中考数学培优易错试卷(含解析)之圆与相似附答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学培优易错试卷(含解析)之圆与相似附答案解析
一、相似
1.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于点A(﹣1,0)和点B,与y轴交于点C,对称轴为直线x=1.
(1)求点C的坐标(用含a的代数式表示);
(2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式;
(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标.
【答案】(1)解:∵抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,
而抛物线与x轴的一个交点A的坐标为(﹣1,0)
∴抛物线与x轴的另一个交点B的坐标为(3,0)
设抛物线解析式为y=a(x+1)(x﹣3),
即y=ax2﹣2ax﹣3a,
当x=0时,y=﹣3a,
∴C(0,﹣3a)
(2)解:∵A(﹣1,0),B(3,0),C(0,﹣3a),
∴AB=4,OC=3a,
∴S△ACB= AB•OC=6,
∴6a=6,解得a=1,
∴抛物线解析式为y=x2﹣2x﹣3
(3)解:设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图,
∵点G与点C,点F与点A关于点Q成中心对称,
∴QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3,
∴OF=2m+1,HF=1,
当∠CGF=90°时,
∵∠QGH+∠FGH=90°,∠QGH+∠GQH=90°,
∴∠GQH=∠HGF,
∴Rt△QGH∽Rt△GFH,
∴ = ,即,解得m=9,
∴Q的坐标为(9,0);
当∠CFG=90°时,
∵∠GFH+∠CFO=90°,∠GFH+∠FGH=90°,
∴∠CFO=∠FGH,
∴Rt△GFH∽Rt△FCO,
∴ = ,即 = ,解得m=4,
∴Q的坐标为(4,0);
∠GCF=90°不存在,
综上所述,点Q的坐标为(4,0)或(9,0).
【解析】【分析】(1)根据抛物线是轴对称图形和已知条件可求得抛物线与x轴的另一个交点B的坐标,再用交点式可求得抛物线的解析式,然后根据抛物线与y轴交于点C可得x=0,把x=0代入解析式即可求得点C的坐标;
(2)由(1)的结论可求得AB=4,OC=3a,根据三角形ABC的面积=AB•OC=6可求得a的值,则解析式可求解;
(3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,根据中心对称的性质可得QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3。
分两种情况讨论:①当∠CGF=90°时,由同角的余角相等可得∠GQH=∠HGF,于是根据有两个角相等的两个三角形相似可得
Rt△QGH∽Rt△GFH,则可得比例式,代入可求得m的值,则点Q的坐标可求解;
②当∠CFG=90°时,同理可得另一个Q坐标。
2.如图,抛物线y= x2+bx+c 与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点.
(1)求抛物线的解析式及点D的坐标;
(2)如图1,抛物线的对称轴与x轴交于点E,连接BD,点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;
(3)如图2,若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,求点Q的坐标.
【答案】(1)解:把B(6,0),C(0,6)代入y= x2+bx+c,得
解得 ,抛物线的解析式是y= x2+2x+6, 顶点D的坐标是(2,8)
(2)解:如图1,过F作FG⊥x轴于点G,
设F(x, x2+2x+6),则FG= ,
∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴,
∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6-x,
∴
当点F在x轴上方时,有,∴x=-1或x=6(舍去),此时F1的坐标为(-1,),
当点F在x轴下方时,有,∴x=-3或x=6(舍去),此时F2的坐标为(-3,),
综上可知F点的坐标为(-1,)或(-3,)
(3)解:如图2,
不妨M在对称轴的左侧,N在对称轴的左侧,MN和PQ交于点K,由题意得点M,N关于抛物线的对称轴对称,四边形MPNQ为正方形,且点P在x轴上
∴点P为抛物线的对称轴与x轴的交点,点Q在抛物线的对称轴上 ,
∴KP=KM=k,则Q(2,2k),M坐标为(2-k,k),
∵点M在抛物线y= x2+2x+6的图象上,∴k= (2-k)2+2(2-k)+6
解得k1= 或k2=
∴满足条件的点Q有两个,Q1(2,)或Q2(2,).
【解析】【分析】(1)根据点B、C的坐标,利用待定系数法建立关于b、c的方程组,求解就可得出函数解析式,再求出顶点坐标。
(2)过F作FG⊥x轴于点G,设出点F的坐标,表示出FG的长,再证明△FBG∽△BDE,利用相似三角形的性质建立关于x的方程,当点F在x轴上方时和当点F在x轴下方时,求出符合题意的x的值,求出点F的坐标。
(3)由点M,N关于抛物线的对称轴对称,可得出点P为抛物线的对称轴与x轴的交点,点Q在抛物线的对称轴上,设Q(2,2k),M坐标为(2-k,k),再由点M在抛物线上,列出关于k的方程,求解即可得出点Q的坐标。
3.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕
点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q
(1)【探究一】在旋转过程中,
①如图2,当时,EP与EQ满足怎样的数量关系?并给出证明.________
②如图3,当时E P与EQ满足怎样的数量关系?,并说明理由.________
③根据你对(1)、(2)的探究结果,试写出当时,EP与EQ满足的数量关系式
为________,其中的取值范围是________(直接写出结论,不必证明)
(2)【探究二】若且AC=30cm,连续PQ,设△EPQ的面积为S(cm2),在旋转过程中:
①S是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.
