初中数学竞赛辅导资料(2)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学比赛指导资料(
8)
抽屉原则
甲内容大纲
1, 4 个苹果放进 3 个抽屉,有一种必定的结果:最稀有一个抽屉放进的苹
果好多于 2 个(即等于或多于 2 个);假如 7 个苹果放进 3 个抽屉,那 么最稀有一个抽屉放进的苹果好多于 3 个(即的等于或多于 3 个),这 就是抽屉原则的例子。

2, 假如用
m
表示不小于
m
的最小整数,比方
7
=3,
6
2 。

n n
3 3 那么 抽屉原则可定义 为:m 个元素分成 n 个会集( m 、n 为正整数 m>n ),
m
则最稀有一个会集里元素好多于 n 个。

3, 依据 m 的定义,己知 m 、 n 可求 m ;
n
n
己知 m
,则可求
m
的范围,比方己知
m
=3,那么 2<
m
≤3;
n n
n
n
己知 x = 2,则 1< x
≤ 2,即 3< x ≤ 6,x 有最小整数值 4。

3 3
乙例题
例 1 某校有学生 2000 人,问最稀有几个学生诞辰是同一天?
剖析:我们把 2000 名学生看作是苹果,一年
365 天(闰年 366 天)看作是 抽屉,即把 m ( 2000)个元素,分成 n(366) 个会集,最稀有一个会集的元素 好多于 m

n
解:∵ 2000
5 17 ∴ 2000
= 6
366 366
366
答:最稀有 6 名学生的诞辰是同一天
例 2 从 1 到 10 这十个自然数中,任意取出
6 个数,此中最稀有两个是倍
数关系,试说明这是为何。

解:我们把 1 到 10 的奇数及它们的倍数放在同一会集里,则可分为 5 个集 合,它们是:{1, 2, 4,8,},{ 3, 6,},{5, 10},{ 7},{ 9}。

∵要在 5 个会集里取出 6 个数, ∴最稀有两个是在同一会集,而在同一会集里的任意两个数都是倍数关 系。

(本题的要点是划分会集,想想为何
9 不可以放在 3 和 6 的会集里)。

例 3 袋子中有黄、 红、黑、白四种颜色的小球各 6 个 ,请你从袋中取出一些
球,要求最稀有 3 个颜色相同,那么最少应取出几个才有保证。

剖析:我们可把 4 种球看作 4 个抽屉( 4 个会集),最稀有 3 个球同颜色,
看作是最稀有一个抽屉好多于 3 个(有一个会集元素好多于 3 个)。

解:设最少应取出
x 个,用{ x
}表示不小于 x
的最小整数,那么
4
4
{ x }= 3, ∴ 2< x ≤ 3,
即 8< x ≤12, 最小整数值是 9。

4
4
答:最少要取出 9 个球,才能保证有三个同颜色。

例 4等边三角形边长为2,在这三角形内部放入 5 个点,最稀有 2 个点它们的距离小于1,试说明原由。

解:取等边三角形各边中点,并连成四个小三角形(如图)它们边长等于1,∵5 个点放入 4 个三角形,∴最稀有 2
个点放在同一个三角形内,
而同一个三角形内的 2 个点之间的距离必小于边长1。

丙练习 8
1,初一年重生从全县17 个乡镇招收50 名,则最稀有_人来自同一个乡镇。

2,任取 30 个正整数分别除以7,那么它们的余数最稀有__个是相同的。

3,在 2003m中,指数 m 任意取 10 个正整数,那么这 10 个幂的个位数中相同的最少于__个 .
4,暗室里放有四种不一样样规格的祙子各30 只,为保证取出的祙子最稀有1双( 2 只同规格为 1 双)那么最少要取几个?若要保证10 双呢?
5,袋子里有黑、白球各一个,红、蓝、黄球各 6 个,请你取出一些球,要保证最稀有 4 个同颜色,那么最少要取几个?
6,任意取 11 个正整数,最稀有两个它们的差能被10 整除,这是为何?
7,右图有 3 行 9 列的方格,若用红、蓝两种颜色
涂上,则最稀有 2 列的涂色方式是相同的,试说明这是为何。

8,任意取 3 个正整数,此中必有两个数它们的均匀数也是正整数。

试说明原由。

9, 90 粒糖果分给13 个儿童,每人最少分 1 粒,无论如何分,总有两人分得相同多,这是为何?
10, 11 个互不一样样的正整数,它们都小于20,那么必定有两个是互质数。

(最大合约数是 1 的两个正整数叫互质数)
11,任意 6 个人中,也许有 3 个人他们之间都相互认识,也许有3个人他们之间都互不认识,两者必居其一,这是为何?。

相关文档
最新文档