郊区第三中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

郊区第三中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 已知条件p :|x+1|≤2,条件q :x ≤a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .a ≥1 B .a ≤1 C .a ≥﹣1
D .a ≤﹣3
2. 点P 是棱长为1的正方体ABCD ﹣A 1B 1C 1D 1的底面A 1B 1C 1D 1上一点,则的取值范围是( )
A .[﹣1,﹣]
B .[﹣,﹣]
C .[﹣1,0]
D .[﹣,0]
3. 已知函数()x e f x x
=,关于x 的方程2()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的
取值范围是( )
A .21(,)21e e -+?-
B .21(,)21e e --?-
C .21(0,)21e e --
D .2121e e 禳-镲

-镲铪
【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.
4. 定义某种运算S=a ⊗b ,运算原理如图所示,则式子+的值为( )
A .4
B .8
C .10
D .13 5. 设方程|x 2+3x ﹣3|=a 的解的个数为m ,则m 不可能等于( ) A .1
B .2
C .3
D .4
6. 已知A ,B 是以O 为圆心的单位圆上的动点,且||=
,则

=( )
A .﹣1
B .1
C .﹣
D .
7. 在10
201511x x ⎛⎫++ ⎪⎝
⎭的展开式中,含2
x 项的系数为( )
(A )10 ( B ) 30 (C ) 45 (D ) 120
8. 为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知C B A ,,三个社区分别有低收入家 庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从C 社 区抽取低收入家庭的户数为( )
A .48
B .36
C .24
D .18
【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题. 9. 已知函数y=f (x )的周期为2,当x ∈[﹣1,1]时 f (x )=x 2,那么函数y=f (x )的图象与函数y=|lgx|的图象的交点共有( )
A .10个
B .9个
C .8个
D .1个
10.某公园有P ,Q ,R 三只小船,P 船最多可乘3人,Q 船最多可乘2人,R 船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( ) A .36种 B .18种 C .27种 D .24种 11.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过2个小时,这种细菌由1个可繁殖成( )
A .512个
B .256个
C .128个
D .64个
12.已知函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 3﹣2x 2,则x <0时,函数f (x )的表达式为f
(x )=( ) A .x 3+2x 2
B .x 3﹣2x 2
C .﹣x 3+2x 2
D .﹣x 3﹣2x 2
二、填空题
13.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;
乙说:我没去过C 城市; 丙说:我们三人去过同一城市;
由此可判断乙去过的城市为 .
14.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=3
x x +,对任意的m ∈[﹣2,2],f (mx 所示的框图,输入
,则输出的数等于
16.1F ,2F 分别为双曲线2
2
221x y a b
-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,
若12PF F ∆______________.
【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.
17.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .
18.椭圆C : +
=1(a >b >0)的右焦点为(2,0),且点(2,3)在椭圆上,则椭圆的短轴长为 .
三、解答题
19.(本题12分)
正项数列{}n a 满足2(21)20n n a n a n ---=. (1)求数列{}n a 的通项公式n a ; (2)令1
(1)n n
b n a =+,求数列{}n b 的前项和为n T .
20.(本小题满分12分)
如图ABC ∆中,已知点D 在BC 边上,且0AD AC ⋅=,sin 3
BAC ∠=,AB =BD . (Ⅰ)求AD 的长; (Ⅱ)求cos C .
21.(本小题满分12分)
某校高二奥赛班N 名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生 数有21人.
(1)求总人数N 和分数在110-115分的人数; (2)现准备从分数在110-115的名学生(女生占
1
3
)中任选3人,求其中恰好含有一名女生的概率; (3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩 (满分150分),物理成绩y 进行分析,下面是该生7次考试的成绩.
已知该生的物理成绩y 与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理 成绩大约是多少?
附:对于一组数据11(,)u v ,22(,)u v ……(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分
别为:^
1
2
1
()()
()
n
i
i
i n
i
i u u v v u u β==--=
-∑∑,^^
a v u β=-
.
22.在平面直角坐标系xoy 中,以O 为极点,x 轴的正半轴为极轴的极坐标系中,直线l 的极坐标方程为θ
=,
曲线C
的参数方程为

