新苏科版八年级数学期末下册考试试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新苏科版八年级数学期末下册考试试卷及答案
一、解答题
1.如图,在ABCD中,点O为对角线BD的中点,过点O的直线EP分别交AD,BC于E,F两点,连接BE,DF.
(1)求证:四边形BFDE为平行四边形;
(2)当∠DOE= °时,四边形BFDE为菱形?
2.把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F 两点均在BD上),折痕分别为BH、DG.
(1)求证:△BHE≌△DGF;
(2)若AB=6cm,BC=8cm,求线段FG的长.
3.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
4.如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF 交BD于O.
(1)求证:EO=FO;
(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.
5.如图,平行四边形ABCD中,已知BC=10,CD=5.
(1)试用无刻度的直尺和圆规在AD边上找一点E,使点E到B、D两点的距离相等(不要求写作法,但要保留清晰的作图痕迹);
(2)求△ABE的周长.
6.如图,四边形ABCD是正方形,点E是BC边上的动点(不与点B、C重合),将射线AE绕点A按逆时针方向旋转45°后交CD边于点F,AE、AF分别交BD于G、H两点.(1)当∠BEA=55°时,求∠HAD的度数;
(2)设∠BEA=α,试用含α的代数式表示∠DFA的大小;
(3)点E运动的过程中,试探究∠BEA与∠FEA有怎样的数量关系,并说明理由.
7.如图,在▱ABCD中,BE=DF.求证:AE=CF.
8.如图,在正方形网格中,△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:
(1)作出△ABC关于原点O成中心对称的△A1B1C1;
(2)直接写出:以A、B、C为顶点的平形四边形的第四个顶点D的坐标.
9.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.
(1)证明:四边形CDEF是平行四边形;
(2)若四边形CDEF的周长是16cm,AC的长为8cm,求线段AB的长度.
10.计算:242933
x x x x x ----- 11.正方形网格中(每个小正方形边长是1,小正方形的顶点叫做格点),ABC ∆的顶点均在格点上,请在所给的平面直角坐标系中解答下列问题:
(1)作出ABC ∆绕点A 逆时针旋转90°后的111A B C ∆;
(2)作出111A B C ∆关于原点O 成中心对称的222A B C ∆.
12.如图,在平行四边形ABCD 中,AE BD CF BD ⊥⊥,
,垂足分别为E F 、.
(1)求证:AE CF =;
(2)求证:四边形AECF 是平行四边形
13.如图,在平面直角坐标系中,△ABC 和△A 'B 'C '的顶点都在格点上.
(1)将△ABC 绕点B 顺时针旋转90°后得到△A 1BC 1;
(2)若△A 'B 'C '是由△ABC 绕某一点旋转某一角度得到,则旋转中心的坐标是 .
14.(方法回顾)
(1)如图1,过正方形ABCD的顶点A作一条直l交边BC于点P,BE⊥AP于点E,DF⊥AP 于点F,若DF=2.5,BE=1,则EF=.
(问题解决)
(2)如图2,菱形ABCD的边长为1.5,过点A作一条直线l交边BC于点P,且∠DAP=90°,点F是AP上一点,且∠BAD+∠AFD=180°,过点B作BE⊥AB,与直线l交于点E,若EF=1,求BE的长.
(思维拓展)
(3)如图3,在正方形ABCD中,点P在AD所在直线上的上方,AP=2,连接PB,PD,若△PAD的面积与△PAB的面积之差为m(m>0),则PB2﹣PD2的值为.(用含m的式子表示)
15.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H,则BG与DH有怎样数量关系?证明你的结论.
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.(1)详见解析;(2)90
【分析】
(1)证△DOE ≌△BOF (ASA ),得DE=BF ,即可得出结论;
(2)由∠DOE=90°,得EF ⊥BD ,即可得出结论.
