苏科八年级数学期末下学期考试试卷及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科八年级数学期末下学期考试试卷及答案
一、解答题
1.如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE.
(1)求证:四边形ABEC是平行四边形;
(2)若∠AFC=2∠ADC,求证:四边形ABEC是矩形.
2.如图,平行四边形ABCD中,已知BC=10,CD=5.
(1)试用无刻度的直尺和圆规在AD边上找一点E,使点E到B、D两点的距离相等(不要求写作法,但要保留清晰的作图痕迹);
(2)求△ABE的周长.
3.如图,在平面直角坐标系xOy中,边长为1个单位长度的正方形ABCD的边BC平行于x轴,点A、C分别在直线OM、ON上,点A的坐标为(3,3),矩形EFGH的顶点E、G 也分别在射线OM、ON上,且FG平行于x轴,EF:FG=3:5.
(1)点B的坐标为,直线ON对应的函数表达式为;
(2)当EF=3时,求H点的坐标;
(3)若三角形OEG的面积为s1,矩形EFGH的面积为s2,试问s1:s2的值是一个常数吗?若是,求出这个常数;若不是,请说明理由.
4.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.
摸球的次数n1001502005008001000
摸到黑球的次数m233160*********
摸到黑球的频率
m
n
0.230.210.300.260.253
(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率
是;(精确到0.01)
(2)估算袋中白球的个数.
5.如图,在正方形ABCD内有一点P满足AP AB
=,PB PC
=.连接AC、PD.(1)求证:APB DPC
∆∆
≌;
(2)求PAC
∠的度数.
6.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.
(1)证明:四边形CDEF是平行四边形;
(2)若四边形CDEF的周长是16cm,AC的长为8cm,求线段AB的长度.
7.如图,在平面直角坐标系中,点O为坐标原点,AB// OC,点B,C的坐标分别为(15,8),(21,0),动点M从点A沿A→B以每秒1个单位的速度运动;动点N从点C沿C→O以每秒2个单位的速度运动.M,N同时出发,设运动时间为t秒.
(1)在t=3时,M点坐标,N点坐标;
(2)当t为何值时,四边形OAMN是矩形?
(3)运动过程中,四边形MNCB能否为菱形?若能,求出t的值;若不能,说明理由.
8.化简求值:221211x
x x x x x x ++⎛⎫-÷
⎪--⎝⎭
,其中31x =- 9.某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元,该商家购进的第一批衬衫是多少件? 10.如图,已知△ABC .
(1)画△ABC 关于点C 对称的△A′B′C ;
(2)连接AB′、A′B ,四边形ABA'B'是 形.(填平行四边形、矩形、菱形或正方形) 11.如图,矩形EFGH 的顶点E ,G 分别在菱形ABCD 的边AD ,BC 上,顶点F ,H 在菱形ABCD 的对角线BD 上.
(1)求证:BG =DE ;
(2)若E 为AD 中点,FH =2,求菱形ABCD 的周长. 12.解方程(1)2
2(1)1x x +=+ (2)22310x x ++=(配方法)
13.为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:
(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是 小时,中位数是 小时;
(2)计算被调查学生阅读时间的平均数;
(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.
14.如图,点P 是正方形ABCD 对角线AC 上一动点,点E 在射线BC 上,且
PB PE =,连接PD ,O 为AC 中点.
(1)如图1,当点P 在线段AO 上时,试猜想PE 与PD 的数量关系和位置关系,并说明
理由;
(2)如图2,当点P 在线段OC 上时,(1)中的猜想还成立吗?请说明理由;
(3)如图3,当点P 在AC 的延长线上时,请你在图3中画出相应的图形,并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.
15.已知:ABC ∆中以CB 为边在ABC ∆外侧作等边CBP ∆.
(1)连接AP ,以AP 为边作等边APQ ∆,求证:AC BQ =; (2)当30CAB ∠=︒,4AB =,3AC =时,求AP 的值;
(3)若4AB =,3AC =,改变CAB ∠的度数,发现CAB ∠在变化到某一角度时,AP 有最大值.画出CAB ∠为这个特殊角度时的示意图,并直接写出CAB ∠的角度和AP 的最大值.
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.(1)证明见解析;(2)证明见解析. 【分析】
(1)根据平行四边形的性质得到AB //CD ,AB=CD ,然后根据CE=DC ,得到AB=EC ,AB //EC ,利用“一组对边平行且相等的四边形是平行四边形”判断即可; (2)由(1)得的结论先证得四边形ABEC 是平行四边形,通过角的关系得出FA=FE=FB=FC ,AE=BC ,得证. 【详解】
(1)∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD . ∵CE =DC , ∴AB =EC ,AB ∥EC ,
∴四边形ABEC 是平行四边形;
(2)∵由(1)知,四边形ABEC 是平行四边形, ∴FA =FE ,FB =FC .