②随着S取不同的值,对应△EPQ的个数有哪些变化?不出相应S值的取值范围.
【答案】(1)解:当时,PE=QE.即E为AC中点,理由如下:
连接BE,
∵△ABC是等腰直角三角形,
∴BE=CE,
∠PBE=∠C=45°,
又∵∠PEB+∠BEQ=90°,∠CEQ+∠BEQ=90°,
∴∠PEB=∠CEQ,
在△PEB和△QEC中,
∵ ,
∴△PEB≌△QEC(ASA),
∴PE=QE.
;EP:EQ=EA:EC=1:2;理由如下:
作EM⊥AB,EN⊥BC,
∴∠EMP=∠ENQ=90°,
又∵∠PEN+∠MEP=∠PEN+∠NEQ=90°,
∴∠MEP=∠NEQ,
∴△MEP∽△NEQ,
∴EP:EQ=ME:NE,
又∵∠EMA=∠ENC=90°,∠A=∠C,
∴△MEA∽△NEC,
∴ME:NE=EA:EC,
∵ ,
∴EP:EQ=EA:EC=1:2.
;EP:EQ=1:m;0<m≤2+
(2)解:①存在.
由【探究一】中(2)知当时,EP:EQ=EA:EC=1:2;设EQ=x,则EP= x,
∴S= ·EP·EQ= ·x· x= x2,
当EQ⊥BC时,EQ与EN重合时,面积取最小,
∵AC=30,△ABC是等腰直角三角形,
∴AB=BC=15 ,
∵,AC=30,
∴AE=10,CE=20,
在等腰Rt△CNE中,
∴NE=10 ,
∴当x=10 时,S min=50(cm2);
当EQ=EF时,S取得最大,
∵AC=DE=30,∠DEF=90°,∠EDF=30°,
在Rt△DEF中,
∴tan30°= ,
∴EF=30× =10 ,此时△EPQ面积最大,
∴S max=75(cm2);
②由(1)知CN=NE=5 ,BC=15 ,
∴BN=10 ,
在Rt△BNE中,
∴BE=5 ,
∴当x=BE=5 时,S=62.5cm2,
∴当50<S≤62.5时,这样的三角形有2个;
当S=50或62.5<S≤75时,这样的三角形有1个.
【解析】【解答】(1)③作EM⊥AB,EN⊥BC,
∵∠B=∠PEQ=90°,
∴∠EPB+∠EQB=180°,
又∵∠EPB+∠EPM=180°,
∴∠EQB=∠EPM,
∴△MEP∽△NEQ,
∴EP:EQ=ME:NE,
又∵∠EMA=∠ENC=90°,∠A=∠C,
∴△MEA∽△NEC,
∴ME:NE=EA:EC,
∵ ,
∴EP:EQ=EA:EC=1:m,
∴EP与EQ满足的数量关系式为EP:EQ=1:m,
∴0<m≤2+ (当m>2+ 时,EF与BC不会相交).
【分析】【探究一】①根据已知条件得E为AC中点,连接BE,根据等腰直角三角形的性质可BE=CE,∠PBE=∠C=45°,由同角的余角相等得∠PEB=∠CEQ,由全等三角形的判定ASA可得△PEB≌△QEC,再由全等三角形的性质得PE=QE.
②作EM⊥AB,EN⊥BC,由相似三角形的判定分别证△MEP∽△NEQ,△MEA∽△NEC,再由相似三角形的性质得EP:EQ=ME:NE=EA:EC,从而求得答案.
③作EM⊥AB,EN⊥BC,由相似三角形的判定分别证△MEP∽△NEQ,△MEA∽△NEC,再由相似三角形的性质得EP:EQ=ME:NE=EA:EC,从而求得答案.
【探究二】①设EQ=x,根据【探究一】(2)中的结论可知则EP= x,根据三角形面积公式得出S的函数关系式,再根据当EQ⊥BC时,EQ与EN重合时,面积取最小;当EQ=EF 时,S取得最大;代入数值计算即可得出答案.
②根据(1)中数据求得当EQ与BE重合时,△EPQ的面积,再来分情况讨论即可.
4.
(1)【发现】如图①,已知等边,将直角三角形的角顶点任意放在边
上(点不与点、重合),使两边分别交线段、于点、
.
