2020-2021初三数学上期末模拟试卷(带答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021初三数学上期末模拟试卷(带答案)
一、选择题
1.若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程a (x -2)2+1=0的实数根为( ) A .1x 0=,2x 4= B .1x 2=-,2x 6=
C .13x 2=
,25
x 2
=
D .1x 4=-,2x 0= 2.如图,ABC ∆是O e 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,
则P ∠的度数为( )
A .32°
B .31°
C .29°
D .61°
3.已知二次函数y =ax 2+bx +c (a >0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x 1,x 2(0<x 1<x 2<4)时,对应的函数值是y 1,y 2,且y 1=y 2,设该函数图象的对称轴是x =m ,则m 的取值范围是( ) A .0<m <1
B .1<m ≤2
C .2<m <4
D .0<m <4
4.如图,点O 是△ABC 的内切圆的圆心,若∠A =80°,则∠BOC 为( )
A .100°
B .130°
C .50°
D .65° 5.若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是
A .点A 在圆外
B .点A 在圆上
C .点A 在圆内
D .不能确定
6.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )
A .6
B .8
C .10
D .12
7.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )
A .
15
B .
25
C .
35
D .
45
8.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =34°,则∠OAC 等于( )
A .68°
B .58°
C .72°
D .56°
9.以394c
x ±+=
为根的一元二次方程可能是( ) A .230x x c --= B .230x x c +-= C .230-+=x x c D .230++=x x c 10.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( ) A .﹣1、3 B .1、﹣3 C .﹣1、﹣3 D .1、3 11.设,a b 是方程2320170x x +-=的两个实数根,则22a a b +-的值为( ) A .2017
B .2018
C .2019
D .2020
12.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( ) A .y=1+
12
x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 2
二、填空题
13.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为_______.
14.设a 、b 是方程220190x x +-=的两个实数根,则()()11a b --的值为_____.
15.如图,在边长为2的正方形ABCD 中,以点D 为圆心,AD 长为半径画»AC
,再以BC 为直径画半圆,若阴影部分①的面积为S 1,阴影部分②的面积为S 2,则图中S 1﹣S 2的值为_____.(结果保留π)
16.已知二次函数
,当x _______________时,随的增大而减小.
17.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.
18.两块大小相同,含有30°角的三角板如图水平放置,将△CDE 绕点C 按逆时针方向旋转,当点E 的对应点E′恰好落在AB 上时,△CDE 旋转的角度是______度.
19.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为_____.
20.如图,已知O e 的半径为2,ABC ∆内接于O e ,135ACB ∠=o ,则
AB =__________.
三、解答题
21.一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.
(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果; (2)求摸出的两个小球号码之和等于4的概率.
22.某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:
转动转盘的次数n 100 150 200 500 800 1000 落在“铅笔”的次数m
68
111
136
345
546
701
落在“铅笔”的频率
m n
(结果保留小数点后两位)
0.68 0.74 0.68 0.69 0.68 0.70
(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位) (2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;
(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.
23.如图,在ABC V 中,ACB 90∠=o ,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90o 得到线段CE ,连结DE 交BC 于点F ,连接BE .
1()求证:ACD V ≌BCE V ;
2()
当AD BF =时,求BEF ∠的度数.
24.如图,⊙O 是△ABC 的外接圆,AB 是直径,OD ⊥AC ,垂足为D 点,直线OD 与⊙O 相交于E ,F 两点,P 是⊙O 外一点,P 在直线OD 上,连接P A ,PB ,PC ,且满足∠PCA =∠ABC
(1)求证:P A =PC ; (2)求证:P A 是⊙O 的切线; (3)若BC =8,
3
2
AB DF =,求DE 的长.
25.已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于6cm2?
(2)在(1)中,△PQB的面积能否等于8cm2?说明理由.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
二次函数y=ax2+1的图象经过点(-2,0),得到4a+1=0,求得a=-,代入方程a(x-2)2+1=0即可得到结论.
【详解】
解:∵二次函数y=ax2+1的图象经过点(-2,0),
∴4a+1=0,
∴a=-1
4

∴方程a(x-2)2+1=0为:方程-(x-2)2+1=0,解得:x1=0,x2=4,
故选:A.
【点睛】
本题考查了二次函数与x 轴的交点问题,二次函数图象上点的坐标特征,一元二次方程的解,正确的理解题意是解题的关键.
2.A
解析:A 【解析】 【分析】
根据题意连接OC ,COP ∆为直角三角形,再根据BC 的优弧所对的圆心角等于圆周角的2倍,可计算的COP ∠的度,再根据直角三角形可得P ∠的度数. 【详解】
根据题意连接OC.因为119A ∠=︒
所以可得BC 所对的大圆心角为2119238BOC ︒︒∠=⨯= 因为BD 为直径,所以可得23818058COD ︒︒︒∠=-= 由于COP ∆为直角三角形 所以可得905832P ︒︒︒∠=-= 故选A. 【点睛】
本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的2倍.
