迁安市第四中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
迁安市第四中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系式如图所示,那么水瓶的形状是( )
A .
B .
C .
D .
2. 双曲线()22
2210,0x y a b a b
-=>>的左右焦点分别为12F F 、,过2F 的直线与双曲线的右支交于
A B 、两点,若1F AB ∆是以A 为直角顶点的等腰直角三角形,则2e =( )
A .1+
B .4-
C .5-
D .3+
3. O 为坐标原点,F 为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )
A .1
B .
C .
D .2
4. 如图是一个多面体的三视图,则其全面积为( )
A .
B .
C .
D .
5. 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )
A.B.C.D.
6.一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是()
A.4πB.12πC.16πD.48π
7.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()
A.钱B.钱C.钱D.钱
8.设命题p:函数的定义域为R;命题q:3x﹣9x<a对一切的实数x恒成立,如果命题“p且q”为假命题,则实数a的取值范围是()
A.a<2 B.a≤2 C.a≥2 D.a>2
9.若命题p:∀x∈R,2x2﹣1>0,则该命题的否定是()
A.∀x∈R,2x2﹣1<0 B.∀x∈R,2x2﹣1≤0
C.∃x∈R,2x2﹣1≤0 D.∃x∈R,2x2﹣1>0
10.复数z=(m∈R,i为虚数单位)在复平面上对应的点不可能位于()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
11.
12
,e e是平面内不共线的两向量,已知
12
AB e ke
=-,
12
3
CD e e
=-,若,,
A B D三点共线,则的值是()
A.1 B.2 C.-1 D.-2
12.已知数列{a n}是等比数列前n项和是S n,若a2=2,a3=﹣4,则S5等于()
A.8 B.﹣8 C.11 D.﹣11
二、填空题
13.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1
sin 3
BAM ∠=,则AC 的长为_________. 14.已知1a b >>,若10
log log 3
a b b a +=,b a a b =,则a b += ▲ . 15.
如图,P 是直线x +y -5=0上的动点,过P 作圆C :x 2
+y 2
-2x +4y -4=0的两切线、切点分别为A 、B ,当
四边形P ACB 的周长最小时,△ABC 的面积为________. 16.已知函数f (x )=cosxsinx ,给出下列四个结论: ①若f (x 1)=﹣f (x 2),则x 1=﹣x 2; ②f (x )的最小正周期是2π;
③f (x )在区间[﹣
,
]上是增函数;
④f (x )的图象关于直线x=
对称.
其中正确的结论是 .
17.命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是 .
18.8
1()x x
-的展开式中,常数项为___________.(用数字作答) 【命题意图】本题考查用二项式定理求指定项,基础题.
三、解答题
19.已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,且csinA=acosC .
(I )求C 的值; (Ⅱ)若c=2a ,b=2,求△ABC 的面积.
20.己知函数f(x)=|x﹣2|+a,g(x)=|x+4|,其中a∈R.
(Ⅰ)解不等式f(x)<g(x)+a;
(Ⅱ)任意x∈R,f(x)+g(x)>a2恒成立,求a的取值范围.
21.本小题满分12分某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.
Ⅰ若商店一天购进该商品10件,求当天的利润y单位:元关于当天需求量n单位:件,n∈N的函数解析式;
,整理得下表:
,求这50天的日利润单位:元的平均数;
②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[400,550]内的概率.
22.(本小题满分12分)△ABC的三内角A,B,C的对边分别为a,b,c,已知k sin B=sin A+sin C(k为正常数),a=4c.
(1)当k=5
时,求cos B;
4
(2)若△ABC面积为3,B=60°,求k的值.
23.如图,A地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:
现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。
(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?(2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望。
24.已知函数f(x)=ax3+2x﹣a,
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若a=n且n∈N*,设x n是函数f n(x)=nx3+2x﹣n的零点.
(i)证明:n≥2时存在唯一x n且;
(i i)若b n=(1﹣x n)(1﹣x n+1),记S n=b1+b2+…+b n,证明:S n<1.
迁安市第四中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】 A
【解析】解:考虑当向高为H 的水瓶中注水为高为H 一半时,注水量V 与水深h 的函数关系.
如图所示,此时注水量V 与容器容积关系是:V <水瓶的容积的一半.
对照选项知,只有A 符合此要求.
故选A .
【点评】本小题主要考查函数、函数的图象、几何体的体积的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
2. 【答案】C 【解析】
试题分析:设
1A F A B m
==,则12
,
2,
22B F m A F m B F m a
==--,因为
22AB AF BF m =+=,所以22m a a m -+-=,解得4a =,所以212AF m ⎛⎫
=- ⎪ ⎪⎝
⎭,在直角
三角形12AF F 中,由勾股定理得22542c m ⎛= ⎝,因为4a =,所以22
5482c a ⎛=⨯ ⎝,所以
25e =-考点:直线与圆锥曲线位置关系.