①若,,,则 ________;
②求证: .________
(2)【思考】若将图①中的三角板的顶点在边上移动,保持三角板与、的两个交点、都存在,连接,如图②所示.问点是否存在某一位置,使平分
且平分?若存在,求出的值;若不存在,请说明理由.
(3)【探索】如图③,在等腰中,,点为边的中点,将三角形透明纸板的一个顶点放在点处(其中),使两条边分别交边、于点、(点、均不与的顶点重合),连接 .设,则与的周长
之比为________(用含的表达式表示).
【答案】(1)解:4;证明:∵∠EDF=60°,∠B=160°∴∠CDF+∠BDE=120°,∠BED+∠BDE=120°,
∴∠BED=∠CDF,
又∵∠B=∠C,
∴
(2)解:解:存在。
如图,作DM⊥BE,DG⊥EF,DN⊥CF,垂足分别为M,G,N,
∵平分且平分,
∴DM=DG=DN,
又∵∠B=∠C=60°,∠BMD=∠CND=90°,
∴△BDM≅△CDN,
∴BD=CD,
即点D是BC的中点,
∴。
(3)1-cosα
【解析】【解答】(1)①∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°,∵AE=4,∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BDE=60°,又∵∠EDF=60°,∴∠CDF=180°-∠EDF-∠B=60°,则∠CDF =∠C=60°,
∴△CDF是等边三角形,∴CF=CD=BC-BD=6-2=4。
( 3 )连结AO,作OG⊥BE,OD⊥EF,OH⊥CF,垂足分别为G,D,H,
则∠BGO=∠CHO=90°,
∵AB=AC,O是BC的中点
∴∠B=∠C,OB=OC,
∴△OBG≅△OCH,
∴OG=OH,GB=CH,∠BOG=∠COH=90°−α,
则∠GOH=180°-(∠BOG+∠COH)=2α,
∵∠EOF=∠B=α,
则∠GOH=2∠EOF=2α,
由(2)题可猜想应用EF=ED+DF=EG+FH(可通过半角旋转证明),
则 =AE+EF+AF=AE+EG+FH+AF=AG+AH=2AG,
设AB=m,则OB=mcosα,GB=mcos2α,
【分析】(1)①先求出BE的长度后发现BE=BD的,又∠B=60°,可知△BDE是等边三角形,可得∠BDE=60°,另外∠EDF=60°,可证得△CDF是等边三角形,从而CF=CD=BC-BD;
②证明,这个模型可称为“一线三等角·相似模型”,根据“AA”判定相似;(2)【思考】由平分线可联系到角平分线的性质“角平分线上的点到角两边的距离相等”,可过D作DM⊥BE,DG⊥EF,DN⊥CF,则DM=DG=DN,从而通过证明△BDM≅△CDN可得BD=CD;(3)【探索】由已知不难求得
=2(m+mcos),则需要用m和α的三角函数表示出, =AE+EF+AF;题中直接已知O是BC的中点,应用(2)题的方法和结论,作OG⊥BE,OD⊥EF,OH⊥CF,可得EG=ED,FH=DF,则 =AE+EF+AF= AG+AH=2AG,而AG=AB-OB,从而可求得。
5.在平面直角坐标系中,抛物线经过点,、,,其中、
是方程的两根,且,过点的直线与抛物线只有一个公共点
(1)求、两点的坐标;
(2)求直线的解析式;
(3)如图2,点是线段上的动点,若过点作轴的平行线与直线相交于点,与抛物线相交于点,过点作的平行线与直线相交于点,求的长. 【答案】(1)解:∵x1、x2是方程x2-2x-8=0的两根,且x1<x2,
∴x1=-2,x2=4,
∴A(-2,2),C(4,8)
(2)解:①设直线l的解析式为y=kx+b(k≠0),
∵A(-2,2)在直线l上,
∴2=-2k+b,
∴b=2k+2,
∴直线l的解析式为y=kx+2k+2①,
∵抛物线y= x2②,
联立①②化简得,x2-2kx-4k-4=0,
∵直线l与抛物线只有一个公共点,
∴△=(2k)2-4(-4k-4)=4k2+16k+16=4(k2+4k+4)=4(k+2)2=0,
∴k=-2,
∴b=2k+2=-2,
∴直线l的解析式为y=-2x-2;
②平行于y轴的直线和抛物线y= x2只有一个交点,
∵直线l过点A(-2,2),
∴直线l:x=-2
(3)解:由(1)知,A(-2,2),C(4,8),
∴直线AC的解析式为y=x+4,
设点B(m,m+4),
∵C(4.8),
∴BC= |m-4|= (4-m)
∵过点B作y轴的平行线BE与直线l相交于点E,与抛物线相交于点D,
∴D(m, m2),E(m,-2m-2),
∴BD=m+4- m2, BE=m+4-(-2m-2)=3m+6,
∵DC∥EF,
∴△BDC∽△BEF,
∴,
∴,
∴BF=6 .