【详解】
(1)∵四边形ABCD 是平行四边形,O 为对角线BD 的中点,
∴BO =DO ,AD ∥BC ,
∴∠EDO =∠FBO ,
在△EOD 和△FOB 中,EDO FBO DO BO EOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩
,
∴△DOE ≌△BOF (ASA ),
∴DE =BF ,
又∵DE ∥BF ,
∴四边形BFDE 为平行四边形;
(2)∠DOE =90°时,四边形BFDE 为菱形;
理由如下:
由(1)得:四边形BFDE 是平行四边形,
若∠DOE =90°,则EF ⊥BD ,
∴四边形BFDE 为菱形;
故答案为:90.
【点睛】
本题考查了平行四边形的判定与性质、全等三角形的判定与性质以及菱形的判定等知识,证出△DOE ≌△BOF 是解题的关键.
2.(1)见解析 (2)3cm
【分析】
1)先根据矩形的性质得出∠ABD=∠BDC ,再由图形折叠的性质得出∠1=∠2,∠3=∠4,∠A=∠HEB=90°,∠C=∠DFG=90°,进而可得出△BEH ≌△DFG ;
(2)先根据勾股定理得出BD 的长,进而得出BF 的长,由图形翻折变换的性质得出CG=FG ,设FG=x ,则BG=8﹣x ,再利用勾股定理即可求出x 的值.
【详解】
(1)如图,ABCD 四边形是矩形,
AB CD ∴=,90A C ∠=∠=︒,ABD BDC ∠=∠.
BEH ∆是BAH ∆翻折而成的,1=2∴∠∠,==90A HEB ∠∠︒,AB BE =.
DGF DGC ∆∆是翻折而成的,
3=4∴∠∠,90C DFG ∠=∠=︒,CD DF =,
∴在BEH ∆和DFG ∆中,HEB DFG ∠=∠,BE DF =,2=3∠∠,
BHE DGF ∴∆∆≌.
(2)四边形ABCD 是矩形,6AB =,8BC =,6AB CD ∴==,8AD BC ==,
22=10BD BC CD ∴+=,又由(1)知,DF CD =,CG FG =,=1064BF ∴-=. 设FG x =,则8BG x =-,在Rt BGF ∆中,222BG BF FG =+,即
()22284x x -=+,
3x ∴=,即3FG =.
【点睛】
本题主要考查矩形的折叠问题,涉及知识点有全等三角形的证明与性质,勾股定理,折叠性质等知识点,解题关键在于能够灵活运用勾股定理
3.(1)见解析(2)成立
【解析】
试题分析:(1)由DF=BE ,四边形ABCD 为正方形可证△CEB ≌△CFD ,从而证出CE=CF . (2)由(1)得,CE=CF ,∠BCE+∠ECD=∠DCF+∠ECD 即∠ECF=∠BCD=90°又∠GCE=45°所以可
得∠GCE=∠GCF ,故可证得△ECG ≌△FCG ,即EG=FG=GD+DF .又因为DF=BE ,所以可证出GE=BE+GD 成立.
试题解析:(1)在正方形ABCD 中,
{BC CD
B CDF BE DF
∠∠===
∴△CBE ≌△CDF (SAS ).
∴CE=CF .
(2)GE=BE+GD 成立.
理由是:∵由(1)得:△CBE ≌△CDF ,
∴∠BCE=∠DCF ,
∴∠BCE+∠ECD=∠DCF+∠ECD ,即∠ECF=∠BCD=90°,
又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE =CF
∵∠GCE =∠GCF , GC =GC
∴△ECG ≌△FCG (SAS ).
∴GE=GF .
∴GE=DF+GD=BE+GD .
考点:1.正方形的性质;2.全等三角形的判定与性质.
4.(1)见解析;(2)AE =3.
【分析】
(1)由平行四边形的性质和AAS 证明△OBE ≌△ODF ,得出对应边相等即可; (2)先证出AE=GE ,再证明DG=DO ,得出OF=FG=1,即可得出结果.