3.C
解析:C 【解析】 【分析】
根据二次函数图象上点的坐标特征即可求得. 【详解】
解:当a>0时,抛物线开口向上,则点(0,1)的对称点为(x0,1),
∴x0>4,
∴对称轴为x=m中2<m<4,
故选C.
【点睛】
本题考查了二次函数的性质,二次函数图象上点的坐标特征,画出草图更直观.4.B
解析:B
【解析】
【分析】
根据三角形的内切圆得出∠OBC=1
2
∠ABC,∠OCB=
1
2
∠ACB,根据三角形的内角和定理
求出∠ABC+∠ACB的度数,进一步求出∠OBC+∠OCB的度数,根据三角形的内角和定理求出即可.
【详解】
∵点O是△ABC的内切圆的圆心,∴∠OBC=1
2
∠ABC,∠OCB=
1
2
∠ACB.
∵∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∴∠OBC+∠OCB=1
2
(∠ABC+∠ACB)
=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°.
故选B.
【点睛】
本题主要考查对三角形的内角和定理,三角形的内切圆与内心等知识点的理解和掌握,能求出∠OBC+∠OCB的度数是解答此题的关键.
5.C
解析:C
【解析】
【分析】
要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内判断出即可.
【详解】
解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,
∴d<r,
∴点A与⊙O的位置关系是:点A在圆内,
故选C.
6.D
解析:D
【解析】
【分析】
连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.
【详解】
连接AO、BO、CO,
∵AC是⊙O内接正四边形的一边,
∴∠AOC=360°÷4=90°,
∵BC是⊙O内接正六边形的一边,
∴∠BOC=360°÷6=60°,
∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,
∴n=360°÷30°=12;
故选:D.
【点睛】
本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.
7.C
解析:C
【解析】
【分析】
【详解】
解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使
与图中阴影部分构成轴对称图形的概率为
3 35
5÷=
故选C
8.D
解析:D
【解析】
【分析】
根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.
【详解】
∵∠ADC=34°,∴∠AOC=2∠ADC=68°.
∵OA=OC,∴∠OAC=∠OCA
1
2
=(180°﹣68°)=56°.
【点睛】
本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
9.A
解析:A 【解析】 【分析】
根据一元二次方程根与系数的关系求解即可. 【详解】
设x 1,x 2是一元二次方程的两个根,
∵32
x ±=
∴x 1+x 2=3,x 1∙x 2=-c ,
∴该一元二次方程为:2
1212()0x x x x x x -++=,即230x x c --=
故选A. 【点睛】
此题主要考查了根据一元二次方程的根与系数的关系列一元二次方程.
10.A
解析:A 【解析】 【分析】
让两个横坐标相加得0,纵坐标相加得0即可求得a ,b 的值. 【详解】
解:∵P (-b ,2)与点Q (3,2a )关于原点对称点, ∴-b+3=0,2+2a=0, 解得a=-1,b=3, 故选A . 【点睛】
用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.
11.D
解析:D 【解析】 【分析】
首先根据根与系数的关系,求出a+b=-3;然后根据a 是方程2320170x x +-=的实数根,可得2320170a a +-=,据此求出232017a a +=,利用根与系数关系得:+a b =-3,22a a b +- 变形为(2a 3a +)-(+a b ),代入即可得到答案.
解:∵a 、b 是方程2320170x x +-=的两个实数根, ∴+a b =-3;
又∵2320170a a +-=, ∴232017a a +=, ∴22a a b +-
=(2a 3a +)-(+a b ) =2017-(-3) =2020
即22a a b +-的值为2020. 故选:D . 【点睛】
本题考查了根与系数的关系与一元二次方程的解,把22a a b +-化成(2a 3a +)-(+a b )是解题的关键.
12.D
解析:D 【解析】 【分析】
抛物线的形状只是与a 有关,a 相等,形状就相同. 【详解】
y =2(x ﹣1)2+3中,a =2. 故选D . 【点睛】
本题考查了抛物线的形状与a 的关系,比较简单.