∵四边形ABCD 是平行四边形, ∴∠ABC =∠D .
又∵∠AFC =2∠ADC , ∴∠AFC =2∠ABC . ∵∠AFC =∠ABC +∠BAF , ∴∠ABC =∠BAF , ∴FA =FB , ∴FA =FE =FB =FC , ∴AE =BC ,
∴四边形ABEC 是矩形. 【点睛】
此题考查的知识点是平行四边形的判定与性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形通过角的关系证矩形. 2.(1)见解析;(2)15;见解析. 【分析】
(1)连接BD 作线段BD 的垂直平分线MN 交AD 于点E ,点E 即为所求. (2)证明△ABE 的周长=AB +AD 即可. 【详解】
解:(1)如图,点E 即为所求.
(2)解:连接BE
∵四边形ABCD 是平行四边形 ∴AD =BC =10,AB =CD =5 又由(1)知BE =DE ∴15ABE
AB AE BE AB AE ED AB C
AD +++++====.
【点睛】
本题主要考查垂直平分线的作法及性质,熟练掌握知识点是解题的关键. 3.(1)(3,2),1
2y x =;(2)H (16,11);(3)4415
,证明见解析. 【分析】
(1)先根据A 的坐标为(3,3),正方形ABCD 的边长为1求出C 点的坐标,利用待定系数法即可求出直线ON 的解析式.
(2)点E 在直线OM 上,设点E 的坐标为(e ,e ),由题意F (e ,e ﹣3),G (e +5,e ﹣3),由点G 在直线ON 上,可得e ﹣3=
1
2
(e +5),解得e =11即可解决问题. (3)如图,连接EG ,延长EF 交x 轴于J ,延长HG 交x 轴于k .设E (a ,a ),EF =3m ,
FG=5m,则G(a+5m,a﹣3m),由点G在直线y=1
2
x上,可得a﹣3m=
1
2
(a+5m),推出a=11m,推出E(11m,11m),H(16m,11m),F(11m,8m),G (16m,8m)J(11m,0),K(16m,0),求出S1,S2即可解决问题.
【详解】
解:(1)∵A的坐标为(3,3),
∴直线OM的解析式为y=x,
∵正方形ABCD的边长为1,
∴B(3,2),
∴C(4,2)
设直线ON的解析式为y=kx(k≠0),
把C的坐标代入得,2=4k,解得k=1
2

∴直线ON的解析式为:y=1
2 x;
故答案是:(3,2),
1
2
y x ;
(2)∵EF=3,EF:FG=3:5.
∴FG=5,
设矩形EFGH的宽为3a,则长为5a,
∵点E在直线OM上,设点E的坐标为(e,e),∴F(e,e﹣3),G(e+5,e﹣3),
∵点G在直线ON上,
∴e﹣3=1
2
(e+5),
解得e=11,
∴H(16,11).
(3)s1:s2的值是一个常数,理由如下:
如图,连接EG,延长EF交x轴于J,延长HG交x轴于k.
设E(a,a),EF=3m,FG=5m,则G(a+5m,a﹣3m),
∵点G在直线y=1
2
x上,
∴a ﹣3m =
1
2
(a +5m ), ∴a =11m ,
∴E (11m ,11m ),H (16m ,11m ),F (11m ,8m ),G (16m ,8m )J (11m ,0),K (16m ,0),
∴S △OEG =S △OEJ +S 梯形EJKG ﹣S △OKG =
12×11m ×11m +12(8m +11m )•5m •12﹣1
2
×16m ×8m =44m 2,S 矩形EFGH =EF •FG =15m 2,
∴12S S =224415m m =44
15
. ∴s 1:s 2的值是一个常数,这个常数是4415
. 【点晴】
本题是一次函数的综合题,考查待定系数法,一次函数的性质,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型. 4.(1)0.25;(2)3个. 【分析】
(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可; (2)列用概率公式列出方程求解即可. 【详解】
解:(1)251÷1000=0.251;
∵大量重复试验事件发生的频率逐渐稳定到0.25附近, ∴估计从袋中摸出一个球是黑球的概率是0.25; (2)设袋中白球为x 个, 1
1x
=0.25,解得x =3. 答:估计袋中有3个白球, 故答案为:(1)0.25;(2)3个. 【点睛】
本题主要考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近. 5.(1)见解析;(2)15° 【分析】
(1)根据PB=PC 得∠PBC=∠PCB ,从而可得∠ABP=∠DCP ,再利用SAS 证明即可; (2)由(1)得△PAD 为等边三角形,可求得∠PAB=30°,∠PAC=∠PAD-∠CAD ,因此可得结果. 【详解】