【解析】【分析】(1)解一元二次方程即可得出点A,C坐标;(2)先设出直线l的解析式,再联立抛物线解析式,用△=0,求出k的值,即可得出直线l的解析式;(3)设出点B的坐标,进而求出BC,再表示出点D,E的坐标,进而得出BD,BE,再判断出△BDC∽△BEF得出比例式建立方程即可求出BF.
6.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5与x轴交于A,点B,与y轴交于点C,过点C作CD⊥y轴交抛物线于点D,过点B作BE⊥x轴,交DC延长线于点E,连接BD,交y轴于点F,直线BD的解析式为y=﹣x+2.
(1)写出点E的坐标;抛物线的解析式.
(2)如图2,点P在线段EB上从点E向点B以1个单位长度/秒的速度运动,同时,点Q 在线段BD上从点B向点D以个单位长度/秒的速度运动,当一个点到达终点时,另一个点随之停止运动,当t为何值时,△PQB为直角三角形?
(3)如图3,过点B的直线BG交抛物线于点G,且tan∠ABG=,点M为直线BG上方抛物线上一点,过点M作MH⊥BG,垂足为H,若HF=MF,请直接写出满足条件的点M 的坐标.
【答案】(1)解:将点D(-3,5)点B(2,0)代入y=ax2+bx+5
解得
∴抛物线解析式为:y=- x2- x+5
(2)解:由已知∠QBE=45°,PE=t,PB=5-t,QB= t
当∠QPB=90°时,△PQB为直角三角形.
∵∠QBE=45°
∴QB= PB
∴ t=(5−t)
解得t=
当∠PQB=90°时,△PQB为直角三角形.
△BPQ∽△BDE
∴BQ•BD=BP•BE
∴5(5-t)= t•5
解得:t=
∴t= 或时,△PQB为直角三角形
(3)点M坐标为(﹣4,3)或(0,5).
【解析】【解答】(3)由已知tan∠ABG= ,且直线GB过B点
则直线GB解析式为:y= x−1
延长MF交直线BG于点K
∵HF=MF
∴∠FMH=∠FHM
∵MH⊥BG时
∴∠FMH+∠MKH=90°
∠FHK+∠FHM=90°
∴∠FKH=∠FHK
∴HF=KF
∴F为MK中点
设点M坐标为(x,- x2- x+5)
∵F(0,2)
∴点K坐标为(-x, x2+ x-1)
把K点坐标代入y= x−1
解得x1=0,x2=-4,
把x=0代入y=- x2- x+5,解得y=5,
把x=-4代入y=- x2- x+5
解得y=3
则点M坐标为(-4,3)或(0,5)
【分析】(1)由待定系数法求点坐标及函数关系式;(2)根据题意,△DEB为等腰直角三角形,通过分类讨论∠PQB=90°或∠QPB=90°的情况求出满足条件t值;(3)延长MF交GB于K,由∠MHK=90°,HF=MF可推得HF=FK,即F为MK中点,设出M坐标,利用中点坐标性质,表示K点坐标,代入GB解析式,可求得点M坐标.
7.已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A.
(1)判断直线BD与⊙O的位置关系,并证明你的结论;
(2)若AD:AO=8:5,BC=2,求BD的长.
【答案】(1)解:BD是⊙O的切线;
理由如下:∵OA=OD,∴∠ODA=∠A
∵∠CBD=∠A,∴∠ODA=∠CBD,
∵∠C=90°,∴∠CBD+∠CDB=90°,
∴∠ODA+∠CDB=90°,∴∠ODB=90°,即BD⊥OD,
∴BD是⊙O的切线
(2)解:设AD=8k,则AO=5k,AE=2OA=10k,
∵AE是⊙O的直径,∴∠ADE=90°,
∴∠ADE=∠C,
又∵∠CBD=∠A,∴△ADE∽△BCD,
∴,即,
解得:BD= .所以BD的长是
【解析】【分析】(1)由等腰三角形的性质和已知得出∠ODA=∠CBD,由直角三角形的性质得出∠CBD+∠CDB=90°,因此∠ODA+∠CDB=90°,得出∠ODB=90°,即可得出结论;(2)设AD=8k,则AO=5k,AE=2OA=10k,由圆周角定理得出∠ADE=90°,△ADE∽△BCD,
得出对应边成比例,即可求出BD的长.
8.如图,抛物线y=a(x﹣m﹣1)2+2m(其中m>0)与其对称轴l相交于点P.与y轴相交于点A(0,m)连接并延长PA、PO,与x轴、抛物线分别相交于点B、C,连接BC将△PBC绕点P逆时针旋转,使点C落在抛物线上,设点C、B的对应点分别是点B′和C′.