二、填空题
13.【解析】【分析】设⊙O 半径为r 根据勾股定理列方程求出半径r 由勾股定理依次求BE 和EC 的长【详解】连接BE 设⊙O 半径为r 则OA=OD=rOC=r-2∵OD ⊥AB ∴∠ACO=90°AC=BC=AB=4在
解析:【解析】 【分析】
设⊙O 半径为r ,根据勾股定理列方程求出半径r ,由勾股定理依次求BE 和EC 的长. 【详解】 连接BE ,
设⊙O 半径为r ,则OA=OD=r ,OC=r-2,
∵OD ⊥AB ,
∴∠ACO=90°, AC=BC=12
AB=4, 在Rt △ACO 中,由勾股定理得:r 2=42+(r-2)2,
r=5,
∴AE=2r=10,
∵AE 为⊙O 的直径,
∴∠ABE=90°,
由勾股定理得:BE=6,
在Rt △ECB 中,EC 222264213BE BC +=+=. 故答案是:13
【点睛】
考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.
14.-2017【解析】【分析】根据根与系数的关系可得出将其代入中即可得出结论【详解】∵是方程的两个实数根∴∴故答案为:-2017【点睛】本题考查了根与系数的关系牢记两根之和等于两根之积等于是解题的关键
解析:-2017
【解析】
【分析】
根据根与系数的关系可得出1a b +=-,2019ab =-,将其代入
()()()111a b ab a b --=-++中即可得出结论.
【详解】
∵a 、b 是方程220190x x +-=的两个实数根,
∴1a b +=-,2019ab =-,
∴()()()111a b ab a b --=-++2019112017=-++=-.
故答案为:-2017.
【点睛】
本题考查了根与系数的关系,牢记“两根之和等于b a -,两根之积等于c a
”是解题的关键.
15.π【解析】【分析】如图设图中③的面积为S3构建方程组即可解决问题【详解】解:如图设图中③的面积为S3由题意:可得S1﹣S2=π故答案为π【点睛】本题考查扇形的面积正方形的性质等知识解题的关键是学会利
解析:
1 2π
【解析】
【分析】
如图,设图中③的面积为S3.构建方程组即可解决问题.【详解】
解:如图,设图中③的面积为S3.
由题意:
2
13
2
23
1
··2
4
1
··1
2
S S
S S
π
π

+=
⎪⎪

⎪+=
⎪⎩

可得S1﹣S2=1
2π,
故答案为1
2π.
【点睛】
本题考查扇形的面积、正方形的性质等知识,解题的关键是学会利用参数构建方程组解决问题.
16.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y随x的增大而减小在对称轴的右边y随x的增大而增大根据性质可得:当x<2时y随x的增大而减小考点:二次函数的性质
解析:<2(或x≤2).
【解析】
试题分析:对于开口向上的二次函数,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大.根据性质可得:当x<2时,y随x的增大而减小.
考点:二次函数的性质
17.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P(摸到白球)==
解析:38
【解析】
【分析】
【详解】
解:∵在一个不透明的口袋中装有5个红球和3个白球,
∴任意从口袋中摸出一个球来,P (摸到白球)=353+ =38
. 18.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是
△ACB 的中线可得△E′CB 是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE 旋转的度数【详解】解:∵三角板是两块大小
解析:30
【解析】
【分析】
根据含有30°角的直角三角形的性质可知CE′是△ACB 的中线,可得△E′CB 是等边三角形,从而得出∠ACE ′的度数和CE′的长,从而得出△CDE 旋转的度数.
【详解】
解:∵三角板是两块大小一样且含有30°的角,
∴CE′是△ACB 的中线,
∴CE′=BC =BE′,
∴△E′CB 是等边三角形,
∴∠BCE′=60°,
∴∠ACE′=90°﹣60°=30°,
故答案为:30.
【点睛】
本题考查了含有30°角的直角三角形的性质,等边三角形的判定和性质,旋转的性质,本题关键是得到CE ´是△ABC 的中线.
19.(2)【解析】由题意得:即点P 的坐标
解析: ,2).
【解析】
由题意得:441a a =⇒= 2y x ⇒=
222OD x x =⇒=⇒=,即点P 的坐标)
2. 20.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍可以求得∠AOB 的度数然后根据勾股定理即可求得AB 的长详解:连接ADAEOAOB∵⊙O 的半径为2△ABC 内接于⊙O∠ACB=13
解析:【解析】
分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB的长.
详解:连接AD、AE、OA、OB,
∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,
∴∠ADB=45°,
∴∠AOB=90°,
∵OA=OB=2,
∴AB=22,
故答案为:22.
点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
三、解答题
21.(1)见解析;(2)1 3 .
【解析】
【分析】
(1)画树状图列举出所有情况;
(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.【详解】
解:(1)根据题意,可以画出如下的树形图:
从树形图可以看出,两次摸球出现的所有可能结果共有6种.
(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,
∴摸出的两个小球号码之和等于4的概率为=.