【详解】
(1)∵四边形ABCD 是平行四边形,
∴DC ∥AB ,
∴∠OBE =∠ODF .
在△OBE 与△ODF 中,
OBE ODF BOE DOF BE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩
,
∴△OBE ≌△ODF (AAS ).
∴EO =FO ;
(2)∵EF ⊥AB ,AB ∥DC ,
∴∠GEA =∠GFD =90°.
∵∠A =45°,
∴∠G =∠A =45°.
∴AE =GE ,
∵BD ⊥AD ,
∴∠ADB =∠GDO =90°.
∴∠GOD =∠G =45°.
∴DG =DO ,
∴OF =FG =1,
由(1)可知,OE =OF =1,
∴GE =OE +OF +FG =3,
∴AE =3.
【点睛】
本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题(1)的关键.
5.(1)见解析;(2)15;见解析.
【分析】
(1)连接BD 作线段BD 的垂直平分线MN 交AD 于点E ,点E 即为所求.
(2)证明△ABE 的周长=AB +AD 即可.
【详解】
解:(1)如图,点E 即为所求.
(2)解:连接BE
∵四边形ABCD 是平行四边形
∴AD =BC =10,AB =CD =5
又由(1)知BE =DE
∴15ABE AB AE BE AB AE ED AB C AD +++++====.
【点睛】
本题主要考查垂直平分线的作法及性质,熟练掌握知识点是解题的关键.
6.(1)10°;(2)135DFA α∠=︒-;(3)∠BEA =∠FEA ,理由见解析
【分析】
(1)根据正方形的性质和三角形的内角和解答即可;
(2)根据正方形的性质和三角形内角和解答即可;
(3)延长CB 至I ,使BI =DF ,根据全等三角形的判定和性质解答即可.
【详解】
解:(1)∵四边形ABCD 是正方形,
∴∠EBA =∠BAD =90°,
∴∠EAB =90°﹣∠BAE =90°﹣55°=35°,
∴∠HAD =∠BAD ﹣∠EAF ﹣∠EAB =90°﹣45°﹣35°=10°;
(2)∵四边形ABCD 是正方形,
∴∠EBA =∠BAD =∠ADF =90°,
∴∠EAB =90°﹣∠BAE =90°﹣α,
∴∠DAF =∠BAD ﹣∠EAF ﹣∠EAB =()90459045αα︒-︒-︒--︒=,
∴∠DFA =90°﹣∠DAF =()9045α︒--︒=135°﹣α;
(3)∠BEA =∠FEA ,理由如下:
延长CB 至I ,使BI =DF ,连接AI .
∵四边形ABCD 是正方形,
∴AD =AB ,∠ADF =∠ABC =90°,
∴∠ABI =90°,
又∵BI =DF ,
∴△DAF ≌△BAI (SAS ),
∴AF =AI ,∠DAF =∠BAI ,
∴∠EAI =∠BAI +∠BAE =∠DAF +∠BAE =45°=∠EAF ,
又∵AE 是△EAI 与△EAF 的公共边,
∴△EAI ≌△EAF (SAS ),
∴∠BEA =∠FEA .
【点睛】
本题主要考查正方形的性质、三角形外角性质及全等三角形,关键是根据正方形的性质及外角和性质得到角之间的关系,然后求解.
7.证明见解析.
【解析】
试题分析:由平行四边形的性质得出AD ∥BC ,AD=BC ,证出∠ADE=∠CBF ,再由BE=DF ,得出DE=BF ,证明△ADE ≌△CBF ,即可得出结论.
试题解析:∵四边形ABCD 是平行四边形,
∴AD ∥BC ,AD=BC ,
∴∠ADE=∠CBF ,
∵BE=DF ,
∴DE=BF ,
在△ADE 和△CBF 中,
{AD CB
ADE CBF DE BF
=∠=∠=,
∴△ADE ≌△CBF (SAS ),
∴AE=CF .