(1)当m=1时,该抛物线的解析式为:________.
(2)求证:∠BCA=∠CAO;
(3)试问:B B′+BC﹣BC′是否存在最小值?若存在,求此时实数m的值,若不存在,请说明理由.
【答案】(1)y=﹣ x2+x+1
(2)证明:把点P、A的坐标代入一次函数表达式:y=kx+b得:
,解得:,
则直线PA的表达式为:y= x+m,
令y=0,解得:x=﹣m﹣1,即点B坐标为(﹣m﹣1,0),
同理直线OP的表达式为:y=x…②,
将①②联立得:a(x﹣m﹣1)2+2m﹣ x=0,其中a=﹣,
该方程的常数项为:a(m+1)2+2m,
由韦达定理得:x1x2=x C•x P===﹣(m+1)2,
其中x P=m+1,
则x C=﹣m﹣1=x B,
∴BC∥y轴,
∴∠BCA=∠CAO
(3)解:如图当点B′落在BC′所在的直线时,BB′+BC﹣BC′存在最小值,
设:直线l与x轴的交点为D点,连接BB′、CC′,
∵点C关于l的对称点为C′,
∴CC′⊥l,而OD⊥l,∴CC′∥OD,∴∠POD=∠PCC′,
∵∠PB′C′+∠PB′B=180°,
△PB′C′由△PBC旋转而得,
∴∠PBC=∠PB′C′,PB=PB′,∠BPB′=∠CPC′,
∴∠PBC+∠PB′B=180°,
∵BC∥AO,
∴∠ABC+∠BAO=180°,
∴∠PB′B=∠BAO,
∵PB=PB′,PC=PC′,
∴∠PB′B=∠PBB′=,
∴∠PCC′=∠PC′C=,
∴∠PB′B=∠PCC′,
∴∠BAO=∠PCC′,
而∠POD=∠PCC′,
∴∠BAO=∠POD,
而∠POD=∠BAO=90°,
∴△BAO∽△POD,
∴,
将BO=m+1,PD=2m,AO=m,OD=m+1代入上式并解得:
m=1+ (负值已舍去)
【解析】【解答】解:(1)把点A的坐标代入二次函数表达式得:m=a(﹣m﹣1)2+2m,解得:a=﹣,
则二次函数的表达式为:y=﹣(x﹣m﹣1)2+2m…①,
则点P的坐标为(m+1,2m),点A的坐标为(0,m),
把m=1代入①式,整理得:y=﹣ x2+x+1,
故:答案为:y=﹣ x2+x+1;
【分析】(1)把点A的坐标代入二次函数表达式得:m=a(﹣m﹣1)2+2m,解得:a=
﹣,把m=1代入上式,即可求解;(2)求出点B、C的坐标,即可求解;(3)当点B′落在BC′所在的直线时,BB′+BC﹣BC′存在最小值,证△BAO∽△POD,即可求解.
二、圆的综合
9.如图,⊙A过▱OBCD的三顶点O、D、C,边OB与⊙A相切于点O,边BC与⊙O相交于点H,射线OA交边CD于点E,交⊙A于点F,点P在射线OA上,且∠PCD=2∠DOF,以O为原点,OP所在的直线为x轴建立平面直角坐标系,点B的坐标为(0,﹣2).
(1)若∠BOH=30°,求点H的坐标;
(2)求证:直线PC是⊙A的切线;
(3)若OD=10,求⊙A的半径.
【答案】(1)(132)详见解析;(3)5 3 .
【解析】
【分析】
(1)先判断出OH=OB=2,利用三角函数求出MH,OM,即可得出结论;
(2)先判断出∠PCD=∠DAE,进而判断出∠PCD=∠CAE,即可得出结论;(3)先求出OE═3,进而用勾股定理建立方程,r2-(3-r)2=1,即可得出结论.【详解】
(1)解:如图,过点H作HM⊥y轴,垂足为M.
∵四边形OBCD是平行四边形,
∴∠B=∠ODC
∵四边形OHCD是圆内接四边形
∴∠OHB=∠ODC
∴∠OHB=∠B
∴OH=OB=2
∴在Rt△OMH中,
∵∠BOH=30°,
∴MH=1
2
OH=1,OM=3MH=3,
∴点H的坐标为(1,﹣3),
(2)连接AC.
∵OA=AD,
∴∠DOF=∠ADO
∴∠DAE=2∠DOF
∵∠PCD=2∠DOF,
∴∠PCD=∠DAE
∵OB与⊙O相切于点A
∴OB⊥OF
∵OB∥CD
∴CD⊥AF
∴∠DAE=∠CAE
∴∠PCD=∠CAE
∴∠PCA=∠PCD+∠ACE=∠CAE+∠ACE=90°∴直线PC是⊙A的切线;
(3)解:⊙O的半径为r.
