠BDO,由同弧所对的圆周角相等,可知∠BAC=∠BDC,而∠BAC=∠GBC,∠BDC=∠DBO,则可证得∠GBC=∠BDO。
(2)因为已知=,求,其中EF,BE是△BEF的两条边,而AC,OC是△AOC的两条边,但△BEF和△AOC不相似,则可构造两三角形相似,因为△BEF是直角三角形,则可过
点O作OM⊥AC于点M,连接OA,即构造△BEF∽△OCM,从而可求得。
(3)由(2)得的值及OC=8求出BE;由PD=OD,且∠PBO=90°,根据“直角三角形斜边上的中线长等于斜边长的一半”可得BD=OD=8,由勾股定理可求得BC的长,则△DOB是等边三角形,则在直角三角形ECF中存在特殊角30度,不妨设EF=x,则CE=2x,CF=x。
在Rt△BEF中,由勾股定理可得BE2=EF2+BF2,构造方程解答即可。
二、圆的综合
9.如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.
(1)求∠AOC的度数;
(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;
(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.
【答案】(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣3M2(﹣2,﹣3)、M3(﹣2,3M4(2,3).
【解析】
【分析】
(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.
(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.
【详解】
(1)∵OA=OC,∠OAC=60°,
∴△OAC是等边三角形,
故∠AOC=60°.
(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;
∴AC=12
OP ,因此△OCP 是直角三角形,且∠OCP=90°, 而OC 是⊙O 的半径,
故PC 与⊙O 的位置关系是相切.
(3)如图;有三种情况:
①取C 点关于x 轴的对称点,则此点符合M 点的要求,此时M 点的坐标为:M 1(2,﹣3
劣弧MA 的长为:60441803
ππ⨯=; ②取C 点关于原点的对称点,此点也符合M 点的要求,此时M 点的坐标为:M 2(﹣2,﹣3
劣弧MA 的长为:120481803
ππ⨯=; ③取C 点关于y 轴的对称点,此点也符合M 点的要求,此时M 点的坐标为:M 3(﹣2,3
优弧MA 的长为:2404161803
ππ⨯=; ④当C 、M 重合时,C 点符合M 点的要求,此时M 4(2,3); 优弧MA 的长为:3004201803
ππ⨯=; 综上可知:当S △MAO =S △CAO 时,动点M 所经过的弧长为
481620,,,3333ππππ对应的M 点坐标分别为:M 1(2,﹣3M 2(﹣2,﹣3)、M 3(﹣2,3M 4(2,3
【点睛】
本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.
10.在⊙O 中,点C 是AB u u u r 上的一个动点(不与点A ,B 重合),∠ACB=120°,点I 是∠ABC 的内心,CI 的延长线交⊙O 于点D ,连结AD,BD .
(1)求证:AD=BD.
(2)猜想线段AB与DI的数量关系,并说明理由.
(3)若⊙O的半径为2,点E,F是»AB的三等分点,当点C从点E运动到点F时,求点I 随之运动形成的路径长.
【答案】(1)证明见解析;(2)AB=DI,理由见解析(3)23
【解析】
分析:(1)根据内心的定义可得CI平分∠ACB,可得出角相等,再根据圆周角定理,可证得结论;
(2)根据∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度数,再根据AD=BD,可证得
△ABD是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD,得出
ID=BD,再根据AB=BD,即可证得结论;
(3)连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I 随之运动形成的路径长.