考点:平行四边形的性质;全等三角形的判定与性质.
8.(1)作图见解析;(2)D(1,1),(-5,3),(-3,-1)
【分析】
(1)根据关于原点对称的点的坐标特征分别写出点A 、B 、C 的对应点A 1、B 1、C 1的坐标,然后描点即可得到△A 1B 1C 1;
(2)分类讨论:分别以AB 、AC 、BC 为对角线画平行四边形,根据网格的特点,确定对角线后找对边平行,即可写出D 点的坐标.
【详解】
解:(1)如图,点A 、B 、C 的坐标分别为(1,0),(4,1),(2,2)---,根据关于原点对称的点的坐标特征,则点A 、B 、C 关于原点对称的点分别为(1,0),(4,1),(2,2)--,描点连线,△A 1B 1C 1即为所作:
(2)分别以AB、AC、BC为对角线画平行四边形,如下图所示:
---,
则由图可知D点的坐标分别为:(3,1),(1,1),(5,3)
---.
故答案为:(1,1),(5,3),(3,1)
【点睛】
本题考查了中心对称作图即平行四边形存在问题,在直角坐标系中,已知平行四边形的三个点的坐标,确定第四个点的坐标,以对角线作为分类讨论,不容易漏掉平行四边形的各种情况.
9.(1)详见解析;(2)10cm
【分析】
(1)由三角形中位线定理推知BD∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形;
(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=16﹣AB,然后根据勾股定理即可求得.
【详解】
(1)证明:∵D、E分别是AB、AC的中点,
∴ED是Rt△ABC的中位线,
∴ED∥BC.BC=2DE,
又EF∥DC,
∴四边形CDEF 是平行四边形;
(2)解:∵四边形CDEF 是平行四边形;
∴DC =EF ,
∵DC 是Rt △ABC 斜边AB 上的中线,
∴AB =2DC ,
∴四边形DCFE 的周长=AB +BC ,
∵四边形DCFE 的周长为16cm ,AC 的长8cm ,
∴BC =16﹣AB ,
∵在Rt △ABC 中,∠ACB =90°,
∴AB 2=BC 2+AC 2,
即AB 2=(16﹣AB )2+82,
解得:AB =10cm ,
【点睛】
本题考查了平行四边形的判定和性质,三角形的中位线定理,直角三角形斜边中线的性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.
10.3x -
【分析】
先把分式进行合并,再进行因式分解,然后约分,即可得到答案.
【详解】 解:原式222
42969(3)3333
x x x x x x x x x x --+-+-====----; 【点睛】
本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则进行解题.
11.(1)见解析 (2)见解析
【分析】
(1)本题考查图形的旋转变换以及作图,根据网格结构找出点A 、B 、C 绕点A 逆时针旋转90°后的点1A 、1B 、1C 的位置,然后顺次连接即可.
(2)本题考查中心对称图形的作图,找出点1A 、1B 、1C 关于原点O 成中心对称的点2A 、2B 、2C 的位置,然后顺次连接即可.
【详解】
【点睛】
解答此类型题目首先要清楚旋转图形和中心对称图形的性质,按照图形定义进行作图,作图时先找点,继而由点连成线.
12.(1)见解析;(2)见解析
【解析】
【分析】
(1)证出△ABE ≌△CDF 即可求解;
(2)证出AE 平行CF ,AE CF =即可/
【详解】
(1)∵AE BD CF BD ⊥⊥,
∴∠AEB=∠CFD
∵平行四边形ABCD
∴∠ABE=∠CDF,AB=CD
∴△ABE ≌△CDF
∴AE=CF
(2)∵AE BD CF BD ⊥⊥,
∴AE ∥CF
∵AE=CF
∴四边形AECF 是平行四边形
【点睛】
本题考查的是平行四边形的综合运用,熟练掌握全等三角形的性质是解题的关键.
