2013年中考数学100份试卷分类汇编:一次函数的应用(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年中考数学100份试卷分类汇编:一次函数的应用(含答案)
一次函数应用题
1、(2013•十堰)张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干
升,加油前、后汽车都以100千米/小时的速度匀
速行驶,已知油箱中剩余油量y(升)与行驶时
间t(小时)之间的关系如图所示.以下说
法错误的是()
A.加油前油箱中剩余油量y(升)与行驶时
间t(小时)的函数关系是y=﹣8t+25
B.途中加油21升C.汽车加油后还可
行驶4小D.汽车到达乙地时油箱中还余油6升
2、(2013哈尔滨)梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含l0千克)的种子,超过l0千克的那部分种子的价格将打折,并依此得到付款金额
y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示.下列四种说法:
①一次购买种子数量不超过l0千克时,销售价格为5元/千克;
②一次购买30千克种子时,付款金额为100元;
③一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折:
④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.
其中正确的个数是( ).(A)1个(B)2个(C)3个(D) 4个
3、(2013•孝感)如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起分钟该容器内的水恰好放完.
4、(2013•黄冈)钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划
准点到达的时刻是.
5、(2013•十堰)某商场计划购进A,B两种新
型节能台灯共100盏,这两种台灯的进价、售价
如表所示:
类型价格进价
(元/
盏)
售价
(元/
盏)
A型30 45
图的对称中心O1的坐标为(x1,2),则x1= ;图(2013)的对称中心的横坐标为
7、(2013年广东湛江)周末,小明骑自行车从家里出发到野外郊游.从家出发
1小时后到达南亚所(景点),游
玩一段时间后按原速前
往湖光岩.小明离家1小时50分
钟,妈妈驾车沿相同
路线前往湖光岩,如图是他们离家
的路程()
y km与小明离
家时间()
x h的函数图象.
(1)求小明骑车的速度和在南亚所游玩的时间;
(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD所在直线的函数解析式.
9、(2013•包头)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润
180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.
(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;
(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?
(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合
适?
10、(2013•南宁)在一条笔直的公路上有A、
B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A 地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:
(1)写出A、B两地直接的距离;
(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.
11、(2013•黔东南州)某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.
(1)根据图象,求y与x之间的函数关系式;
(2)求甲、乙两种品牌的文具盒进货单价;
(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?
12、(2013•遵义)2013年4月20日,四川
雅安发生7.0级地震,给雅安人民的生命财
产带来巨大损失.某市民政部门将租用甲、
乙两种货车共16辆,把粮食266吨、副食品169吨全部运到
灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.
(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?
13、(2013•牡丹江)甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为
40千米/时,乙车往返的速度都为20
千米/时,下图是两车距A市的路程
S(千米)与行驶时间t(小时)之
间的函数图象.请结合图象回答下列
问题:
(1)A、B两市的距离是千米,甲到B市后,小时乙到达B市;
(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;
(3)请直接写出甲车从B市往回返后再经过几小时两车相距15千米.
14、(2013•牡丹江)某农场的一个家电商场为了响应国家家电下乡的号召,准备用不超过105700元购进40台电脑,其中A 型电脑每台进价2500元,B型电脑每台进价2800元,A型每台售价3000元,B型每台售价3200元,预计销售额不低于123200元.设A型电脑购进x台、商场的总利润为y(元).(1)请你设计出进货方案;
