安徽省滁州市2019-2020学年中考数学仿真第二次备考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省滁州市2019-2020学年中考数学仿真第二次备考试题
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列图形中,阴影部分面积最大的是
A.B.C.D.
2.如图,在平行四边形ABCD中,∠ABC的平分线BF交AD于点F,FE∥AB.若AB=5,AD=7,BF=6,则四边形ABEF的面积为()
A.48 B.35 C.30 D.24
3.如下字体的四个汉字中,是轴对称图形的是()
A.B.C.D.
4.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()
A.
6
13
B.
5
13
C.
4
13
D.
3
13
5.2017年人口普查显示,河南某市户籍人口约为2536000人,则该市户籍人口数据用科学记数法可表示为()
A.2.536×104人B.2.536×105人C.2.536×106人D.2.536×107人
6.如图是二次函数y=ax2+bx+c的图象,有下列结论:①ac<1;②a+b<1;③4ac>b2;④4a+2b+c<1.其中正确的个数是()
A .1个
B .2个
C .3个
D .4个
7.2017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学计数法表示正确的是( )
A .1.35×106
B .1.35×105
C .13.5×104
D .135×103
8.小手盖住的点的坐标可能为( )
A .()5,2
B .()3,4-
C .()6,3-
D .()4,6--
9.tan45°的值等于( )
A .3
B .22
C .3
D .1
10.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是( )
A .0.2
B .0.25
C .0.4
D .0.5
11.2017年扬中地区生产总值约为546亿元,将546亿用科学记数法表示为( )
A .5.46×108
B .5.46×109
C .5.46×1010
D .5.46×1011
12.如图,在直角坐标系中,等腰直角△ABO 的O 点是坐标原点,A 的坐标是(﹣4,0),直角顶点B 在第二象限,等腰直角△BCD 的C 点在y 轴上移动,我们发现直角顶点D 点随之在一条直线上移动,这条直线的解析式是( )
A .y=﹣2x+1
B .y=﹣12x+2
C .y=﹣3x ﹣2
D .y=﹣x+2
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,BD 是⊙O 的直径,BA 是⊙O 的弦,过点A 的切线交BD 延长线于点C ,OE ⊥AB 于E ,且AB=AC ,若CD=22,则OE 的长为_____.
14.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.
15.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.
16.某个“清涼小屋”自动售货机出售A 、B 、C 三种饮料.A 、B 、C 三种饮料的单价分別是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A 饮科的数量(单位:瓶)是B 饮料数量的2倍,B 饮料的数量(单位:瓶)是C 饮料数量的2倍.某个周六,A 、B 、C 三种饮料的上货量分別比一个工作日的上货量增加了50%、60%、50%,且全部售出.但是由于软件bug ,发生了一起错单(即消费者按某种饮料一瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了503元.则这个“清凉小屋”自动售货机一个工作日的销售收入是_____元. 17.如图,等腰三角形ABC 的底边BC 长为4,面积是12,腰AB 的垂直平分线EF 分别交AB ,AC 于点E 、F ,若点D 为底边BC 的中点,点M 为线段EF 上一动点,则△BDM 的周长的最小值为_____.
18.设[x)表示大于x 的最小整数,如[3)=4,[−1.2)=−1,则下列结论中正确的是 ______ .(填写所有正确结论的序号)①[0)=0;②[x)−x 的最小值是0;③[x)−x 的最大值是0;④存在实数x ,使[x)−x=0.5成立.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知:如图,在半径为2的扇形AOB 中,90AOB ︒∠=°,点C 在半径OB 上,AC 的垂直平
分线交OA 于点D ,交弧AB 于点E ,联结BE CD 、.
(1)若C 是半径OB 中点,求OCD ∠的正弦值;
(2)若E 是弧AB 的中点,求证:2•BE BO BC =;
(3)联结CE ,当△DCE 是以CD 为腰的等腰三角形时,求CD 的长.