在Rt△OED中,DE=1
2
CD=
1
2
OB=1,OD=10,
∴OE═3
∵OA=AD=r,AE=3﹣r.
在Rt△DEA中,根据勾股定理得,r2﹣(3﹣r)2=1
解得r=5
3
.
【点睛】
此题是圆的综合题,主要考查了平行四边形的性质,圆内接四边形的性质,勾股定理,切线的性质和判定,构造直角三角形是解本题的关键.
10.如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.
(1)求∠AOC的度数;
(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;
(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.
【答案】(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣23)、M2(﹣2,﹣23)、M3(﹣2,23)、M4(2,23).
【解析】
【分析】
(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.
(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.
【详解】
(1)∵OA=OC,∠OAC=60°,
∴△OAC是等边三角形,
故∠AOC=60°.
(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;
∴AC=1
OP,因此△OCP是直角三角形,且∠OCP=90°,
2
而OC是⊙O的半径,
故PC与⊙O的位置关系是相切.
(3)如图;有三种情况:
①取C 点关于x 轴的对称点,则此点符合M 点的要求,此时M 点的坐标为:M 1(2,﹣23); 劣弧MA 的长为:60441803ππ⨯=; ②取C 点关于原点的对称点,此点也符合M 点的要求,此时M 点的坐标为:M 2(﹣2,﹣23);
劣弧MA 的长为:120481803
ππ⨯=; ③取C 点关于y 轴的对称点,此点也符合M 点的要求,此时M 点的坐标为:M 3(﹣2,23);
优弧MA 的长为:2404161803
ππ⨯=; ④当C 、M 重合时,C 点符合M 点的要求,此时M 4(2,23); 优弧MA 的长为:3004201803
ππ⨯=; 综上可知:当S △MAO =S △CAO 时,动点M 所经过的弧长为
481620,,,3333ππππ对应的M 点坐标分别为:M 1(2,﹣23)、M 2(﹣2,﹣23)、M 3(﹣2,23)、M 4(2,23).
【点睛】
本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.
11.如图,AB 为O e 的直径,弦//CD AB ,E 是AB 延长线上一点,CDB ADE ∠=∠. ()1DE 是O e 的切线吗?请说明理由;
()2求证:2AC CD BE =⋅.
【答案】(1)结论:DE 是O e 的切线,理由见解析;(2)证明见解析.
【解析】
【分析】
(1)连接OD ,只要证明OD DE ⊥即可;
(2)只要证明:AC BD =,CDB DBE V V ∽即可解决问题.
【详解】
()1解:结论:DE 是O e 的切线.
理由:连接OD .
CDB ADE ∠=∠Q ,
ADC EDB ∴∠=∠,
//CD AB Q ,
CDA DAB ∴∠=∠,
OA OD =Q ,
OAD ODA ∴∠=∠,
ADO EDB ∴∠=∠,
AB Q 是直径,
90ADB ∴∠=o ,
90ADB ODE ∴∠=∠=o ,
DE OD ∴⊥,
DE ∴是O e 的切线.
()2//CD AB Q ,
ADC DAB ∴∠=∠,CDB DBE ∠=∠,
AC BD ∴=n n
, AC BD ∴=,
DCB DAB ∠=∠Q ,EDB DAB ∠=∠,
EDB DCB ∴∠=∠,
CDB ∴V ∽DBE V ,
CD DB BD BE
∴=, 2BD CD BE ∴=⋅,
2AC CD BE ∴=⋅.
【点睛】
本题考查相似三角形的判定和性质、圆周角定理、切线的判定等知识,解题的关键是学会添加常用辅助线,准确寻找相似三角形解决问题,属于中考常考题型.
12.在⊙O 中,点C 是AB u u u r
上的一个动点(不与点A ,B 重合),∠ACB=120°,点I 是∠ABC 的内心,CI 的延长线交⊙O 于点D ,连结AD,BD .
(1)求证:AD=BD.
(2)猜想线段AB与DI的数量关系,并说明理由.
(3)若⊙O的半径为2,点E,F是»AB的三等分点,当点C从点E运动到点F时,求点I 随之运动形成的路径长.
【答案】(1)证明见解析;(2)AB=DI,理由见解析(3)23
【解析】
分析:(1)根据内心的定义可得CI平分∠ACB,可得出角相等,再根据圆周角定理,可证得结论;
(2)根据∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度数,再根据AD=BD,可证得
△ABD是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD,得出
ID=BD,再根据AB=BD,即可证得结论;
(3)连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I 随之运动形成的路径长.
