方正县二中2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方正县二中2018-2019学年高二上学期数学期末模拟试卷含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.函数y=f(x)在[1,3]上单调递减,且函数f(x+3)是偶函数,则下列结论成立的是()
A.f(2)<f(π)<f(5)B.f(π)<f(2)<f(5)C.f(2)<f(5)<f(π)D.f(5)<f(π)<f(2)
2.若集合M={y|y=2x,x≤1},N={x|≤0},则N∩M()
A.(1﹣1,] B.(0,1] C.[﹣1,1] D.(﹣1,2]
3.如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为()
A.4 B.5 C.32D.33
4.函数y=a x+1(a>0且a≠1)图象恒过定点()
A.(0,1)B.(2,1)C.(2,0)D.(0,2)
5.如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是()
A.{,} B.{,,} C.{V|≤V≤} D.{V|0<V≤}
6.已知a n=(n∈N*),则在数列{a n}的前30项中最大项和最小项分别是()
A.a1,a30B.a1,a9C.a10,a9D.a10,a30
7. 下列四个命题中的真命题是( )
A .经过定点()000,P x y 的直线都可以用方程()00y y k x x -=-表示
B .经过任意两个不同点()111,P x y 、()222,P x y 的直线都可以用方程()()()()121121y y x x x x y y --=-- 表示
C .不经过原点的直线都可以用方程
1x y
a b
+=表示 D .经过定点()0,A b 的直线都可以用方程y kx b =+表示
8. 已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为( ) A .M ∪N B .(∁U M )∩N C .M ∩(∁U N ) D .(∁U M )∩(∁U N )
9. 图
1是由哪个平面图形旋转得到的( )
A .
B .
C .
D . 10.直线在平面外是指( ) A .直线与平面没有公共点 B .直线与平面相交 C .直线与平面平行
D .直线与平面最多只有一个公共点
11.已知定义在R 上的可导函数y=f (x )是偶函数,且满足xf ′(x )<0, =0,则满足
的x 的范围为( )
A .(﹣∞,)∪(2,+∞)
B .(,1)∪(1,2)
C .(,1)∪(2,+∞)
D .(0,)∪(2,+∞)
12.函数y=2sin 2x+sin2x 的最小正周期( )
A .
B .
C .π
D .2π
二、填空题
13.如图是正方体的平面展开图,则在这个正方体中①BM 与ED 平行;②CN 与BE 是异面直线; ③CN 与BM 成60︒角;④DM 与BN 是异面直线.
以上四个命题中,正确命题的序号是 (写出所有你认为正确的命题).
14x 和所支出的维修费用y (万元)的统计资料如表:
根据上表数据可得y 与x 之间的线性回归方程
=0.7x+
,据此模型估计,该机器使用年限为14年时的维修
费用约为 万元.
15.若正数m 、n 满足mn ﹣m ﹣n=3,则点(m ,0)到直线x ﹣y+n=0的距离最小值是 . 16.抛物线
的准线与双曲线
的两条渐近线所围成的三角形面积为__________
17.若执行如图3所示的框图,输入,则输出的数等于 。

18.1F ,2F 分别为双曲线2
2
221x y a b
-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,
若12PF F ∆的内切圆半径与外接圆半径之比为1
2
,则该双曲线的离心率为______________.
【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查
基本运算能力及推理能力.
三、解答题
19.设p:关于x的不等式a x>1的解集是{x|x<0};q:函数的定义域为R.若p∨q是真命题,p∧q是假命题,求实数a的取值范围.
20.在四棱锥E﹣ABCD中,底面ABCD是边长为1的正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.
(Ⅰ)求证:DE∥平面ACF;
(Ⅱ)求证:BD⊥AE.
