2016人教A版高中数学必修一课件:第一章 集合与函数概念 2
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十四页,编辑于星期五:十七点 五十五分。
(2)①A 中只有一个元素时,a=0 或 a=1. ②A 中有两个元素时,aΔ≠>00,, 解得 a<1 且 a≠0. 综上知 A 中至少有一个元素,a 的取值范围为 a≤1.
第二十五页,编辑于星期五:十七点 五十五分。
撷取百家精妙·荟萃时代品牌
第二十六页,编辑于星期五:十七点 五十五分。
第七页,编辑于星期五:十七点 五十五分。
3.若 A={1,2},则可用列举法将集合{(x,y)|x∈A,y∈A}表示
为( )
A.{(1,2)}
B.{1,2}
C.{(1,2),(2,1)}
D.{(1,2),(2,2),(1,1),(2,1)}
4.下列集合中,不同于另外三个集合的是( )
A.{x|x=1} B.{x|x2=1}
第十五页,编辑于星期五:十七点 五十五分。
7.{(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}
解析:∵x+y=6,x∈N,y∈N,
∴x=6-y∈N,
∴xy= =06, ,
x=1, y=5,
x=2, y=4,
x=3, x=4, x=5, x=6, y=3, y=2, y=1, y=0.
y=2x+1, y=x+3
的解,解得yx==52.,
第十七页,编辑于星期五:十七点 五十五分。
10.解:(1)因为2-6 x∈Z, 所以|2-x|是 6 的因数, 则|2-x|=1,2,3,6, 即 x=1,3,4,0,-1,5,-4,8. 所以原集合可用列举法表示为{-4,-1,0,1,3,4,5,8}. (2)因为 x∈N 且 1≤x<5,所以 x=1,2,3,4,其对应的 y 的值 分别为 3,6,9,12. 所以原集合可用列举法表示为{(1,3),(2,6),(3,9),(4,12)}.
12.{1,3} 解析:由定义,知集合 A*B 中的元素是集合 A 中的元素 1,2,3 除去集合 B 中的元素 2 得到的,所以 A*B={1,3}. 13.解:(1)∵方程 ax2+2x+1=0 只有一个解, 若 a=0,则 x=-12; 若 a≠0,则 Δ=0,解得 a=1,此时 x=-1. ∴a=0 或 a=1 时,A 中只有一个元素.
谢谢观赏!
Thanks!
飞天影音PPT
第二十七页,编辑于星期五:十七点 五十五分。
第一章
集合与函数概念
第一页,编辑于星期五:十七点 五十五分。
1.1 集合
1.1.1 集合的含义与表示
第二页,编辑于星期五:十七点 五十五分。
第2课时
集合的表示
基
础
巩 固
能
力 提
升
第三页,编辑于星期五:十七点 五十五分。
限时:45 分钟 总分:90 分
课基标础导训练航
第四页,编辑于星期五:十七点 五十五分。
∴A={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}
第十六页,编辑于星期五:十七点 五十五分。
8.{x|x= n,n∈N*}
解析:注意到集合中的元素的特征为 n,且 n∈N*,所以
用描述法可表示为{x|x= n,n∈N*}.
9.(2,5)
解析:由题意知,M∈A,M∈B,所以 M 是方程组
答案 1.A x<5 且 x∈N,则 x=0,1,2,3,4. 2.C 方程 x2+x-2=0 的解为 x=1 或 x=-2.由于 x∈N, 所以 x=-2 舍去.故选 C. 3.D 因为集合{(x,y)|x∈A,y∈A}是点集或数对构成的 集合,其中 x,y 均属于集合 A,所以用列举法可表示为{(1,2), (2,2),(1,1),(2,1)}.
1.掌握集合的表示方法——列举法与描述法; 2.感受集合语言的意义和作用; 3.掌握自然语言与集合语言的互相转化,会用适当的方法 表示集合.
第五页,编辑于星期五:十七点 五十五分。
基基础础巩训固练
第六页,编辑于星期五:十七点 五十五分。
一、选择题(每小题 5 分,共 30 分) 1.集合{x∈N|x-3<2}的另一种表示方法是( ) A.{0,1,2,3,4} B.{1,2,3,4} C.{0,1,2,3,4,5} D.{1,2,3,4,5} 2.已知 x∈N,则方程 x2+x-2=0 的解集为( ) A.{x|x=2} B.{x|x=1 或 x=-2} C.{x|x=1} D.{1,-2}
第十八页,编辑于星期五:十七点 五十五分。
11.(13 分)用适当的方法表示下列集合: (1)小于 10 的所有正偶数构成的集合; (2)一次函数 y=4-3x,当自变量取正整数时,因变量构成 的集合; (3)第一、三象限的所有点构成的集合.