详解:(1)证明:∵点I是∠ABC的内心
∴CI平分∠ACB
∴∠ACD=∠BCD
∴弧AD=弧BD
∴AD=BD
(2)AB=DI
理由:∵∠ACB=120°,∠ACD=∠BCD
∴∠BCD=×120°=60°
∵弧BD=弧BD
∴∠DAB=∠BCD=60°
∵AD=BD
∴△ABD是等边三角形,
∴AB=BD,∠ABD=∠C
∵I是△ABC的内心
∴BI平分∠ABC
∴∠CBI=∠ABI
∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD
∴∠BID=∠IBD
∴ID=BD
∵AB=BD
∴AB=DI
(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧
∵∠ACB=120°,弧AD=弧BD
∴∠AED=∠ACB=×120°=60°
∵圆的半径为2,DE是直径
∴DE=4,∠EAD=90°
∴AD=sin∠AED×DE=×4=2
∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,
∴∠ADB=60°
∴弧AB的度数为120°,
∴弧AM、弧BF的度数都为为40°
∴∠ADM=20°=∠FAB
∴∠DAI1=∠FAB+∠DAB=80°
∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°
∴∠DAI1=∠AI1D
∴AD=I1D=2
∴弧I1I2的长为:
点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.
13.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足若
1
3 CF
DF
=,
连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.
(1)求证:△ADF∽△AED;
(2)求FG的长;
(3)求tan∠E的值.
【答案】(1)证明见解析
5
【解析】
分析:(1)由AB是 O的直径,弦CD⊥AB,根据垂径定理可得:弧AD=弧AC,DG=CG,
继而证得△ADF∽△AED;(2)由
1
3
CF
FD
= ,CF=2,可求得DF的长,继而求得CG=DG=4,
则可求得FG=2;(3)由勾股定理可求得AG的长,即可求得tan∠ADF的值,继而求得tan∠
5
本题解析:①∵AB是⊙O的直径,弦CD⊥AB,
∴DG=CG,∴»»
AD AC
=,∠ADF=∠AED,
∵∠FAD=∠DAE(公共角),∴△ADF∽△AED;
②∵
1
3
CF
FD
=,CF=2,∴FD=6,∴CD=DF+CF=8,
∴CG=DG=4,∴FG=CG-CF=2;
③∵AF=3,FG=2,∴225
AF FG
-=,
点睛:本题考查了相似三角形的判定与性质、圆周角定理、垂径定理、勾股定理以及三角函数等知识点,考查内容较多,综合性较强,难度适中,注意掌握数形结合的思想.
14.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD 交圆的切线BE于点E
(1)判断直线PD是否为⊙O的切线,并说明理由;
(2)如果∠BED=60°,PD=3,求PA的长;
(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.
【答案】(1)证明见解析;(2)1;(3)证明见解析.
【解析】
【分析】
(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;
(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;
(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.
【详解】
(1)直线PD为⊙O的切线,
理由如下:
如图1,连接OD,
∵AB是圆O的直径,
∴∠ADB=90°,
∴∠ADO+∠BDO=90°,
又∵DO=BO,
∴∠BDO=∠PBD,
∵∠PDA=∠PBD,
∴∠BDO=∠PDA,
∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,
∴直线PD为⊙O的切线;
(2)∵BE是⊙O的切线,
∴∠EBA=90°,
∵∠BED=60°,
∴∠P=30°,
∵PD为⊙O的切线,
∴∠PDO=90°,
在Rt△PDO中,∠P=30°,
∴0 tan30
OD
PD
=,解得OD=1,
∴PO,
∴PA=PO﹣AO=2﹣1=1;
(3)如图2,
依题意得:∠ADF=∠PDA,∠PAD=∠DAF,
∵∠PDA=∠PBD∠ADF=∠ABF,
∴∠ADF=∠PDA=∠PBD=∠ABF,
∵AB是圆O的直径,
∴∠ADB=90°,
设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,
∵四边形AFBD内接于⊙O,
∴∠DAF+∠DBF=180°,
即90°+x+2x=180°,解得x=30°,
∴∠ADF=∠PDA=∠PBD=∠ABF=30°,
∵BE、ED是⊙O的切线,
∴DE=BE,∠EBA=90°,
∴∠DBE=60°,∴△BDE是等边三角形,
∴BD=DE=BE,
又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,
∴BD=DF=BF,
∴DE=BE=DF=BF,
∴四边形DFBE为菱形.
【点睛】
本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.
15.AB 是⊙O 直径,在AB 的异侧分别有定点C 和动点P ,如图所示,点P 在半圆弧AB 上运动(不与A 、B 重合),过C 作CP 的垂线CD ,交PB 的延长线于D ,已知5AB =,BC ∶CA =4∶3.
(1)求证:AC ·CD =PC ·BC ;
(2)当点P 运动到AB 弧的中点时,求CD 的长;
(3)当点P 运动到什么位置时,PCD ∆的面积最大?请直接写出这个最大面积.