详解:(1)证明:∵点I是∠ABC的内心
∴CI平分∠ACB
∴∠ACD=∠BCD
∴弧AD=弧BD
∴AD=BD
(2)AB=DI
理由:∵∠ACB=120°,∠ACD=∠BCD
∴∠BCD=×120°=60°
∵弧BD=弧BD
∴∠DAB=∠BCD=60°
∵AD=BD
∴△ABD是等边三角形,
∴AB=BD,∠ABD=∠C
∵I是△ABC的内心
∴BI平分∠ABC
∴∠CBI=∠ABI
∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD
∴∠BID=∠IBD
∴ID=BD
∵AB=BD
∴AB=DI
(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧
∵∠ACB=120°,弧AD=弧BD
∴∠AED=∠ACB=×120°=60°
∵圆的半径为2,DE是直径
∴DE=4,∠EAD=90°
∴AD=sin∠AED×DE=×4=2
∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,
∴∠ADB=60°
∴弧AB的度数为120°,
∴弧AM、弧BF的度数都为为40°
∴∠ADM=20°=∠FAB
∴∠DAI1=∠FAB+∠DAB=80°
∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°
∴∠DAI1=∠AI1D
∴AD=I1D=2
∴弧I1I2的长为:
点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.
11.如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接O C、BC、CE.
(1)求证:CD是⊙O的切线;
(2)若圆O的直径等于2,填空:
①当AD=时,四边形OADC是正方形;
②当AD=时,四边形OECB是菱形.
【答案】(1)见解析;(2)①1;②3.
【解析】
试题分析:(1)依据SSS证明△OAD≌△OCD,从而得到∠OCD=∠OAD=90°;
(2)①依据正方形的四条边都相等可知AD=OA;
②依据菱形的性质得到OE=CE,则△EOC为等边三角形,则∠CEO=60°,依据平行线的性质可知∠DOA=60°,利用特殊锐角三角函数可求得AD的长.
试题解析:解:∵AM⊥AB,
∴∠OAD=90°.
∵OA=OC,OD=OD,AD=DC,
∴△OAD≌△OCD,
∴∠OCD=∠OAD=90°.
∴OC⊥CD,
∴CD是⊙O的切线.
(2)①∵当四边形OADC是正方形,
∴AO=AD=1.
故答案为:1.
②∵四边形OECB是菱形,
∴OE=CE.
又∵OC=OE,
∴OC=OE=CE.
∴∠CEO=60°.
∵CE∥AB,
∴∠AOD=60°.
在Rt△OAD中,∠AOD=60°,AO=1,
∴AD=.
故答案为:.
点睛:本题主要考查的是切线的性质和判定、全等三角形的性质和判定、菱形的性质、等边三角形的性质和判定,特殊锐角三角函数值的应用,熟练掌握相关知识是解题的关键.
12.四边形ABCD内接于⊙O,点E为AD上一点,连接AC,CB,∠B=∠AEC.
(1)如图1,求证:CE=CD;
(2)如图2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度数;
(3)如图3,在(2)的条件下,延长CE交⊙O于点G,若tan∠BAC= 53
,EG=2,求
AE的长.
【答案】(1)见解析;(2)60°;(3)7.
【解析】
试题分析:(1)利用圆的内接四边形定理得到∠CED=∠CDE.
(2) 作CH⊥DE于H, 设∠ECH=α,由(1)CE=CD,用α表示∠CAE,∠BAC,而
∠BAD=∠BAC+∠CAE.(3)连接AG,作GN⊥AC,AM⊥EG,先证明∠CAG=∠BAC,设NG=3m,可得AN=11m,利用直角n AGM,n AEM,勾股定理可以算出m的值并求出
AE长.
试题解析:
(1)解:证明:∵四边形ABCD内接于⊙O.
∴∠B+∠D=180°,
∵∠B=∠AEC,
∴∠AEC+∠D=180°,
∵∠AEC+∠CED=180°,
∴∠D=∠CED,
∴CE=CD.
(2)解:作CH⊥DE于H.
设∠ECH=α,由(1)CE=CD,
∴∠ECD=2α,
∵∠B=∠AEC,∠B+∠CAE=120°,
∴∠CAE+∠AEC=120°,
∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,
∴∠CAE=90°﹣∠ACH=90°﹣(60°+α)=30°﹣α,∠ACD=∠ACH+∠HCD=60°+2α,
∵∠ACD=2∠BAC,
∴∠BAC=30°+α,
∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°.(3)解:连接AG,作GN⊥AC,AM⊥EG,
∵∠CED=∠AEG,∠CDE=∠AGE,∠CED=∠CDE,∴∠AEG=∠AGE,
∴AE=AG,
∴EM=MG=1
EG=1,
2
∴∠EAG =∠ECD =2α,
∴∠CAG =∠CAD +∠DAG =30°﹣α+2α=∠BAC ,
∵tan ∠BAC =5311, ∴设NG=53m ,可得AN =11m ,AG =22AG AM -=14m , ∵∠ACG =60°,
∴CN=5m ,AM =83m ,MG =
22AG AM -=2m =1, ∴m =12
, ∴CE=CD =CG ﹣EG =10m ﹣2=3, ∴AE =
22AM EM +=221+43()=7.