20.(6分)如图,已知抛物线y =x 2﹣4与x 轴交于点A ,B (点A 位于点B 的左侧),C 为顶点,直线y =x+m 经过点A ,与y 轴交于点D .求线段AD 的长;平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D ,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD ,求新抛物线对应的函数表达式.
21.(6分)某中学为了了解在校学生对校本课程的喜爱情况,随机调查了部分学生对A B C D E ,,,,五类校本课程的喜爱情况,要求每位学生只能选择一类最喜欢的校本课程,根据调查结果绘制了如下的两个不完整统计图.请根据图中所提供的信息,完成下列问题:
(1)本次被调查的学生的人数为 ;
(2)补全条形统计图
(3)扇形统计图中,C 类所在扇形的圆心角的度数为 ;
(4)若该中学有2000名学生,请估计该校最喜爱C D ,两类校本课程的学生约共有多少名.
22.(8分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.该项绿化工程原计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?
23.(8分)如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58°.为了改善滑梯AB 的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)
24.(10分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?
25.(10分)如图,一次函数y=kx+b的图象与反比例函数y=m
x
的图象交于点A(-3,m+8),B(n,
-6)两点.求一次函数与反比例函数的解析式;求△AOB的面积.
26.(12分)淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售的A商品的成本为30元/件,网上标价为80元/件.“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引顾客,问该店平均每次降价率为多少时,才能使A商品的售价为39.2元/件?据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A商品的成本、网上标价与甲网店一致,一周可售出1000件A商品.在“双十一”购物活动当天,乙网店先将A商品的网上标价提高a%,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A商品数量相比原来一周增加了2a%,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标价.
27.(12分)商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场
决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2
件.设每件商品降价x元. 据此规律,请回答:
(1)商场日销售量增加▲ 件,每件商品盈利▲ 元(用含x的代数式表示);
(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.C
【解析】
【分析】
分别根据反比例函数系数k 的几何意义以及三角形面积求法以及梯形面积求法得出即可:
【详解】
A 、根据反比例函数系数k 的几何意义,阴影部分面积和为:xy=1.
B 、根据反比例函数系数k 的几何意义,阴影部分面积和为:xy 3=.
C 、如图,过点M 作MA ⊥x 轴于点A ,过点N 作NB ⊥x 轴于点B ,
根据反比例函数系数k 的几何意义,S △OAM =S △OAM =
13xy 22=,从而阴影部分面积和为梯形MABN 的面积:()113242
+⨯=. D 、根据M ,N 点的坐标以及三角形面积求法得出,阴影部分面积为:
11632⨯⨯=. 综上所述,阴影部分面积最大的是C .故选C .
2.D
【解析】
分析:首先证明四边形ABEF 为菱形,根据勾股定理求出对角线AE 的长度,从而得出四边形的面积. 详解:∵AB ∥EF ,AF ∥BE , ∴四边形ABEF 为平行四边形, ∵BF 平分∠ABC ,
∴四边形ABEF 为菱形, 连接AE 交BF 于点O , ∵BF=6,BE=5,∴BO=3,EO=4,
∴AE=8,则四边形ABEF 的面积=6×8÷2=24,故选D .
点睛:本题主要考查的是菱形的性质以及判定定理,属于中等难度的题型.解决本题的关键就是根据题意得出四边形为菱形.
3.A
【解析】
试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A 为轴对称图形.
故选A .
考点:轴对称图形
4.B
【解析】
解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:513
.故选B .
5.C
【解析】
【分析】
科学记数法的表示形式为a×
10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数.
【详解】
2536000人=2.536×106人.
故选C .
【点睛】
本题考查了科学记数法的表示方法.科学记数法的表示形式为a×
10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.
6.C
【解析】
【分析】
由抛物线的开口方向判断a 与1的关系,由抛物线与y 轴的交点判断c 与1的关系,然后根据抛物线与x 轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.