解:(1)∵四边形ABCD 为正方形, ∴∠ABC=∠DCB=90°,AB=CD ,
∵BP=PC , ∴∠PBC=∠PCB , ∴∠ABP=∠DCP , 又∵AB=CD ,BP=CP , 在△APB 和△DPC 中,
AB CD ABP DCP BP CP =⎧⎪
∠=∠⎨⎪=⎩
, ∴△APB ≌△DPC (SAS ); (2)由(1)得AP=DP=AB=AD , ∴△PAD 为等边三角形, ∴∠PAD=60°,∠PAB=30°,
在正方形ABCD 中,∠BAC=∠DAC=45°, ∴∠PAC=∠PAD-∠CAD=60°-45°=15°. 【点睛】
本题考查了全等三角形的判定定理,正方形的性质,以及等腰三角形的性质,熟练掌握全等三角形的几种判定方法是解答的关键. 6.(1)详见解析;(2)10cm 【分析】
(1)由三角形中位线定理推知BD ∥FC ,2DE =BC ,然后结合已知条件“EF ∥DC ”,利用两组对边相互平行得到四边形DCFE 为平行四边形;
(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB =2DC ,即可得出四边形DCFE 的周长=AB +BC ,故BC =16﹣AB ,然后根据勾股定理即可求得. 【详解】
(1)证明:∵D 、E 分别是AB 、AC 的中点, ∴ED 是Rt △ABC 的中位线, ∴ED ∥BC .BC =2DE , 又 EF ∥DC ,
∴四边形CDEF 是平行四边形; (2)解:∵四边形CDEF 是平行四边形; ∴DC =EF ,
∵DC 是Rt △ABC 斜边AB 上的中线, ∴AB =2DC ,
∴四边形DCFE 的周长=AB +BC ,
∵四边形DCFE 的周长为16cm ,AC 的长8cm , ∴BC =16﹣AB ,
∵在Rt △ABC 中,∠ACB =90°, ∴AB 2=BC 2+AC 2, 即AB 2=(16﹣AB )2+82,
解得:AB=10cm,
【点睛】
本题考查了平行四边形的判定和性质,三角形的中位线定理,直角三角形斜边中线的性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.
7.(1)(3,8);(15,0);(2)t=7;(3)能,t=5.
【分析】
(1)根据点B、C的坐标求出AB、OA、OC,然后根据路程=速度×时间求出AM、CN,再求出ON,然后写出点M、N的坐标即可;
(2)根据有一个角是直角的平行四边形是矩形,当AM=ON时,四边形OAMN是矩形,然后列出方程求解即可;
(3)先求出四边形MNCB是平行四边形的t值,并求出CN的长度,然后过点B作BC⊥OC于D,得到四边形OABD是矩形,根据矩形的对边相等可得OD=AB,BD=OA,然后求出CD,再利用勾股定理列式求出BC,然后根据邻边相等的平行四边形是菱形进行验证.
【详解】
解:(1)∵B(15,8),C(21,0),
∴AB=15,OA=8,
OC=21,
当t=3时,AM=1×3=3,
CN=2×3=6,
∴ON=OC-CN=21﹣6=15,
∴点M(3,8),N(15,0);
故答案为:(3,8);(15,0);
(2)当四边形OAMN是矩形时,AM=ON,
∴t=21-2t,
解得t=7秒,
故t=7秒时,四边形OAMN是矩形;
(3)存在t=5秒时,四边形MNCB能否为菱形.
理由如下:四边形MNCB是平行四边形时,BM=CN,
∴15-t=2t,
解得:t=5秒,
此时CN=5×2=10,
过点B作BD⊥OC于D,则四边形OABD是矩形,
∴OD=AB=15,BD=OA=8,
CD=OC-OD=21-15=6,
在Rt△BCD中,BC=10,
∴BC=CN,
∴平行四边形MNCB是菱形,
故,存在t=5秒时,四边形MNCB为菱形.
【点睛】
本题主要考查了四边形综合以及矩形的性质,平行四边形与菱形的关系,梯形的问题、勾股定理等知识,根据矩形、菱形与平行四边形的联系列出方程是解题的关键.
8.
1
1
x+
3
【分析】
通分合并同类项,再约分,代入求值.【详解】
原式
2
22
11
1
(1)
x x
x
x x x
-
=⋅=
+
-+
代入得原式
3 311
==
-+
【点睛】
本题考查分式的化简求值,分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.
9.该商家购进的第一批衬衫是120件.
【解析】
整体分析:
设第一批购进了x件衬衫,用含x的分式表示出两批的单价,根据第二批的单价比第一批的单价贵了10元列方程.
解:设第一批购进了x件衬衫,则第二批购进了2x件衬衫.
根据题意得12000
x
=
26400
2x
-10
解得x=120.
经检验,x=120是原分式方程的解且符合题意.答;该商家购进的第一批衬衫是120件.10.(1)见解析;(2)平行四边形.