13.已知⊙O 中,弦AB=AC ,点P 是∠BAC 所对弧上一动点,连接PA ,PB .
(1)如图①,把△ABP 绕点A 逆时针旋转到△ACQ ,连接PC ,求证:
∠ACP+∠ACQ=180°;
(2)如图②,若∠BAC=60°,试探究PA 、PB 、PC 之间的关系.
(3)若∠BAC=120°时,(2)中的结论是否成立?若是,请证明;若不是,请直接写出它们之间的数量关系,不需证明.
【答案】(1)证明见解析;(2)PA=PB+PC .理由见解析;(3)若∠BAC=120°时,(2)3 PA=PB+PC .
【解析】
试题分析:(1)如图①,连接PC .根据“内接四边形的对角互补的性质”即可证得结论; (2)如图②,通过作辅助线BC 、PE 、CE (连接BC ,延长BP 至E ,使PE=PC ,连接CE )构建等边△PCE 和全等三角形△BEC ≌△APC ;然后利用全等三角形的对应边相等和线段间的和差关系可以求得PA=PB+PC ;
(3)如图③,在线段PC 上截取PQ ,使PQ=PB ,过点A 作AG ⊥PC 于点G .利用全等三角形△ABP ≌△AQP (SAS )的对应边相等推知AB=AQ ,PB=PG ,将PA 、PB 、PC 的数量关系转化到△APC 中来求即可.
试题解析:(1)如图①,连接PC .
∵△ACQ 是由△ABP 绕点A 逆时针旋转得到的,
∴∠ABP=∠ACQ .
由图①知,点A、B、P、C四点共圆,
∴∠ACP+∠ABP=180°(圆内接四边形的对角互补),
∴∠ACP+∠ACQ=180°(等量代换);
(2)PA=PB+PC.理由如下:
如图②,连接BC,延长BP至E,使PE=PC,连接CE.
∵弦AB=弦AC,∠BAC=60°,
∴△ABC是等边三角形(有一内角为60°的等腰三角形是等边三角形).
∵A、B、P、C四点共圆,∴∠BAC+∠BPC=180°(圆内接四边形的对角互补),∵∠BPC+∠EPC=180°,∴∠BAC=∠CPE=60°,
∵PE=PC,∴△PCE是等边三角形,∴CE=PC,∠E=∠ECP=∠EPC=60°;
又∵∠BCE=60°+∠BCP,∠ACP=60°+∠BCP,∴∠BCE=∠ACP(等量代换),
在△BEC和△APC中,
CE PC
BCE ACP
AC BC
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,∴△BEC≌△APC(SAS),∴BE=PA,
∴PA=BE=PB+PC;
(3)若∠BAC=120°时,(2)中的结论不成立,3 PA=PB+PC.理由如下:
如图③,在线段PC上截取PQ,使PQ=PB,过点A作AG⊥PC于点G.
∵∠BAC=120°,∠BAC+∠BPC=180°,∴∠BPC=60°.
∵弦AB=弦AC,∴∠APB=∠APQ=30°.
在△ABP和△AQP中,
PB PQ
APB APQ
AP AP
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,∴△ABP≌△AQP(SAS),
∴AB=AQ,PB=PQ(全等三角形的对应边相等),∴AQ=AC(等量代换).
在等腰△AQC中,QG=CG.