【详解】
解:①根据图示知,该函数图象的开口向上,∴a>1;该函数图象交于y 轴的负半轴,
∴c<1;0ac <故①正确;
②对称轴12b x a =-
=,2,b a ∴=- ∴02b a
<, ∴b<1; 20,a b a a a +===-<故②正确;
③根据图示知,二次函数与x 轴有两个交点,所以240b ac =->V ,即24b ac >,故③错误
④42440,a b c a a c c ++=-+=<故本选项正确.
正确的有3项
故选C .
【点睛】
本题考查二次函数的图象与系数的关系.二次项系数a 决定了开口方向,一次项系数b 和二次项系数a 共同决定了对称轴的位置,常数项c 决定了与y 轴的交点位置.
7.B
【解析】
【分析】
科学记数法的表示形式为a×
10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.
【详解】
解:135000=1.35×
105 故选B .
【点睛】
此题考查科学记数法表示较大的数.科学记数法的表示形式为a×
10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.
8.B
【解析】
【分析】
根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.
【详解】
根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;
分析选项可得只有B 符合.
故选:B .
【点睛】
此题考查点的坐标,解题的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
9.D
【解析】
【分析】
根据特殊角三角函数值,可得答案.
【详解】
解:tan45°=1,
故选D.
【点睛】
本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
10.B
【解析】
【分析】
设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.
【详解】
解:设大正方形边长为2,则小正方形边长为1,
因为面积比是相似比的平方,
所以大正方形面积为4,小正方形面积为1,
则针孔扎到小正方形(阴影部分)的概率是1
0.25 4
=;
故选:B.
【点睛】
本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结
果,那么事件A的概率()m
P A
n
=.
11.C
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.
【详解】
解:将546亿用科学记数法表示为:5.46×1010,故本题选C.
【点睛】
本题考查的是科学计数法,熟练掌握它的定义是解题的关键.
12.D
【解析】
【分析】
抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D
的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解
得到k与b的值,即可确定出所求直线解析式.
【详解】
当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示.
∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=1
2
OA=1,
OF=DG=BG=CG=1
2
BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);
当C与原点O重合时,D在y轴上,此时OD=BE=1,即D(0,1),设所求直线解析式为y=kx+b(k≠0),
将两点坐标代入得:
3
2
k b
b
-+=
⎧
⎨
=
⎩
,解得:
1
2
k
b
=-
⎧
⎨
=
⎩
.
则这条直线解析式为y=﹣x+1.
故选D.
【点睛】
本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.2
【解析】
【分析】
连接OA,所以∠OAC=90°,因为AB=AC,所以∠B=∠C,根据圆周角定理可知∠AOD=2∠B=2∠C,故可求出∠B和∠C的度数,在Rt△OAC中,求出OA的值,再在Rt△OAE中,求出OE的值,得到答案.
【详解】
连接OA,
由题意可知∠OAC=90°,
∵AB=AC,
∴∠B=∠C,
根据圆周角定理可知∠AOD=2∠B=2∠C,∵∠OAC=90°
∴∠C+∠AOD=90°,
∴∠C+2∠C=90°,
故∠C=30°=∠B,
∴在Rt△OAC中,sin∠C=OA
OC
=
1
2
,
∴OC=2OA,
∵OA=OD,
∴OD+CD=2OA,∴CD=OA=22,∵OB=OA,
∴∠OAE=∠B=30°,
∴在Rt△OAE中,sin∠OAE=OE
OA
=
1
2
,
∴OA=2OE,
∴OE=1
2
OA=2,
故答案为2.
【点睛】
本题主要考查了圆周角定理,角的转换,以及在直角三角形中的三角函数的运用,解本题的要点在于求出OA的值,从而利用直角三角形的三角函数的运用求出答案.
14.
【解析】
【分析】
根据概率的公式进行计算即可.
【详解】
从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.
故答案为:.
考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.