(1)写出直线l 与曲线C 的直角坐标方程;
(2)过点M 平行于直线l 1的直线与曲线C 交于A 、B 两点,若|MA|•
|MB|=,求点M 轨迹的直角坐标方程.
23.已知函数f(x)=lg(x2﹣5x+6)和的定义域分别是集合A、B,
(1)求集合A,B;
(2)求集合A∪B,A∩B.
24.设数列{a n}的前n项和为S n,a1=1,S n=na n﹣n(n﹣1).
(1)求证:数列{a n}为等差数列,并分别求出a n的表达式;
(2)设数列的前n项和为P n,求证:P n<;
(3)设C n=,T n=C1+C2+…+C n,试比较T n与的大小.
郊区第三中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】A
【解析】解:由|x+1|≤2得﹣3≤x≤1,即p:﹣3≤x≤1,
若p是q的充分不必要条件,
则a≥1,
故选:A.
【点评】本题主要考查充分条件和必要条件的判断,比较基础.
2.【答案】D
【解析】解:如图所示:以点D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,以DD1所在的直线为z轴,
建立空间直角坐标系.
则点A(1,0,0),C1(0,1,1),设点P的坐标为(x,y,z),则由题意可得0≤x≤1,0≤y≤1,z=1.
∴=(1﹣x,﹣y,﹣1),=(﹣x,1﹣y,0),
∴=﹣x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y=+﹣,
由二次函数的性质可得,当x=y=时,取得最小值为﹣;
故当x=0或1,且y=0或1时,取得最大值为0,
则的取值范围是[﹣,0],
故选D.
【点评】本题主要考查向量在几何中的应用,两个向量的数量积公式,两个向量坐标形式的运算,属于中档题.3.【答案】D
第Ⅱ卷(共90分)
4.【答案】
C
【解析】解:模拟执行程序,可得,当
a≥b时,则输出
a(b+1),反之,则输出b
(a+1),∵2tan=2,lg=﹣1

∴(2tan)⊗lg=
(2tan)×(
lg+1)=2×(﹣1+1)=0,
∵lne=1,()﹣1=5,
∴lne⊗()﹣1=()﹣1×(lne+1)=5×(1+1)=10,
∴+=0+10=10.
故选:C.
5.【答案】A
【解析】解:方程|x2+3x﹣3|=a的解的个数可化为函数y=|x2+3x﹣3|与y=a的图象的交点的个数,作函数y=|x2+3x﹣3|与y=a的图象如下,

结合图象可知, m 的可能值有2,3,4; 故选A .
6. 【答案】B
【解析】解:由A ,B 是以O 为圆心的单位圆上的动点,且||=

即有||2+|
|2=|
|2,
可得△OAB 为等腰直角三角形,
则,的夹角为45°,
即有
•=|
|•|
|•cos45°=1×
×
=1.
故选:B .
【点评】本题考查向量的数量积的定义,运用勾股定理的逆定理得到向量的夹角是解题的关键.
7. 【答案】C
【解析】因为1010
1019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++ ⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在
10(1)x +展开式中,即为2210
C x ,系数为2
1045.C =故选C . 8. 【答案】C
【解析】根据分层抽样的要求可知在C 社区抽取户数为249
2
108180270360180108=⨯=++⨯