13.(1)见解析 (2)(3,4)
【分析】
(1)根据网格结构找出点A 、C 绕点B 顺时针旋转90°后的对应点A 1、C 1的位置,然后顺次连接即可;
(2)根据旋转的性质,确定出旋转中心即可.
【详解】
解:(1)三角形的旋转可以分开看作每条边的旋转,分别找到对应的点,连接即可,故△A 1BC 1如图所示;
(2)连接'AA 并作其垂直平分线,连接'CC 并作其垂直平分线,交点即为旋转中心.如图所示,旋转中心为(3,4),
故答案为(3,4).
【点睛】
本题考查了利用旋转变换作图,熟练掌握网格结构以及旋转的性质,准确找出对应点的位置是解题的关键.
14.(1)1.5;(2)
58;(3)4m . 【分析】
(1)【方法回顾】如图1,利用“AAS ”证明ABE ADF ≌,则BE AF =,AE DF =,然后利用EF AE AF =-得到DF BE EF -=.
(2)【问题解决】证明()DAF ABE ASA △≌△,推出1DF AE AF EF AF ==+=+,AF BE =,再利用勾股定理构建方程解决问题即可.
(3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.设==AB AD a ,由PAD PAB S S m -=△△,推出1122
ay ax m -=,可得2ay ax m -=,利用勾股定理即可解决问题. 【详解】
解:(1)【方法回顾】如图1中,
四边形ABCD 为正方形,
AB AD ∴=,90BAD ∠=︒,
90BAE DAF ∠+∠=︒,90BAE ABE ∠+∠=︒,
ABE DAF ∴∠=∠,
()ABE ADF AAS ∴△≌△,
BE AF ∴=,AE DF =,
EF AE AF =-, 2.5DF =,1BE =
2.51 1.5EF DF BE ∴=-=-=.
故答案为1.5.
(2)【问题解决】如图2中,
四边形ABCD 是菱形,
AB AD ∴=,
BE AB ⊥,
90ABE DAF ∴∠=∠=︒,
180BAD AFD ∠+∠=︒,即180BAP FAD AFD ∠+∠+∠=︒,
180ADF FAD AFD ∠+∠+∠=︒,
BAP ADF ∴∠=∠,
()DAF ABE ASA ∴△≌△,
1DF AE AF EF AF ∴==+=+,AF BE =,
90DAF ∠=︒,
222AF AD DF ∴+=,
2223()(1)2
AF AF ∴+=+. 58
AF ∴=,
58
BE AF ∴==. (3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.
90PMA MAN PNA ∠=∠=∠=︒,
∴四边形PMAN 是矩形,
PN AM x ∴==,PM AN y ==,
四边形ABCD 是正方形,
AB AD ∴=,设==AB AD a ,
PAD PAB S S m -=△△,
∴1122
ay ax m -=,
2ay ax m ∴-=, 222222()[()]222()4PB PD x a y y a x ay ax ay ax m ∴-=++-++=-=-=,
故答案为4m .
【点睛】
本题属于四边形综合题,考查了正方形的性质,菱形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数解决问题.
15.见解析
【分析】
由平行四边形的性质得AD ∥BC ,根据平行线的性质证明∠E =∠F ,角边角证明△AFG ≌△CEH ,其性质得AG =CH ,进而可证明BG =DH .
【详解】
BG =DH ,理由如下:
∵四边形ABCD 是平行四边形,
∴AD ∥BC ,AD =BC ,∠A =∠C ,AB =DC ,
∴∠E =∠F ,
又∵BE =DF ,AF =AD +DF ,CE =CB +BE ,
∴AF =CE ,
在△CEH 和△AFG 中,
A C AF CE F E ∠=∠⎧⎪=⎨⎪∠=∠⎩
∴△AFG ≌△CEH (ASA ),
∴AG =CH ,
∴BG =DH .
【点睛】
本题考查了平行四边形的性质、全等三角形的判定与性质等,熟练掌握相关知识是解题的关键.。