21.已知梯形ABCD 中,AB ∥CD ,∠B=,DC=2AB=2BC=2,以直线AD 为旋转轴旋转一周的都如图
所示的几何体
(Ⅰ)求几何体的表面积
(Ⅱ)判断在圆A 上是否存在点M ,使二面角M ﹣BC ﹣D 的大小为45°,且∠CAM 为锐角若存在,请求出CM 的弦长,若不存在,请说明理由.
22.已知函数()2
1ln ,2
f x x ax x a R =-
+∈. (1)令()()()1g x f x ax =--,讨论()g x 的单调区间;
(2)若2a =-,正实数12,x x 满足()()12120f x f x x x ++=,证明121
2
x x +≥.
23.如图,在四棱锥P ﹣ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,且PA=AD ,点F 是棱PD 的中点,点E 为CD 的中点. (1)证明:EF ∥平面PAC ; (2)证明:AF ⊥EF .
24.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()()3
23
1312
f x x k x kx =-
+++,其中.k R ∈
(1)当3k =时,求函数()f x 在[]
0,5上的值域;
(2)若函数()f x 在[]
1,2上的最小值为3,求实数k 的取值范围.
方正县二中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1. 【答案】B
【解析】解:∵函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数, ∴f (π)=f (6﹣π),f (5)=f (1), ∵f (6﹣π)<f (2)<f (1), ∴f (π)<f (2)<f (5) 故选:B
【点评】本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档.
2. 【答案】B
【解析】解:由M 中y=2x
,x ≤1,得到0<y ≤2,即M=(0,2],
由N 中不等式变形得:(x ﹣1)(x+1)≤0,且x+1≠0, 解得:﹣1<x ≤1,即N=(﹣1,1], 则M ∩N=(0,1], 故选:B .
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
3. 【答案】D 【解析】
试题分析:因为根据几何体的三视图可得,几何体为下图,,AD AB AG 相互垂直,面AEFG ⊥面
,//,3,1ABCDE BC AE AB AD AG DE ====,根据几何体的性质得:AC GC ==
GE ===4,BG AD EF CE ====所以最长为GC =
考点:几何体的三视图及几何体的结构特征. 4. 【答案】D
【解析】解:令x=0,则函数f (0)=a 0
+3=1+1=2.
∴函数f (x )=a x
+1的图象必过定点(0,2).
故选:D.
【点评】本题考查了指数函数的性质和a0=1(a>0且a≠1),属于基础题.
5.【答案】D
【解析】解:根据几何体的正视图和侧视图,得;
当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为×12×2=;
当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;
所以,该几何体体积的所有可能取值集合是{V|0<V≤}.
故选:D.
【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,是基础题目.
6.【答案】C
【解析】解:a
==1+,该函数在(0,)和(,+∞)上都是递减的,
n
图象如图,
∵9<<10.
∴这个数列的前30项中的最大项和最小项分别是a10,a9.
故选:C.
【点评】本题考查了数列的函数特性,考查了数形结合的解题思想,解答的关键是根据数列通项公式画出图象,是基础题.
7.【答案】B
【解析】
考点:直线方程的形式.
【方法点晴】本题主要考查了直线方程的表示形式,对于直线的点斜式方程只能表示斜率存在的直线;直线的斜截式方程只能表示斜率存在的直线;直线的饿两点式方程不能表示和坐标轴平行的直线;直线的截距式方程不能表示与坐标轴平行和过原点的直线,此类问题的解答中熟记各种直线方程的局限性是解答的关键.111]
8.【答案】B
【解析】解:全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},
∴∁U M={0,1},
∴N∩(∁U M)={0,1},
故选:B.
【点评】本题主要考查集合的子交并补运算,属于基础题.
9.【答案】A
【解析】
试题分析:由题意得,根据旋转体的概念,可知该几何体是由A选项的平面图形旋转一周得到的几何体故选A.
考点:旋转体的概念.
10.【答案】D
【解析】解:根据直线在平面外是指:直线平行于平面或直线与平面相交,
∴直线在平面外,则直线与平面最多只有一个公共点.
故选D.