9.【答案】A
【解析】解:作出两个函数的图象如上
∵函数y=f(x)的周期为2,在[﹣1,0]上为减函数,在[0,1]上为增函数
∴函数y=f(x)在区间[0,10]上有5次周期性变化,
在[0,1]、[2,3]、[4,5]、[6,7]、[8,9]上为增函数,
在[1,2]、[3,4]、[5,6]、[7,8]、[9,10]上为减函数,
且函数在每个单调区间的取值都为[0,1],
再看函数y=|lgx|,在区间(0,1]上为减函数,在区间[1,+∞)上为增函数,
且当x=1时y=0;x=10时y=1,
再结合两个函数的草图,可得两图象的交点一共有10个,
故选:A.
【点评】本题着重考查了基本初等函数的图象作法,以及函数图象的周期性,属于基本题.
10.【答案】 C
【解析】
排列、组合及简单计数问题.
【专题】计算题;分类讨论.
【分析】根据题意,分4种情况讨论,①,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,②,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,③,P 船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,④,P船乘1个大人和2个小孩共3人,Q 船乘2个大人,分别求出每种情况下的乘船方法,进而由分类计数原理计算可得答案.
【解答】解:分4种情况讨论,
①,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,有A33=6种情况,
②,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,有A33×A22=12种情况,
③,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,有C32×2=6种情况,
④,P船乘1个大人和2个小孩共3人,Q船乘2个大人,有C31=3种情况,
则共有6+12+6+3=27种乘船方法,
故选C.
【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、组合公式.
11.【答案】D
【解析】解:经过2个小时,总共分裂了=6次,
则经过2小时,这种细菌能由1个繁殖到26=64个.
故选:D.
【点评】本题考查数列的应用,考查了等比数列的通项公式,是基础的计算题.
12.【答案】A
【解析】解:设x<0时,则﹣x>0,
因为当x>0时,f(x)=x3﹣2x2所以f(﹣x)=(﹣x)3﹣2(﹣x)2=﹣x3﹣2x2,
又因为f(x)是定义在R上的奇函数,所以f(﹣x)=﹣f(x),
所以当x<0时,函数f(x)的表达式为f(x)=x3+2x2,故选A.
二、填空题
13.【答案】A.
【解析】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,
但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,
再由丙说:我们三人去过同一城市,
则由此可判断乙去过的城市为A.
故答案为:A.
【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.
14.【答案】
2 2,
3⎛⎫-
⎪⎝⎭
【解析】
15.【答案】
【解析】由框图的算法功能可知,输出的数为三个数的方差,
则。

【解析】
π
17.【答案】
4
【解析】
考点:正弦定理.
【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用180,消去多余的变量,从而解出B角.三角函数题目在高考中的难度逐渐增加,以考查三三角形的三角和是︒
角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷()中以选择题的压轴题出现.
18.【答案】.
【解析】解:椭圆C:+=1(a>b>0)的右焦点为(2,0),且点(2,3)在椭圆上,
可得c=2,2a==8,可得a=4,
b2=a2﹣c2=12,可得b=2,
椭圆的短轴长为:4.
故答案为:4.
【点评】本题考查椭圆的简单性质以及椭圆的定义的应用,考查计算能力.
三、解答题
19.【答案】(1)n a n 2=;(2)=
n T )
1(2+n n
.

点:1.一元二次方程;2.裂项相消法求和. 20.【答案】
【解析】(Ⅰ)因为AD AC ⊥,所以sin sin cos 2BAC BAD BAD π⎛⎫
∠=+∠=∠ ⎪⎝⎭
,
所以cos 3
BAD ∠=
.…… 3分 在ABD ∆中,由余弦定理可知,222
2cos BD AB AD AB AD BAD =+-⋅⋅∠ 即28150AD AD -+=,解之得5AD =或3AD =, 由于AB AD >,所以3AD =.…… 6分
(Ⅱ)在ABD ∆中,由cos 3
BAD ∠=
可知1
sin 3BAD ∠= …… 7分
由正弦定理可知,sin sin BD AB
BAD ADB =∠∠,
所以sin sin 3
AB BAD ADB BD ∠∠==…… 9分
因为2ADB DAC C C π
∠=∠+∠=+∠,即cos C = 12分
21.【答案】(1)60N =,6n =;(2)8
15
P =;(3)115. 【解析】