【思路点晴】本题考查直线与圆锥曲线位置关系,考查双曲线的定义,考查解三角形.由于题目给定的条件是等腰直角三角形,就可以利用等腰直角三角形的几何性质来解题.对于圆锥曲线的小题,往往要考查圆锥曲线的定义,本题考查双曲线的定义:动点到两个定点距离之差的绝对值为常数.利用定义和解直角三角形建立方程,从而求出离心率的平方] 3. 【答案】C
【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F (0,1), 又P 为C 上一点,|PF|=4,
可得y P=3,
代入抛物线方程得:|x
|=2,
P
∴S△POF=|0F|•|x P|=.
故选:C.
4.【答案】C
【解析】解:由三视图可知几何体是一个正三棱柱,
底面是一个边长是的等边三角形,
侧棱长是,
∴三棱柱的面积是3××2=6+,
故选C.
【点评】本题考查根据三视图求几何体的表面积,考查由三视图确定几何图形,考查三角形面积的求法,本题是一个基础题,运算量比较小.
5.【答案】A
【解析】解:由已知中几何体的直观图,
我们可得侧视图首先应该是一个正方形,故D不正确;
中间的棱在侧视图中表现为一条对角线,故C不正确;
而对角线的方向应该从左上到右下,故B不正确
故A选项正确.
故选:A.
【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键.
6.【答案】B
【解析】解:由三视图可知几何体是底面半径为2的圆柱,
∴几何体的侧面积为2π×2×h=12π,解得h=3,
∴几何体的体积V=π×22×3=12π.
故选B.
【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.
7.【答案】B
【解析】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,
则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,
又a﹣2d+a﹣d+a+a+d+a+2d=5a=5,∴a=1,
则a﹣2d=a﹣2×=.
故选:B.
8.【答案】B
【解析】解:若函数的定义域为R,
故恒成立,
故,
解得:a>2,
故命题p:a>2,
若3x﹣9x<a对一切的实数x恒成立,
则t﹣t2<a对一切的正实数t恒成立,
故a>,
故命题q:a>,
若命题“p且q”为真命题,则a>2,
故命题“p且q”为假命题时,a≤2,
故选:B
9.【答案】C
【解析】解:命题p:∀x∈R,2x2﹣1>0,
则其否命题为:∃x∈R,2x2﹣1≤0,
故选C;
【点评】此题主要考查命题否定的定义,是一道基础题;
10.【答案】C
【解析】解:z====+i,
当1+m>0且1﹣m>0时,有解:﹣1<m<1;
当1+m>0且1﹣m<0时,有解:m>1;
当1+m<0且1﹣m>0时,有解:m<﹣1;
当1+m<0且1﹣m<0时,无解;
故选:C.
【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题.
11.【答案】B
【解析】
考点:向量共线定理.
12.【答案】D
【解析】解:设{a n}是等比数列的公比为q,
因为a2=2,a3=﹣4,
所以q===﹣2,
所以a1=﹣1,
根据S5==﹣11.
故选:D.
【点评】本题主要考查学生运用等比数列的前n项的求和公式的能力,本题较易,属于基础题.二、填空题
13.
【解析】
考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.
【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可, 对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等). 14
.【答案】 【解析】
试题分析:因为1a b >>,所以log 1b a >,又101101log log log log 33log 33
a b b b b b a a a a +=
⇒+=⇒=或(舍),因此
3a b =,因为b a a b =,所以3
333,1b b b b b b b b a =⇒=>⇒==,a b +=考点:指对数式运算 15.【答案】
【解析】解析:圆x 2+y 2-2x +4y -4=0的标准方程为(x -1)2+(y +2)2=9. 圆心C (1,-2),半径为3,连接PC ,
∴四边形P ACB 的周长为2(P A +AC ) =2
PC 2-AC 2+2AC =2
PC 2-9+6.
当PC 最小时,四边形P ACB 的周长最小. 此时PC ⊥l .
∴直线PC 的斜率为1,即x -y -3=0,
由⎩⎪⎨⎪⎧x +y -5=0x -y -3=0
,解得点P 的坐标为(4,1), 由于圆C 的圆心为(1,-2),半径为3,所以两切线P A ,PB 分别与x 轴平行和y 轴平行, 即∠ACB =90°,
∴S △ABC =12AC ·BC =12×3×3=9
2
.
即△ABC 的面积为9
2
.
答案:92
16.【答案】 ③④ .
【解析】解:函数f (x )=cosxsinx=sin2x ,
对于①,当f (x 1)=﹣f (x 2)时,sin2x 1=﹣sin2x 2=sin (﹣2x 2) ∴2x 1=﹣2x 2+2k π,即x 1+x 2=k π,k ∈Z ,故①错误;
对于②,由函数f (x )=sin2x 知最小正周期T=π,故②错误;
对于③,令﹣
+2π≤2x ≤
+2k π,k ∈Z 得﹣
+k π≤x ≤
+k π,k ∈Z
当k=0时,x ∈[﹣,
],f (x )是增函数,故③正确;
对于④,将x=
代入函数f (x )得,f (
)=﹣为最小值,
故f (x )的图象关于直线x=对称,④正确.
综上,正确的命题是③④. 故答案为:③④.