(2)求出总利润y(元)与购进A型电脑x(台)的函数关系式,并利用关系式说明哪种方案的利润最大,最大利润是多少元?
(3)商场准备拿出(2)中的最大利润的一部分再次购进A型和B型电脑至少各两台,另一部分为地震灾区购买单价为500元的帐篷若干顶.在钱用尽三样都购买的前提下请直接写出购买A型电脑、B型电脑和帐篷的方案.
15、(2013•绥化)2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾
区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:
(1)由于汽车发生故障,甲组在途
中停留了小时;
(2)甲组的汽车排除故障后,立即
提速赶往灾区.请问甲组的汽车在排
除故障时,距出发点的路程是多少千
米?
(3)为了保证及时联络,甲、乙两
组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?
16、(2013•绥化)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两
种运动鞋.其中甲、乙两种运
动鞋的进价和售价如下表:
已知:用3000元购进甲种运动
鞋的数量与用2400元购进乙
种运动鞋的数量相同.
(1)求m 的值;
(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?
(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?
17、(2013•徐州)为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:
运动鞋 价格 甲 乙 进价(元/双) m m ﹣20 售价(元/双) 240 160
(1)若甲用户3月份的用气量为60m 3,则应缴费 元; (2)若调价后每月支出的燃气费为y (元),每月的用气量为x (m 3),y 与x 之间的关系如图所示,求a 的值及y 与x 之间的函数关系式;
(3)在(2)的条件下,若乙用户2、3月份共
用1气175m 3(3月份用气量低于2月份用气
量),共缴费455元,乙用户2、3月份的用气量
各是多少?
18、(2013•绍兴)某市出租车计费方法
如图所示,x (km )表示行驶里程,y (元)表示车费,请根据图象回答下面的问题:
(1)出租车的起步价是多少元?当x >3时,求y 关于x 的函数关系式.
(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.
不超出75m 3的部分
2.5
超出75m 3不超出125m 3的部分
a
超出125m 3的部分
a +0.25
19、(2013•鄂州)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD 表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:
(1)轿车到达乙地后,货车距乙地多少千米?
(2)求线段CD对应的函数解析式.
(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).
20、(2013•衡阳)为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实
行“提高电价”,具体收费情况如右折线
图,请根据图象回答下列问题;
(1)档用地阿亮是180千瓦时时,电费是元;
(2)第二档的用电量范围是;
(3)“基本电价”是元/千瓦时;
(4)小明家8月份的电费是328.5元,
这个月他家用电多少千瓦时?
21、(2013•常德)某地为改善生态环境,积极开展植树造林,甲、乙两人从近几年的统计数据中有如下发现:
(1)求y2与x之间的函数关系式?
(2)若上述关系不变,试计算哪一年该地公益林面积可达防护林面积的2倍?这时该地公益林的面积为多少万亩?
22、(2013•湖州)某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数如图①所示,小李种植水果所得报酬z(元)与种植面积n(亩)之间函数关系如图②所示.
(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是元,小张应得的工资总额是元,此时,小李种植水果亩,小李应得的报酬是元;
(2)当10<n≤30时,求z与n之间的函数关系式;
(3)设农庄支付给小张和小李的总费用为w(元),当10<m≤30时,求w与m之间的函数关系式.
23、(2013•荆门)为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.
人均住房面积(平方米)单价(万元/
平方米)
不超过30(平方米)0.3
0.5
超过30平方米不超过m(平方
米)部分(45≤m≤60)
超过m平方米部分0.7
根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房
款;
(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y 万元,请求出y关于x的函数关系式;
(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.
24、(2013山西,24,8分)(本题8分)某校实行学案式教学,需印制若干份数学学案。