在Rt△APG中,∠APG=30°,则AP=2AG,PG=3AG,
∴PB+PC=PG﹣QG+PG+CG=PG﹣QG+PG+QG=2PG=23AG,
∴3PA=23AG,即3PA=PB+PC.
【点睛】本题考查了圆的综合题,解题的关键要能掌握和灵活运用圆心角、弧、弦间的关系,全等三角形的判定与性质,圆内接四边形的性质等.
14.如图,AB是⊙O的直径,弦BC=OB,点D是»AC上一动点,点E是CD中点,连接BD分别交OC,OE于点F,G.
(1)求∠DGE的度数;
(2)若CF OF
=
1
2
,求
BF
GF
的值;
(3)记△CFB,△DGO的面积分别为S1,S2,若
CF
OF
=k,求1
2
S
S的值.(用含
k的式子表示)
【答案】(1)∠DGE=60°;(2)
7
2
;(3)1
2
S
S=
21
1
k k
k
++
+
.
【解析】
【分析】
(1)根据等边三角形的性质,同弧所对的圆心角和圆周角的关系,可以求得∠DGE的度数;
(2)过点F作FH⊥AB于点H设CF=1,则OF=2,OC=OB=3,根据勾股定理求出BF的长度,再证得△FGO∽△FCB,进而求得
BF
GF
的值;
(3)根据题意,作出合适的辅助线,然后根据三角形相似、勾股定理可以用含k的式子表
示出1
2
S
S的值.
【详解】
解:(1)∵BC=OB=OC,
∴∠COB=60°,
∴∠CDB=1
2
∠COB=30°,
∵OC=OD,点E为CD中点,
∴OE⊥CD,
∴∠GED=90°,
∴∠DGE=60°;
(2)过点F作FH⊥AB于点H
设CF=1,则OF=2,OC=OB=3
∵∠COB=60°
∴OH =12
OF =1, ∴HF
HB =OB ﹣OH =2,
在Rt △BHF 中,BF ==
由OC =OB ,∠COB =60°得:∠OCB =60°,
又∵∠OGB =∠DGE =60°,
∴∠OGB =∠OCB ,
∵∠OFG =∠CFB ,
∴△FGO ∽△FCB , ∴OF GF BF CF
=, ∴
, ∴BF GF =72
. (3)过点F 作FH ⊥AB 于点H ,
设OF =1,则CF =k ,OB =OC =k+1,
∵∠COB =60°,
∴OH =12OF=12
,
∴HF
=
,HB =OB ﹣OH =k+12, 在Rt △BHF 中,
BF =
由(2)得:△FGO ∽△FCB , ∴GO OF
CB BF
=,即1GO k =+, ∴GO
=
过点C 作CP ⊥BD 于点P
∵∠CDB =30°
∴PC =12
CD , ∵点E 是CD 中点,
∴DE =
12
CD , ∴PC =DE ,
∵DE ⊥OE ,
∴12S S
=BF GO =22111
k k k k k +++++=211k k k +++
【点睛】
圆的综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用三角形相似和勾股定理、数形结合的思想解答.
15.如图,AB 是半圆⊙O 的直径,点C 是半圆⊙O 上的点,连接AC ,BC ,点E 是AC 的中点,点F 是射线OE 上一点.
(1)如图1,连接FA ,FC ,若∠AFC =2∠BAC ,求证:FA ⊥AB ;
(2)如图2,过点C 作CD ⊥AB 于点D ,点G
是线段CD 上一点(不与点C 重合),连接FA ,FG ,FG 与AC 相交于点P ,且AF =FG .
①试猜想∠AFG 和∠B 的数量关系,并证明;
②连接OG ,若OE =BD ,∠GOE =90°,⊙O 的半径为2,求EP 的长.
【答案】(1)见解析;(2)①结论:∠GFA =2∠ABC .理由见解析;②PE =
36
. 【解析】
【分析】 (1)证明∠OFA =∠BAC ,由∠EAO +∠EOA =90°,推出∠OFA +∠AOE =90°,推出∠FAO =90°即可解决问题.