第十九页,编辑于星期五:十七点 五十五分。
能基力础提训升练
第十三页,编辑于星期五:十七点 五十五分。
4.B 因为{x|x=1}={1},{x|x2=1}={-1,1},{y|(y-1)2 =0}={1},所以 B 选项的集合不同于另外三个集合.
5.C 方程组的解集中元素应是有序数对形式,排除 A, B,而 D 的集合表示方法有误,排除 D.
第十四页,编辑于星期五:十七点 五十五分。
第十页,编辑于星期五:十七点 五十五分。
二、填空题(每小题 5 分,共 15 分) 7.已知 A={(x,y)|x+y=6,x∈N,y∈N},用列举法表示 A 为________. 8.集合{1, 2, 3,2, 5,…}用描述法表示为_____________. 9.已知集合 A={(x,y)|y=2x+1},B={(x,y)|y=x+3},若 M∈A,M∈B,则 M 为________.
第十一页,编辑于星期五:十七点 五十五分。
三、解答题(本大题共 2 小题,共 25 分.解答应写出文字说明, 证明过程或演算步骤)
10.(12 分)用列举法表示下列集合: (1){x|2-6 x∈Z,x∈Z}; (2){(x,y)|y=3x,x∈N 且 1≤x<5}.
第十二页,编辑于星期五:十七点 五十五分。
C.{1}
D.{y|(y-1)2=0}
第八页,编辑于星期五:十七点 五十五分。
5.方程组xx+-y2=y=2-,1 的解集是()来自A.{x=1,y=1}
B.{1}
C.{(1,1)}
D.{(x,y)|(1,1)}
第九页,编辑于星期五:十七点 五十五分。
6.给出下列说法: ①实数集可以表示为{R}; ②方程 2x-1+|2y+1|=0 的解集是{-21,21}; ③方程组xx+-yy==3-,1 的解集是{(x,y)|xy==12, }; ④集合 M={y|y=x2+1,x∈R}与集合 N={(x,y)|y=x2+1,x ∈R}表示同一个集合. 其中说法正确的个数为( ) A.0 B.1 C.2 D.3
第二十二页,编辑于星期五:十七点 五十五分。
方法归纳:用适当的方法表示集合,需要结合集合的特点: ①当集合中元素的个数有限且共同特征难以概括时,可采用列 举法;②当集合中的元素无法一一列出时,可以先抽象出元素 的共同特征,再用描述法表示;③当集合中的元素不是实数或 式子时,可采用自然语言表示.
第二十三页,编辑于星期五:十七点 五十五分。
第二十页,编辑于星期五:十七点 五十五分。
12.(5 分)已知集合 A={1,2,3},B={2,4},定义 A*B={x|x ∈A,且 x∉B},则集合 A*B=________.
13.(15 分)已知集合 A={x|ax2+2x+1=0,a∈R,x∈R}. (1)若 A 中只有一个元素,求 a 的取值范围; (2)若 A 中至少有一个元素,求 a 的取值范围.
6.B 实数集就是 R,所以①错误;方程 2x-1+|2y+1|
=0 的解为 x=12,y=-12,用集合表示为{(x,y)|xy= =12-,12
},
所以②错误;方程组xx+ -yy= =- 3,1 的解为xy= =12, , 用集合表示为 {(x,y)|xy= =12, },所以③正确;y=x2+1≥1,集合 M 表示大 于等于 1 的实数集合,N 中的元素(x,y)表示抛物线 y=x2+1 上的点,它们不是同一个集合,所以④错误.故选 B.
第二十一页,编辑于星期五:十七点 五十五分。
答案 11.解:(1)设集合为 A, 因为 10 以内的正偶数只有 2,4,6,8, 所以用列举法表示为 A={2,4,6,8}.也可以用描述法表示为 A={x|x 是小于 10 的正偶数},或者 A={x|x=2k,k∈N*,k<5}. (2)设集合为 B,元素为 y,用描述法表示为 B={y|y=4-3x, x∈N*}. (3)设集合为 C,元素为(x,y), 用描述法表示为 C={(x,y)|xy>0,x∈R,y∈R}.