印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取
制版费而乙种不需要。

两种印刷方式的费用
y(元)与印刷份数x(份)之间的函数关系
如图所示:
(1)填空:甲种收费方式的函数关系式
是.
乙种收费方式的函数关系式是.
(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算。

25、(2013•常州)某饮料厂以300千克的A种果汁和240千克的B种果汁为原料,配制生产甲、乙两种新型饮料,已知每千克甲种饮料含0.6千克A种果汁,含0.3千克B种果汁;每千克乙种饮料含0.2千克A种果汁,含0.4千克B种果汁.饮料
厂计划生产甲、乙两种新型饮料共650千克,设该厂生产甲种饮料x(千克).
(1)列出满足题意的关于x的不等式组,并求出x的取值范围;
(2)已知该饮料厂的甲种饮料销售价是每1千克3元,乙种饮料销售价是每1千克4元,那么该饮料厂生产甲、乙两种饮料各多少千克,才能使得这批饮料销售总金额最大?
26、(2013•淮安)甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路ι步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟.y1、y2与x之间的函数图象如图1,s与x之间的函数图象(部分)如图2.
(1)求小亮从乙地到甲地过程中y1(米)与x(分钟)之间的函数关系式;
(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式;
(3)在图2中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值.
27、(2013•株洲)某生物小组观察一植物生长,得到植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行x轴).
(1)该植物从观察时起,多少天以后停止长高?
(2)求直线AC的解析式,并求该植物最高长多少厘米?
28、(2013•宁夏)如图1,在一直角边长为4米的等腰直角三角形地块的每一个正方形网格的格点(纵横直线的交点及三角形顶点)上都种植同种农作物,根据以往种植实验发现,每株农作物的产量y(单位:千克)受到与它周围直线距离不超过1米的同种农作物的株数x(单位:株)的影响情况统计如下表:
x(株)1 2 3 4
y(千克)21 18 15 12
(1)通过观察上表,猜测y与x之间之间存在哪种函数关系,求出函数关系式并加以验证;
(2)根据种植示意图填写下表,并求出这块地平均每平方米的产量为多少千克?
y(千克)21 18 15 12
频数
(3)有人为提高总产量,将上述地块拓展为斜边长为6米的等腰直角三角形,采用如图2所示的方式,在每个正方形网格的格点上都种植了与前面相同的农作物,共种植了16株,请
你通过计算平均每平方米的产量,来比较那种种植方式更合理?
29、(2013•遂宁)四川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.
(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;
(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.
30、(2013•衢州)“五•一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的
速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.
(1)求a的值.
(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?
31、(2013•广安)某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩电的进价和售价见表格.
空调彩电
进价(元/5400 3500
台)
6100 3900
售价(元/
台)
设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.
(1)试写出y与x的函数关系式;
(2)商场有哪几种进货方案可供选择?
(3)选择哪种进货方案,商场获利最大?最大利润是多少元?
32、(2013•内江)某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示.
X50 60 90 120
y40 38 32 26
(1)求y关于x的函数解析式;
(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.
34、(2013河南省)某文具商店销售功能相同的两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买
3个A品牌和1个B品牌的计算器共需122元。

(1)求这两种品牌计算器的单价;
(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售。

设购买个A品牌的计算器需要元,购买个B品牌的计算器需要元,分别求出关于的函数关系式‘
(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由。

35、(2013年黄石)一辆客车从甲地
甲地,两车同时出发,设客车离甲
地的距离为
y千米,出租车离甲地
1
的距离为
y千米,两车行驶的时间
2
为x小时,
y、2y关于x的函数图像如
1
右图所示:
(1)根据图像,直接写出
y、2y关于x的函数关系式;
1
(2)若两车之间的距离为S千米,请写出S关于x的函数关
系式;
(3)甲、乙两地间有A、B两个加油站,相距200千米,
若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.
36、(2013•宁波)某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:
甲乙
4000 2500
进价(元
/部)
4300 3000
售价(元
/部)
该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元.
(毛利润=(售价﹣进价)×销售量)
(1)该商场计划购进甲、乙两种手机各多少部?
(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.
37、(2013年南京)小丽驾车从甲地到乙地。

设她出发第x min 时的速度为y km/h,图中的折线表示她在整个驾车过程中y与x之间的函数关系。

(1) 小丽驾车的最高速度是 km /h ;
(2) 当20≤x ≤30时,求y 与x 之间的函数关系式,并求出小丽出发第22 min 时的速度;
(3) 如果汽车每行驶100 km 耗油10 L ,那么小丽驾车从甲地到乙地共耗油多少升?
38、(2013年临沂)某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y 与生产数量x 之间是一次函数关系,函数y 与自变量x
)
y (km /) 0 0 0 0 0
a
55 75
(第24题图)
的部分对应值如下表:
(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范
围;
(2)求该机器的生产数量;
(3)市场调查发现,这种机器每月销售量z (台)与售价a (万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这请你求出该厂第
一个月销售这种机器的利润.=售价 成
本)。

相关文档
最新文档