15.72
【解析】
分析:延长AB 交2l 于点F ,根据12//l l 得到∠2=∠3,根据五边形ABCDE 是正五边形得到∠FBC=72°
,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.
详解:延长AB 交2l 于点F ,
∵12//l l ,
∴∠2=∠3,
∵五边形ABCDE 是正五边形,
∴∠ABC=108°,
∴∠FBC=72°,
∠1-∠2=∠1-∠3=∠FBC=72°
故答案为:72°
. 点睛:此题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.
16.950
【解析】
【分析】
设工作日期间C 饮料数量为x 瓶,则B 饮料数量为2x 瓶,A 饮料数量为4x 瓶,得到工作日期间一天的
销售收入为:8x+6x+5x =19x 元,和周六销售销售收入为:12x+9.6x+7.5x =29.1x 元,再结合题意得到10.1x
﹣(5﹣3)=503,计算即可得到答案.
【详解】
解:设工作日期间C 饮料数量为x 瓶,则B 饮料数量为2x 瓶,A 饮料数量为4x 瓶,
工作日期间一天的销售收入为:8x+6x+5x =19x 元,
周六C 饮料数量为1.5x 瓶,则B 饮料数量为3.2x 瓶,A 饮料数量为6x 瓶,
周六销售销售收入为:12x+9.6x+7.5x =29.1x 元,
周六销售收入与工作日期间一天销售收入的差为:29.1x ﹣19x =10.1x 元,
由于发生一起错单,收入的差为503元,因此,503加减一瓶饮料的差价一定是10.1的整数倍, 所以这起错单发生在B 、C 饮料上(B 、C 一瓶的差价为2元),且是消费者付B 饮料的钱,取走的是C
于是有:10.1x﹣(5﹣3)=503
解得:x=50
工作日期间一天的销售收入为:19×50=950元,
故答案为:950.
【点睛】
本题考查一元一次方程的实际应用,解题的关键是由题意得到等量关系.
17.2
【解析】
【分析】
连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为△ABC底边上的高线,依据三角形的面积为12可求得AD的长.
【详解】
解:连接AD交EF与点M′,连结AM.
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴S△ABC=1
2
BC•AD=
1
2
×4×AD=12,解得AD=1,
∵EF是线段AB的垂直平分线,
∴AM=BM.
∴BM+MD=MD+AM.
∴当点M位于点M′处时,MB+MD有最小值,最小值1.
∴△BDM的周长的最小值为DB+AD=2+1=2.
【点睛】
本题考查三角形的周长最值问题,结合等腰三角形的性质、垂直平分线的性质以及中点的相关属性进行分析.
18.④
【解析】
根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.
【详解】
①[0)=1,故本项错误;
②[x)−x>0,但是取不到0,故本项错误;
③[x)−x⩽1,即最大值为1,故本项错误;
④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.
故答案是:④.
【点睛】
此题考查运算的定义,解题关键在于理解题意的运算法则.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(2)
3
sin CD
5
O
∠=;(2)详见解析;(2)当DCE
V是以CD为腰的等腰三角形时,CD的长为2或
2.【解析】【分析】
(2)先求出OC
1
2
=OB=2,设OD=x,得出CD=AD=OA﹣OD=2﹣x,根据勾股定理得:(2﹣x)2﹣x2=2
求出x,即可得出结论;
(2)先判断出¶¶
AE BE
=,进而得出∠CBE=∠BCE,再判断出△OBE∽△EBC,即可得出结论;(3)分两种情况:①当CD=CE时,判断出四边形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;
②当CD=DE时,判断出∠DAE=∠DEA,再判断出∠OAE=OEA,进而得出∠DEA=∠OEA,即:点D 和点O重合,即可得出结论.
【详解】
(2)∵C是半径OB中点,∴OC
1
2
=OB=2.
∵DE是AC的垂直平分线,∴AD=CD.设OD=x,∴CD=AD=OA﹣OD=2﹣x.