题解析:
(1)分数在100-110内的学生的频率为1(0.040.03)50.35P =+⨯=,所以该班总人数为21
600.35
N =
=, 分数在110-115内的学生的频率为21(0.010.040.050.040.030.01)50.1P =-+++++⨯=,分数在110-115内的人数600.16n =⨯=.
(2)由题意分数在110-115内有6名学生,其中女生有2名,设男生为1234,,,A A A A ,女生为12,B B ,从6名学生中选出3人的基本事件为:12(,)A A ,13(,)A A ,14(,)A A ,11(,)A B ,12(,)A B ,23(,)A
A ,24(,)A A ,21(,)A
B ,22(,)A B ,34(,)A A ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,12(,)B B 共15个.
其中恰 好含有一名女生的基本事件为11(,)A B ,12(,)A B ,22(,)A B ,
21(,)A B ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,共8个,所以所求的概率为8
15
P =
. (3)1217178812
1001007
x --+-++=+
=;
6984416
1001007
y --+-+++=+=;
由于与y 之间具有线性相关关系,根据回归系数公式得到
^497
0.5994
b ==,^1000.510050a =-⨯=,
∴线性回归方程为0.550y x =+,
∴当130x =时,115y =.1
考点:1.古典概型;2.频率分布直方图;3.线性回归方程.
【易错点睛】本题主要考查古典概型,频率分布直方图,线性回归方程,数据处理和计算能力.求线性回归方程,关键在于正确求出系数,a b ,一定要将题目中所给数据与公式中的,,a b c 相对应,再进一步求解.在求解过程中,由于,a b 的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误,特别是回归直线方程中一次项系数为,b 常数项为这与一次函数的习惯表示不同.
22.【答案】
【解析】解:(1)直线l的极坐标方程为θ=,所以直线斜率为1,直线l:y=x;
曲线C的参数方程为.消去参数θ,
可得曲线…
(2)设点M(x0,y0)及过点M的直线为
由直线l1与曲线C相交可得:
,即:,
x2+2y2=6表示一椭圆…
取y=x+m代入得:3x2+4mx+2m2﹣2=0
由△≥0得
故点M的轨迹是椭圆x2
+2y2=6夹在平行直线之间的两段弧…
【点评】本题以直线与椭圆的参数方程为载体,考查直线与椭圆的综合应用,轨迹方程的求法,注意轨迹的范围的求解,是易错点.
23.【答案】
【解析】解:(1)由x2﹣5x+6>0,即(x﹣2)(x﹣3)>0,
解得:x>3或x<2,即A={x|x>3或x<2},
由g(x)=,得到﹣1≥0,
当x>0时,整理得:4﹣x≥0,即x≤4;
当x<0时,整理得:4﹣x≤0,无解,
综上,不等式的解集为0<x≤4,即B={x|0<x≤4};
(2)∵A={x|x>3或x<2},B={x|0<x≤4},
∴A∪B=R,A∩B={x|0<x<2或3<x≤4}.
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
24.【答案】
【解析】解:(1)证明:∵S n=na n﹣n(n﹣1)
∴S n+1=(n+1)a n+1﹣(n+1)n…
∴a n+1=S n+1﹣S n=(n+1)a n+1﹣na n﹣2n…
∴na n+1﹣na n﹣2n=0
∴a n+1﹣a n=2,
∴{a n}是以首项为a1=1,公差为2的等差数列…
由等差数列的通项公式可知:a n=1+(n﹣1)×2=2n﹣1,
数列{a n}通项公式a n=2n﹣1;…
(2)证明:由(1)可得,

=…
(3)∴,
=,
两式相减得…
=,
=,
=,
=,
∴…
∴…
∵n∈N*,
∴2n>1,
∴,
∴…。

相关文档
最新文档