【答案】(1)证明见解析;(2)CD =
23;(3)当PC 为⊙O 直径时,△PCD 的最大面积=503
. 【解析】
【分析】
(1)由圆周角定理可得∠PCD=∠ACB=90°,可证△ABC ∽△PCD ,可得
AC BC CP CD =,即可得证.
(2)由题意可求BC=4,AC=3,由勾股定理可求CE 的长,由锐角三角函数可求PE 的长,即可得PC 的长,由AC•CD=PC•BC 可求CD 的值;
(3)当点P 在¶AB 上运动时,12PCD S PC CD =⨯⨯V ,由(1)可得:43
CD PC =,可得2142233
PCD S PC PC PC V =⨯⨯=,当PC 最大时,△PCD 的面积最大,而PC 为直径时最
大,故可求解.
【详解】
证明:(1)
∵AB 为直径,
∴∠ACB =90°
∵PC ⊥CD ,
∴∠PCD =90°
∴∠PCD =∠ACB ,且∠CAB =∠CPB
∴△ABC ∽△PCD ∴AC BC CP CD
= ∴AC •CD =PC •BC
(2)∵AB =5,BC :CA =4:3,∠ACB =90°
∴BC =4,AC =3,
当点P 运动到¶AB 的中点时,过点B 作BE ⊥PC 于点E
∵点P 是¶AB 的中点, ∴∠PCB =45°,且BC =4
∴CE =BE 2BC 2 ∵∠CAB =∠CPB
∴tan ∠CAB =43=BC AC =tan ∠CAB =BE PE ∴PE =322
∴PC =PE +CE =
322
2=22 ∵AC •CD =PC •BC
∴3×CD =722×4 ∴CD =1423 (3)当点P 在¶AB 上运动时,S △PCD =
12×PC ×CD , 由(1)可得:CD =
43PC ∴S △PCD =1423PC PC ⨯⨯=23PC 2, ∴当PC 最大时,△PCD 的面积最大, ∴当PC 为⊙O 直径时,△PCD 的最大面积=
23×52=503 【点睛】
本题是圆的综合题,考查了相似三角形的判定和性质,圆的有关知识,锐角三角函数,求出PC 的长是本题的关键.
16.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与边BC 交于点D ,DE ⊥AC ,垂足为E ,交AB 的延长线于点F .
(1)求证:EF 是⊙O 的切线;
(2)若∠C =60°,AC =12,求»BD
的长. (3)若tan C =2,AE =8,求BF 的长.
【答案】(1)见解析;(2) 2π;(3)
103
. 【解析】 分析:(1)连接OD ,根据等腰三角形的性质:等边对等角,得∠ABC=∠C ,
∠ABC=∠ODB ,从而得到∠C=∠ODB ,根据同位角相等,两直线平行,得到OD ∥AC ,从而得证OD ⊥EF ,即 EF 是⊙O 的切线;
(2) 根据中点的性质,由AB=AC=12 ,求得OB=OD=
12
AB =6,进而根据等边三角形的判定得到△OBD 是等边三角形,即∠BOD=600,从而根据弧长公式七届即可; (3)连接AD ,根据直角三角形的性质,由在Rt △DEC 中, tan 2DE C CE
== 设CE=x,则
DE=2x ,然后由Rt △ADE 中, tan 2AE ADE DE
∠=
= ,求得DE 、CE 的长,然后根据相似三角形的判定与性质求解即可. 详解:(1)连接OD ∵AB=AC ∴∠ABC=∠C
∵OD=OB ∴∠ABC=∠ODB
∴∠C=∠ODB ∴OD ∥AC
又∵DE ⊥AC ∴OD ⊥DE ,即OD ⊥EF
∴EF 是⊙O 的切线
(2) ∵AB=AC=12 ∴OB=OD=
12
AB =6 由(1)得:∠C=∠ODB=600
∴△OBD 是等边三角形 ∴∠BOD=600
∴»BD =6062180
ππ⨯= 即»BD 的长2π (3)连接AD ∵DE ⊥AC ∠DEC=∠DEA=900
在Rt △DEC 中, tan 2DE C CE
=
= 设CE=x,则DE=2x ∵AB 是直径 ∴∠ADB=∠ADC=900 ∴∠ADE+∠CDE=900 在Rt △DEC 中,∠C+∠CDE=900
∴∠C=∠ADE 在Rt △ADE 中, tan 2AE ADE DE ∠=
= ∵ AE=8,∴DE=4 则CE=2
∴AC=AE+CE=10 即直径AB=AC=10 则OD=OB=5
∵OD//AE ∴△ODF ∽△AEF
∴ OF OD AF AE = 即:55108
BF BF +=+ 解得:BF=
103 即BF 的长为103. 点睛:此题考查了切线的性质与判定、圆周角定理、等腰三角形的性质、直角三角形以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.。