11.【答案】D
【解析】解:当x>0时,由xf′(x)<0,得f′(x)<0,即此时函数单调递减,
∵函数f(x)是偶函数,
∴不等式等价为f(||)<,
即||>,即>或<﹣,
解得0<x<或x>2,
故x的取值范围是(0,)∪(2,+∞)
故选:D
【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.
12.【答案】C
【解析】解:函数y=2sin2
x+sin2x=2×+sin2x=sin(2x﹣)+1,
则函数的最小正周期为=π,
故选:C.
【点评】本题主要考查三角恒等变换,函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周
期为,属于基础题.
二、填空题
13.【答案】③④
【解析】
试题分析:把展开图复原成正方体,如图,由正方体的性质,可知:①BM与ED是异面直线,所以是错误
AN AC,由于几何体是正方体,所以三角形ANC 的;②DN与BE是平行直线,所以是错误的;③从图中连接,
AN AC所成的角为60 ,所以是正确的;④DM与BN是异面直线,所以是正确的.为等边三角形,所以,
考点:空间中直线与直线的位置关系.
14.【答案】7.5
【解析】解:∵由表格可知=9,=4,
∴这组数据的样本中心点是(9,4),
根据样本中心点在线性回归直线=0.7x+上,
∴4=0.7×9+,
∴=﹣2.3,
∴这组数据对应的线性回归方程是=0.7x﹣2.3,
∵x=14,
∴=7.5,
故答案为:7.5
【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错.
15.【答案】.
【解析】解:点(m,0)到直线x﹣y+n=0的距离为d=,
∵mn﹣m﹣n=3,
∴(m﹣1)(n﹣1)=4,(m﹣1>0,n﹣1>0),
∴(m﹣1)+(n﹣1)≥2,
∴m+n≥6,
则d=≥3.
故答案为:.
【点评】本题考查了的到直线的距离公式,考查了利用基本不等式求最值,是基础题.
16.【答案】
【解析】【知识点】抛物线双曲线
【试题解析】抛物线的准线方程为:x=2;
双曲线的两条渐近线方程为:
所以
故答案为:
17.【答案】
【解析】由框图的算法功能可知,输出的数为三个数的方差,
则。

【解析】
三、解答题
19.【答案】
【解析】解:∵关于x的不等式a x>1的解集是{x|x<0},∴0<a<1;
故命题p为真时,0<a<1;
∵函数的定义域为R,
∴⇒a≥,
由复合命题真值表知:若p∨q是真命题,p∧q是假命题,则命题p、q一真一假,
当p真q假时,则⇒0<a<;
当q真p假时,则⇒a≥1,
综上实数a的取值范围是(0,)∪[1,+∞).
20.【答案】
【解析】
【分析】(Ⅰ)连接FO,则OF为△BDE的中位线,从而DE∥OF,由此能证明DE∥平面ACF.(Ⅱ)推导出BD⊥AC,EC⊥BD,从而BD⊥平面ACE,由此能证明BD⊥AE.
【解答】证明:(Ⅰ)连接FO,∵底面ABCD是正方形,且O为对角线AC和BD交点,
∴O为BD的中点,
又∵F为BE中点,
∴OF为△BDE的中位线,即DE∥OF,
又OF⊂平面ACF,DE⊄平面ACF,
∴DE∥平面ACF.
(Ⅱ)∵底面ABCD为正方形,∴BD⊥AC,
∵EC⊥平面ABCD,∴EC⊥BD,
∴BD⊥平面ACE,∴BD⊥AE.
21.【答案】
【解析】解:(1)根据题意,得;
该旋转体的下半部分是一个圆锥,
上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,
其表面积为S=×4π×2×2=8π,
或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;
(2)作ME⊥AC,EF⊥BC,连结FM,易证FM⊥BC,
∴∠MFE为二面角M﹣BC﹣D的平面角,
设∠CAM=θ,∴
EM=2sinθ,EF=,
∵tan∠MFE=1,∴,∴tan=,∴,
∴CM=2.