17.【答案】 存在x ∈R ,x 3﹣x 2+1>0 .
【解析】解:因为全称命题的否定是特称命题,
所以命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是:存在x ∈R ,x 3﹣x 2+1>0. 故答案为:存在x ∈R ,x 3﹣x 2+1>0.
【点评】本题考查命题的否定,特称命题与全称命题的否定关系.
18.【答案】70
【解析】81
()x x -的展开式通项为8821881()(1)r r
r r r r r T C x C x x
--+=-=-,所以当4r =时,常数项为
448(1)70C -=.
三、解答题
19.【答案】
【解析】解:(I )∵a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,且csinA=acosC ,
∴sinCsinA=sinAcosC ,∴sinCsinA ﹣sinAcosC=0,
∴
sinC=cosC ,∴tanC=
=,
由三角形内角的范围可得C=;
(Ⅱ)∵c=2a ,b=2
,C=
,
∴由余弦定理可得c 2=a 2+b 2
﹣2abcosC ,
∴4a 2
=a 2
+12﹣4
a •,解得a=﹣1+,或a=﹣1﹣(舍去)
∴△ABC 的面积S=absinC==
20.【答案】
【解析】解:(Ⅰ)不等式f (x )<g (x )+a 即|x ﹣2|<|x+4|,
两边平方得:x 2﹣4x+4<x 2
+8x+16,解得:x >﹣1,
∴原不等式的解集是(﹣1,+∞);
(Ⅱ)f (x )+g (x )>a 2
可化为a 2
﹣a <|x ﹣2|+|x+4|,
又|x ﹣2|+|x+4|≥|(x ﹣2)﹣(x+4)|=6,
∴a 2
﹣a <6,解得:﹣2<a <3,
∴a 的范围是(﹣2,3).
【点评】本题考察了解绝对值不等式问题,考察转化思想,是一道基础题.
21.【答案】
【解析】:Ⅰ当日需求量10n ≥时,利润为5010(10)3030200y n n =⨯+-⨯=+; 当需求量10n <时,利润50(10)1060100y n n n =⨯--⨯=-. 所以利润y 与日需求量n 的函数关系式为:30200,10,60100,10,n n n N
y n n n N
+≥∈⎧=⎨
-<∈⎩
Ⅱ50天内有9天获得的利润380元,有11天获得的利润为440元,有15天获得利润为500元,有10天获得的利润为530元,有5天获得的利润为560元.
① 38094401150015530105605
477.2
50
⨯+
⨯+⨯+⨯+⨯= ② 若利润在区间[400,550]内的概率为11151018
5025
P ++==
22.【答案】
【解析】解:(1)∵54sin B =sin A +sin C ,由正弦定理得5
4
b =a +
c ,
又a =4c ,∴5
4b =5c ,即b =4c ,
由余弦定理得cos B =a 2+c 2-b 22ac =(4c )2+c 2-(4c )22×4c ·c =1
8.
(2)∵S △ABC =3,B =60°.
∴1
2
ac sin B = 3.即ac =4. 又a =4c ,∴a =4,c =1.
由余弦定理得b 2=a 2+c 2-2ac cos B =42+12-2×4×1×1
2=13.
∴b =13,
∵k sin B =sin A +sin C ,
由正弦定理得k =a +c b =513
=513
13,
即k 的值为513
13.
23.【答案】
【解析】(1)A i 表示事件“甲选择路径L i 时,40分钟内赶到火车站”,B i 表示事件“乙选择路径L i 时,50分钟内赶到火车站”,i=1,2,用频率估计相应的概率可得
P (A 1)=0。
1+0。
2+0。
3=0。
6,P (A 2)=0。
1+0。
4=0。
5,
P (A 1) >P (A 2),
甲应选择L i
P (B 1)=0。
1+0。
2+0。
3+0。
2=0。
8,P (B 2)=0。
1+0。
4+0。
4=0。
9,
P(B2)>P(B1), 乙应选择L2。
(2)A,B分别表示针对(Ⅰ)的选择方案,甲、乙在各自允许的时间内赶到火车站,由(Ⅰ)知
,又由题意知,A,B独立,
24.【答案】
【解析】解:(Ⅰ)f'(x)=3ax2+2,
若a≥0,则f'(x)>0,函数f(x)在R上单调递增;
若a<0,令f'(x)>0,∴或,
函数f(x)的单调递增区间为和;
(Ⅱ)(i)由(Ⅰ)得,f n(x)=nx3+2x﹣n在R上单调递增,
又f n(1)=n+2﹣n=2>0,
f n()==
==﹣
当n≥2时,g(n)=n2﹣n﹣1>0,,
n≥2时存在唯一x n且
(i i)当n≥2时,,∴(零点的区间判定)
∴,(数列裂项求和)
∴,
又f1(x)=x3+2x﹣1,,(函数法定界)
,又,
∴,
∴,(不等式放缩技巧)
命题得证.
【点评】本题主要考查了导数的求单调区间的方法和利用数列的裂项求和和不等式的放缩求和技巧解题,属于难题.。