(2)①A 中只有一个元素时,a=0 或 a=1. ②A 中有两个元素时,aΔ≠>00,, 解得 a<1 且 a≠0. 综上知 A 中至少有一个元素,a 的取值范围为 a≤1.
第二十五页,编辑于星期五:十七点 五十五分。
撷取百家精妙·荟萃时代品牌
第二十六页,编辑于星期五:十七点 五十五分。
第七页,编辑于星期五:十七点 五十五分。
3.若 A={1,2},则可用列举法将集合{(x,y)|x∈A,y∈A}表示
为( )
A.{(1,2)}
B.{1,2}
C.{(1,2),(2,1)}
D.{(1,2),(2,2),(1,1),(2,1)}
4.下列集合中,不同于另外三个集合的是( )
A.{x|x=1} B.{x|x2=1}
第十五页,编辑于星期五:十七点 五十五分。
7.{(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}
解析:∵x+y=6,x∈N,y∈N,
∴x=6-y∈N,
∴xy= =06, ,
x=1, y=5,
x=2, y=4,
x=3, x=4, x=5, x=6, y=3, y=2, y=1, y=0.
y=2x+1, y=x+3
的解,解得yx==52.,
第十七页,编辑于星期五:十七点 五十五分。
10.解:(1)因为2-6 x∈Z, 所以|2-x|是 6 的因数, 则|2-x|=1,2,3,6, 即 x=1,3,4,0,-1,5,-4,8. 所以原集合可用列举法表示为{-4,-1,0,1,3,4,5,8}. (2)因为 x∈N 且 1≤x<5,所以 x=1,2,3,4,其对应的 y 的值 分别为 3,6,9,12. 所以原集合可用列举法表示为{(1,3),(2,6),(3,9),(4,12)}.
12.{1,3} 解析:由定义,知集合 A*B 中的元素是集合 A 中的元素 1,2,3 除去集合 B 中的元素 2 得到的,所以 A*B={1,3}. 13.解:(1)∵方程 ax2+2x+1=0 只有一个解, 若 a=0,则 x=-12; 若 a≠0,则 Δ=0,解得 a=1,此时 x=-1. ∴a=0 或 a=1 时,A 中只有一个元素.
谢谢观赏!
Thanks!
飞天影音PPT
第二十七页,编辑于星期五:十七点 五十五分。
第一章
集合与函数概念
第一页,编辑于星期五:十七点 五十五分。
1.1 集合
1.1.1 集合的含义与表示
第二页,编辑于星期五:十七点 五十五分。
第2课时
集合的表示
基
础
巩 固
能
力 提
升
第三页,编辑于星期五:十七点 五十五分。
限时:45 分钟 总分:90 分
课基标础导训练航
第四页,编辑于星期五:十七点 五十五分。
∴A={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}
第十六页,编辑于星期五:十七点 五十五分。
8.{x|x= n,n∈N*}
解析:注意到集合中的元素的特征为 n,且 n∈N*,所以
用描述法可表示为{x|x= n,n∈N*}.
9.(2,5)
解析:由题意知,M∈A,M∈B,所以 M 是方程组
答案 1.A x<5 且 x∈N,则 x=0,1,2,3,4. 2.C 方程 x2+x-2=0 的解为 x=1 或 x=-2.由于 x∈N, 所以 x=-2 舍去.故选 C. 3.D 因为集合{(x,y)|x∈A,y∈A}是点集或数对构成的 集合,其中 x,y 均属于集合 A,所以用列举法可表示为{(1,2), (2,2),(1,1),(2,1)}.
1.掌握集合的表示方法——列举法与描述法; 2.感受集合语言的意义和作用; 3.掌握自然语言与集合语言的互相转化,会用适当的方法 表示集合.
第五页,编辑于星期五:十七点 五十五分。
基基础础巩训固练
第六页,编辑于星期五:十七点 五十五分。
一、选择题(每小题 5 分,共 30 分) 1.集合{x∈N|x-3<2}的另一种表示方法是( ) A.{0,1,2,3,4} B.{1,2,3,4} C.{0,1,2,3,4,5} D.{1,2,3,4,5} 2.已知 x∈N,则方程 x2+x-2=0 的解集为( ) A.{x|x=2} B.{x|x=1 或 x=-2} C.{x|x=1} D.{1,-2}
第十八页,编辑于星期五:十七点 五十五分。
11.(13 分)用适当的方法表示下列集合: (1)小于 10 的所有正偶数构成的集合; (2)一次函数 y=4-3x,当自变量取正整数时,因变量构成 的集合; (3)第一、三象限的所有点构成的集合.