在Rt△OCD中,根据勾股定理得:(2﹣x)2﹣x2=2,∴x
3
4
=,∴CD
5
4
=,∴sin∠OCD
3
5
OD
CD
==;
(2)如图2,连接AE,CE.
∵DE是AC垂直平分线,∴AE=CE.
∵E是弧AB的中点,∴¶¶
AE BE
=,∴AE=BE,∴BE=CE,∴∠CBE=∠BCE.连接OE,∴OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠BCE=∠OEB.
∵∠B=∠B,∴△OBE∽△EBC,∴BE OB
BC BE
=,∴BE2=BO•BC;
(3)△DCE是以CD为腰的等腰三角形,分两种情况讨论:
①当CD=CE时.
∵DE是AC的垂直平分线,∴AD=CD,AE=CE,∴AD=CD=CE=AE,∴四边形ADCE是菱形,∴CE∥AD,∴∠OCE=90°,设菱形的边长为a,∴OD=OA﹣AD=2﹣a.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,∴4﹣a2=a2﹣(2﹣a)2,∴a=﹣23-2(舍)或a=232
-;∴CD=232
-;
②当CD=DE时.
∵DE是AC垂直平分线,∴AD=CD,∴AD=DE,∴∠DAE=∠DEA.
连接OE,∴OA=OE,∴∠OAE=∠OEA,∴∠DEA=∠OEA,∴点D和点O重合,此时,点C和点B 重合,∴CD=2.
-.
综上所述:当△DCE是以CD为腰的等腰三角形时,CD的长为2或232
【点睛】
本题是圆的综合题,主要考查了勾股定理,线段垂直平分线的性质,菱形的判定和性质,锐角三角函数,作出辅助线是解答本题的关键.
20.(1)2;(1) y=x1﹣4x+1或y=x1+6x+1.
【解析】
【分析】
(1)解方程求出点A的坐标,根据勾股定理计算即可;
(1)设新抛物线对应的函数表达式为:y=x1+bx+1,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.
【详解】
解:(1)由x1﹣4=0得,x1=﹣1,x1=1,
∵点A位于点B的左侧,
∴A(﹣1,0),
∵直线y=x+m经过点A,
∴﹣1+m =0,
解得,m =1,
∴点D 的坐标为(0,1),
∴AD ;
(1)设新抛物线对应的函数表达式为:y =x 1+bx+1,
y =x 1
+bx+1=(x+2b )1+1﹣2
4b , 则点C′的坐标为(﹣2b ,1﹣2
4
b ), ∵CC′平行于直线AD ,且经过C (0,﹣4),
∴直线CC′的解析式为:y =x ﹣4,
∴1﹣2
4
b =﹣2b ﹣4, 解得,b 1=﹣4,b 1=6,
∴新抛物线对应的函数表达式为:y =x 1﹣4x+1或y =x 1+6x+1.
【点睛】
本题考查的是抛物线与x 轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x 轴的交点的求法是解题的关键.
21. (1)300;(2)见解析;(3)108°;(4)约有840名.
【解析】
【分析】
(1)根据A 种类人数及其占总人数百分比可得答案;
(2)用总人数乘以B 的百分比得出其人数,即可补全条形图;
(3)用360°乘以C 类人数占总人数的比例可得;
(4)总人数乘以C 、D 两类人数占样本的比例可得答案.
【详解】
解:(1)本次被调查的学生的人数为69÷23%=300(人),
故答案为:300;
(2)喜欢B 类校本课程的人数为300×20%=60(人),
补全条形图如下:
(3)扇形统计图中,C类所在扇形的圆心角的度数为360°×90
300
=108°,
故答案为:108°;
(4)∵2000×90+36
300
=840,
∴估计该校喜爱C,D两类校本课程的学生共有840名.
【点睛】
本题考查条形统计图、扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解题关键.条形统计图能清楚地表示出每个项目的数据.