【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.
22.【答案】(1)当0a ≤时,函数单调递增区间为()0,+∞,无递减区间,当0a >时,函数单调递增区间为10,
a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭
;(2)证明见解析. 【解析】

题解析:
(2)当2a =-时,()2
ln ,0f x x x x x =++>,
由()()12120f x f x x x ++=可得2
2
121122ln 0x x x x x x ++++=, 即()()2
12121212ln x x x x x x x x +++=-,
令()12,ln t x x t t t ϕ==-,则()11
1t t t t
ϕ-'=-=

则()t ϕ在区间()0,1上单调递减,在区间()1,+∞上单调递增,
所以()()11t ϕϕ≥=,所以()()2
12121x x x x +++≥,
又120x x +>,故12x x +≥, 由120,0x x >>可知120x x +>.1
考点:函数导数与不等式.
【方法点晴】解答此类求单调区间问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理.
请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 23.【答案】
【解析】(1)证明:如图, ∵点E ,F 分别为CD ,PD 的中点, ∴EF ∥PC .
∵PC ⊂平面PAC ,EF ⊄平面PAC ,
∴EF ∥平面PAC .
(2)证明:∵PA ⊥平面ABCD ,CD ⊂平面ABCD , 又ABCD 是矩形,∴CD ⊥AD , ∵PA ∩AD=A ,∴CD ⊥平面PAD . ∵AF ⊂平面PAD ,∴AF ⊥CD .
∵PA=AD ,点F 是PD 的中点,∴AF ⊥PD . 又CD ∩PD=D ,∴AF ⊥平面PDC . ∵EF ⊂平面PDC , ∴AF ⊥EF .
【点评】本题考查了线面平行的判定,考查了由线面垂直得线线垂直,综合考查了学生的空间想象能力和思维能力,是中档题.
24.【答案】(1)[]
1,21;(2)2k ≥.
【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得()'f x =()()31x x k --,再分1k ≤和1k >两种情况进行讨论;
试题解析:(1)解:3k = 时,()32
691f x x x x =-++
则()()()2
3129313f x x x x x =-+=--'
令0f x '=得1,3x x ==列表
由上表知函数()f x 的值域为[]
1,21
(2)方法一:()()()()2
331331f x x k x k x x k =-++=--'
①当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]
1,2单调递增 所以()()()min 3
1113132
f x f k k ==-+++= 即5
3
k =
(舍) ②当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减
所以()()()min 28613213f x f k k ==-++⋅+= 符合题意
③当12k <<时,
当[)1,x k ∈时,()'0f x <()f x 区间在[
)1,k 单调递减
当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增
所以()()()3
22min 3
13132
f x f k k k k k ==-
+++= 化简得:32
340k k -+=
即()()2
120k k +-=
所以1k =-或2k =(舍)
注:也可令()3
2
34g k k k =-+
则()()2
3632g k k k k k =='-- 对()()1,2,0k g k ∀∈'≤
()3234g k k k =-+在()1,2k ∈单调递减
所以()02g k <<不符合题意 综上所述:实数k 取值范围为2k ≥
方法二:()()()()2
331331f x x k x k x x k =-++=--'
①当2k ≥时,[]
()1,2,'0x f x ∀∈≤,函数()f x 在区间[]
1,2单调递减 所以()()()min 28613213f x f k k ==-++⋅+= 符合题意 …………8分 ②当1k ≤时,[]
()1,2,'0x f x ∀∈≥,函数()f x 在区间[]
1,2单调递增
所以()()min 23f x f <=不符合题意
③当12k <<时,
当[)1,x k ∈时,()'0f x <()f x 区间在[
)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增 所以()()()min 23f x f k f =<=不符合题意
综上所述:实数k 取值范围为2k ≥。

相关文档
最新文档