第十九页,编辑于星期五:十七点 五十五分。
能基力础提训升练
第十三页,编辑于星期五:十七点 五十五分。
4.B 因为{x|x=1}={1},{x|x2=1}={-1,1},{y|(y-1)2 =0}={1},所以 B 选项的集合不同于另外三个集合.
5.C 方程组的解集中元素应是有序数对形式,排除 A, B,而 D 的集合表示方法有误,排除 D.
第十四页,编辑于星期五:十七点 五十五分。
第十页,编辑于星期五:十七点 五十五分。
二、填空题(每小题 5 分,共 15 分) 7.已知 A={(x,y)|x+y=6,x∈N,y∈N},用列举法表示 A 为________. 8.集合{1, 2, 3,2, 5,…}用描述法表示为_____________. 9.已知集合 A={(x,y)|y=2x+1},B={(x,y)|y=x+3},若 M∈A,M∈B,则 M 为________.
第十一页,编辑于星期五:十七点 五十五分。
三、解答题(本大题共 2 小题,共 25 分.解答应写出文字说明, 证明过程或演算步骤)
10.(12 分)用列举法表示下列集合: (1){x|2-6 x∈Z,x∈Z}; (2){(x,y)|y=3x,x∈N 且 1≤x<5}.
第十二页,编辑于星期五:十七点 五十五分。
C.{1}
D.{y|(y-1)2=0}
第八页,编辑于星期五:十七点 五十五分。
5.方程组xx+-y2=y=2-,1 的解集是()来自A.{x=1,y=1}
B.{1}
C.{(1,1)}
D.{(x,y)|(1,1)}
第九页,编辑于星期五:十七点 五十五分。
6.给出下列说法: ①实数集可以表示为{R}; ②方程 2x-1+|2y+1|=0 的解集是{-21,21}; ③方程组xx+-yy==3-,1 的解集是{(x,y)|xy==12, }; ④集合 M={y|y=x2+1,x∈R}与集合 N={(x,y)|y=x2+1,x ∈R}表示同一个集合. 其中说法正确的个数为( ) A.0 B.1 C.2 D.3
第二十二页,编辑于星期五:十七点 五十五分。
方法归纳:用适当的方法表示集合,需要结合集合的特点: ①当集合中元素的个数有限且共同特征难以概括时,可采用列 举法;②当集合中的元素无法一一列出时,可以先抽象出元素 的共同特征,再用描述法表示;③当集合中的元素不是实数或 式子时,可采用自然语言表示.
第二十三页,编辑于星期五:十七点 五十五分。
第二十页,编辑于星期五:十七点 五十五分。
12.(5 分)已知集合 A={1,2,3},B={2,4},定义 A*B={x|x ∈A,且 x∉B},则集合 A*B=________.
13.(15 分)已知集合 A={x|ax2+2x+1=0,a∈R,x∈R}. (1)若 A 中只有一个元素,求 a 的取值范围; (2)若 A 中至少有一个元素,求 a 的取值范围.
6.B 实数集就是 R,所以①错误;方程 2x-1+|2y+1|
=0 的解为 x=12,y=-12,用集合表示为{(x,y)|xy= =12-,12
},
所以②错误;方程组xx+ -yy= =- 3,1 的解为xy= =12, , 用集合表示为 {(x,y)|xy= =12, },所以③正确;y=x2+1≥1,集合 M 表示大 于等于 1 的实数集合,N 中的元素(x,y)表示抛物线 y=x2+1 上的点,它们不是同一个集合,所以④错误.故选 B.
第二十一页,编辑于星期五:十七点 五十五分。
答案 11.解:(1)设集合为 A, 因为 10 以内的正偶数只有 2,4,6,8, 所以用列举法表示为 A={2,4,6,8}.也可以用描述法表示为 A={x|x 是小于 10 的正偶数},或者 A={x|x=2k,k∈N*,k<5}. (2)设集合为 B,元素为 y,用描述法表示为 B={y|y=4-3x, x∈N*}. (3)设集合为 C,元素为(x,y), 用描述法表示为 C={(x,y)|xy>0,x∈R,y∈R}.