(2)①结论:∠GFA =2∠ABC .连接FC .由FC =FG =FA ,以F 为圆心FC 为半径作⊙F .因为»»AG AG =,推出∠GFA =2∠ACG ,再证明∠ACG =∠ABC .
②图2﹣1中,连接AG ,作FH ⊥AG 于H .想办法证明∠GFA =120°,求出EF ,OF ,OG 即可解决问题.
【详解】
(1)证明:连接OC.
∵OA=OC,EC=EA,
∴OF⊥AC,
∴FC=FA,
∴∠OFA=∠OFC,
∵∠CFA=2∠BAC,
∴∠OFA=∠BAC,
∵∠OEA=90°,
∴∠EAO+∠EOA=90°,
∴∠OFA+∠AOE=90°,
∴∠FAO=90°,
∴AF⊥AB.
(2)①解:结论:∠GFA=2∠ABC.
理由:连接FC.
∵OF垂直平分线段AC,
∴FG=FA,
∵FG=FA,
∴FC=FG=FA,以F为圆心FC为半径作⊙F.∵»»
,
AG AG
∴∠GFA=2∠ACG,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵CD⊥AB,
∴∠ABC+∠BCA=90°,
∵∠BCD+∠ACD=90°,
∴∠ABC=∠ACG,
∴∠GFA =2∠ABC .
②如图2﹣1中,连接AG ,作FH ⊥AG 于H .
∵BD =OE ,∠CDB =∠AEO =90°,∠B =∠AOE ,
∴△CDB ≌△AEO (AAS ),
∴CD =AE ,
∵EC =EA ,
∴AC =2CD .
∴∠BAC =30°,∠ABC =60°,
∴∠GFA =120°,
∵OA =OB =2,
∴OE =1,AE =
,BA =4,BD =OD =1, ∵∠GOE =∠AEO =90°,
∴OG ∥AC , 323DG OG ∴==, 222213AG DG AD ∴=+=
, ∵FG =FA ,FH ⊥AG ,
∴AH =HG 21∠AFH =60°, ∴AF =27sin 60AH ︒=, 在Rt △AEF 中,EF 2213AF AE -=, ∴OF =OE +EF =
43 , ∵PE ∥OG , ∴PE EF OG 0F
=, ∴1
34
233=,
∴PE =36 . 【点睛】 圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
16.如图,在△ABC 中,AB =AC ,以AC 为直径作⊙O 交BC 于点D ,过点D 作FE ⊥AB 于点E ,交AC 的延长线于点F .
(1)求证:EF 与⊙O 相切;
(2)若AE =6,sin ∠CFD =35
,求EB 的长.
【答案】(1)见解析(2)
32
【解析】
【分析】 ()1如图,欲证明EF 与O e 相切,只需证得OD EF ⊥.
()2通过解直角AEF V 可以求得AF 10.=设O e 的半径为r ,由已知可得△FOD ∽△FAE ,继而得到OF OD AF AE =,即10r r 106-=,则易求15AB AC 2r 2
===,所以153EB AB AE 622
=-=
-=. 【详解】 (1)如图,连接OD ,
OC OD =Q ,
OCD ODC ∠∠∴=.
AB AC =Q ,
ACB B ∠∠∴=,
ODC B ∠∠∴=,
OD //AB ∴,
ODF AEF ∠∠∴=,
EF AB ⊥Q ,
ODF AEF 90∠∠∴==o ,
OD EF ∴⊥,
OD Q 是O e 的半径,
EF ∴与O e 相切;
()2由()1知,OD//AB ,OD EF ⊥.
在Rt AEF V 中,AE 3sin CFD AF 5
∠=
=,AE 6=, 则AF 10=, OD //AB Q ,
∴△FOD ∽△FAE ,
OF OD AF AE
∴=, 设O e 的半径为r ,
10r r 106-∴
=, 解得,15r 4
=, 15AB AC 2r 2
∴===, 153EB AB AE 622∴=-=
-=. 【点睛】
本题考查了切线的判定、相似三角形的判定与性质、解直角三角形的应用等,正确添加辅助线、灵活应用相关知识是解题的关键.。