【点睛】
本题要查列表法与树状图法求概率,列出树状图得出所有等可能结果是解题关键. 22.(1)0.7;(2)该商场每天大致需要支出的奖品费用为5000元;(3)36【解析】
【分析】
(1)利用频率估计概率求解;
(2)利用(1)得到获得铅笔的概率为0.7和获得饮料的概率为0.3,然后计算
4000×0.5×0.7+4000×3×0.3即可;
(3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,则4000×3×360
n +4000×0.5(1-360
n )=3000,然后解方程即可. 【详解】
(1)转动该转盘一次,获得铅笔的概率约为0.7;
故答案为 0.7
(2)4000×
0.5×0.7+4000×3×0.3=5000, 所以该商场每天大致需要支出的奖品费用为5000元;
(3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,
则4000×3×360n +4000×0.5(1﹣360
n )=3000,解得n =36, 所以转盘上“一瓶饮料”区域的圆心角应调整为36度.
故答案为36.
【点睛】
本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了扇形统计图.
23.()1证明见解析;()2BEF 67.5∠=o
. 【解析】
【分析】()1由题意可知:CD CE =,DCE 90∠=o ,由于ACB 90∠=o ,从而可得ACD BCE ∠∠=,根据SAS 即可证明ACD V ≌BCE V ;
()2由ACD V ≌()BCE SAS V 可知:A CBE 45∠∠==o ,BE BF =,从而可求出BEF ∠的度数.
【详解】()1由题意可知:CD CE =,DCE 90∠=o ,
ACB 90o Q ∠=,
ACD ACB DCB ∠∠∠∴=-,
BCE DCE DCB ∠∠∠=-,
ACD BCE ∠∠∴=,
在ACD V 与BCE V 中,
AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩

ACD ∴V ≌()BCE SAS V ;
()2ACB 90∠=o Q ,AC BC =,
A 45∠∴=o ,
由()1可知:A CBE 45∠∠==o ,
AD BF =Q ,
BE BF ∴=,
BEF 67.5o ∠∴=.
【点睛】本题考查了旋转的性质、全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.
24.(1)详见解析;(2)详见解析;(3)DE =8.
【解析】
【分析】
(1)根据垂径定理可得AD =CD ,得PD 是AC 的垂直平分线,可判断出P A =PC ; (2)由PC =P A 得出∠P AC =∠PCA ,再判断出∠ACB =90°,得出∠CAB +∠CBA =90°,再判断出∠PCA +∠CAB =90°,得出∠CAB +∠P AC =90°,即可得出结论; (2)根据AB 和DF 的比设AB =3a ,DF =2a ,先根据三角形中位线可得OD =4,从而得结论.
【详解】
(1)证明∵OD ⊥AC ,
∴AD =CD ,
∴PD 是AC 的垂直平分线,
∴P A =PC ,
(2)证明:由(1)知:P A =PC ,
∴∠P AC =∠PCA .
∵AB 是⊙O 的直径,
∴∠ACB =90°,
∴∠CAB +∠CBA =90°.
又∵∠PCA =∠ABC ,
∴∠PCA +∠CAB =90°,
∴∠CAB +∠P AC =90°,即AB ⊥P A ,
∴P A 是⊙O 的切线;
(3)解:∵AD =CD ,OA =OB ,
∴OD ∥BC ,OD =
12BC =182⨯=4, ∵32
AB DF =, 设AB =3a ,DF =2a ,
∵AB =EF ,
∴DE =3a ﹣2a =a ,
∴OD=4=3
2
a
﹣a,
a=8,
∴DE=8.
【点睛】
本题考查的是圆的综合,难度适中,需要熟练掌握线段中垂线的性质、圆的切线的求法以及三角形中位线的相关性质.
25.(1)2或3秒;(2)不能.
【解析】
【分析】
(1)设经过x秒钟,△PBQ的面积等于6cm2,根据点P从A点开始沿AB边向点B以
1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,表示出BP和BQ的长可列方程求解.
(2)通过判定得到的方程的根的判别式即可判定能否达到8cm2.
【详解】
(1)设经过x秒以后△PBQ面积为6cm2,则
1
2
×(5﹣x)×2x=6,
整理得:x2﹣5x+6=0,
解得:x=2或x=3.
答:2或3秒后△PBQ的面积等于6cm2 .
(2)设经过x秒以后△PBQ面积为8cm2,则
1
2
×(5﹣x)×2x=8,
整理得:x2﹣5x+8=0,
△=25﹣32=﹣7<0,
所以,此方程无解,
故△PQB的面积不能等于8cm2.
【点睛】
此题主要考查了一元二次方程的应用,找到关键描述语“△PBQ的面积等于6cm2”,得出等量关系是解决问题的关键.。

相关文档
最新文档