22.(1)2000;(2)2米
【解析】
【分析】
(1)设未知数,根据题目中的的量关系列出方程;
(2)可以通过平移,也可以通过面积法,列出方程
【详解】
解:(1)设该项绿化工程原计划每天完成x米2,
根据题意得:4600022000
x
-
﹣
4600022000
1.5x
-
= 4
解得:x=2000,
经检验,x=2000是原方程的解;
答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56
解得:x=2或x=26
3
(不合题意,舍去).
答:人行道的宽为2米.
23.调整后的滑梯AD比原滑梯AB增加2.5米
【解析】
试题分析: Rt△ABD中,根据30°的角所对的直角边是斜边的一半得到AD的长,然后在Rt△ABC中,求
得AB的长后用AD AB
-即可求得增加的长度.
试题解析: Rt△ABD中,
∵30
ADB
∠=o,AC=3米,
∴AD=2AC=6(m)
∵在Rt△ABC中,58 3.53
AB AC sin m
=÷≈
o,
∴AD−AB=6−3.53≈2.5(m).
∴调整后的滑梯AD比原滑梯AB增加2.5米.
24.(1);(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元.
【解析】
【分析】
根据题可设出一般式,再由图中数据带入可得答案,根据题目中的x的取值可得结果.②由总利润=数量×单间商品的利润可得函数式,可得解析式为一元二次式,配成顶点式可求出最大利润时的销售价,即可得出答案.
【详解】
(1).
(2)根据题意,得:
∵
∴当时,随x的增大而增大
∵
∴当时,取得最大值,最大值是144
答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.
【点睛】
熟悉掌握图中所给信息以及列方程组是解决本题的关键.
25.(1)y=-6
x
,y=-2x-1(2)1
【解析】
试题分析:(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析
式求解;
(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据S△AOB=S△AOC+S△BOC列式计算即可得解.
试题解析:(1)将A(﹣3,m+8)代入反比例函数y=得,
=m+8,
解得m=﹣6,
m+8=﹣6+8=2,
所以,点A的坐标为(﹣3,2),
反比例函数解析式为y=﹣,
将点B(n,﹣6)代入y=﹣得,﹣=﹣6,
解得n=1,
所以,点B的坐标为(1,﹣6),
将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,
,
解得,
所以,一次函数解析式为y=﹣2x﹣1;
(2)设AB与x轴相交于点C,
令﹣2x﹣1=0解得x=﹣2,
所以,点C的坐标为(﹣2,0),
所以,OC=2,
S△AOB=S△AOC+S△BOC,
=×2×3+×2×1,
=3+1,
=1.
考点:反比例函数与一次函数的交点问题.
26.(1)平均每次降价率为30%,才能使这件A商品的售价为39.2元;(2)乙网店在“双十一”购物活动
这天的网上标价为1元.
【解析】
【分析】
(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;
(2)根据总利润=每件的利润×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出a的值,再将其代入80(1+a%)中即可求出结论.
【详解】
(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,
根据题意得:80(1﹣x)2=39.2,
解得:x1=0.3=30%,x2=1.7(不合题意,舍去).
答:平均每次降价率为30%,才能使这件A商品的售价为39.2元.
(2)根据题意得:[0.5×80(1+a%)﹣30]×10(1+2a%)=30000,
整理得:a2+75a﹣2500=0,
解得:a1=25,a2=﹣1(不合题意,舍去),
∴80(1+a%)=80×(1+25%)=1.
答:乙网店在“双十一”购物活动这天的网上标价为1元.
【点睛】
本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
27.(1)2x 50-x
(2)每件商品降价20元,商场日盈利可达2100元.
【解析】
【分析】
【详解】
(1)2x 50-x.
(2)解:由题意,得(30+2x)(50-x)=2 100
解之得x1=15,x2=20.
∵该商场为尽快减少库存,降价越多越吸引顾客.
∴x=20.
答:每件商品降价20元,商场日盈利可达2 100元.。