【分析】
(1)根据题意画出三角形即可;
(2)由对称的性质判断即可.
【详解】
(1)如图,△A′B′C即为所求;
(2)如上图,由题意可得△ABC ≌△A′B′C ,
∴AC =A′C ,BC =B′C ,
∴四边形ABA'B'为平行四边形.
【点睛】
本题考查了对称图形的性质,平行四边形的判定,掌握知识点是解题关键.
11.(1)详见解析;(2)8
【分析】
(1)先根据矩形的性质、平行线的性质得出,FG HE GFH EHF =∠=∠,再根据邻补角的定义可得BFG DHE ∠=∠,又根据菱形的性质、平行线的性质可得
GBF EDH ∠=∠,最后根据三角形全等的判定定理与性质即可得证;
(2)如图,连接EG ,先根据矩形的性质可得EG 的长,再根据中点的性质、菱形的性质、题(1)的结论可得四边形ABGE 是平行四边形,从而可得AB 的长,然后根据菱形的周长公式即可得.
【详解】
(1)∵四边形EFGH 是矩形
,//FG HE EH FG ∴=
GFH EHF ∴∠=∠
180,180BFG GFH DHE EHF ∠=︒-∠∠=︒-∠
BFG DHE ∴∠=∠
∵四边形ABCD 是菱形
//AD BC ∴
GBF EDH ∴∠=∠
在BGF ∆和DEH ∆中,BFG DHE GBF EDH FG HE ∠=∠⎧⎪∠=∠⎨⎪=⎩
()BGF DEH AAS ∴∆≅∆
BG DE ∴=;
(2)如图,连接EG
∵四边形EFGH 是矩形,2FH =
2EG FH ∴==
∵四边形ABCD 是菱形
,//AD BC AD BC ∴=
∵E 为AD 中点
AE DE ∴=
BG DE =
,//AE BG AE BG ∴=
∴四边形ABGE 是平行四边形
2AB EG ∴==
∴菱形ABCD 的周长为248⨯=
故菱形ABCD 的周长为8.
【点睛】
本题考查了菱形的性质、矩形的性质、全等三角形的判定和性质,正确的识别作图是解题的关键.
12.(1)11x =-,212x =-
;(2)11x =-,212
x =- 【分析】
(1)移项,提取公因式1x +,利用因式分解法求解即可;
(2)移项,方程左右两边同时除以2后,两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.
【详解】
(1)22(1)1x x +=+, 移项得:2
2(1)10()x x -++=,
提取公因式1x +得:121)()(0x x ++=,
可得:10x +=或210x +=, 解得:12112
x x =-=-,; (2)22310x x ++=, 原方程化为:23122x x +
=-, 配方得:22233132424x x ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭
⎝⎭,即231()416x +=,
开方得:3144
x +=±, 解得:1211
2x x =-=-,. 【点睛】
本题考查了解一元二次方程-因式分解法及配方法,能把一元二次方程转化成一元一次方程是解此题的关键.
13.(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.
【分析】
(1)根据统计图可以求得本次调查的学生数,从而可以求得阅读时间1.5小时的学生数,进而可以将条形统计图补充完整;由补全的条形统计图可以得到抽查的学生周末阅读时间的众数、中位数.
(2)根据补全的条形统计图可以求得所有被调查学生阅读时间的平均数.
(3)用总人数乘以样本中周末阅读时间不低于1.5小时的人数占总人数的比例即可得.
【详解】
解:(1)由题意可得,本次调查的学生数为:30÷30%=100,
阅读时间1.5小时的学生数为:100﹣12﹣30﹣18=40,
补全的条形统计图如图所示,
由补全的条形统计图可知,被调查的学生周末阅读时间众数是1.5小时,中位数是1.5小时,
故答案为1.5,1.5;
(2)所有被调查学生阅读时间的平均数为:
1100×(12×0.5+30×1+40×1.5+18×2)=1.32小时,
即所有被调查同学的平均阅读时间为1.32小时.
(3)估计周末阅读时间不低于1.5小时的人数为500×40+18100
=290(人). 故答案为(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是
1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;
(3)估计周末阅读时间不低于1.5小时的人数为290人.
【点睛】
本题考查条形统计图、扇形统计图、加权平均数、中位数、众数,解题的关键是明确题意,利用数形结合的思想解答问题.
14.(1)PE PD =且PE PD ⊥,详见解析;(2)猜想成立,详见解析;(3)猜想成立
【分析】
(1)根据点P 在线段AO 上时,利用三角形的全等判定和性质以及四边形内角和定理可以得出PE ⊥PD ,PE=PD ;
(2)利用三角形全等得出,BP=PD ,由PB=PE ,得出PE=PD ,要证PE ⊥PD ;从三方面分析,当点E 在线段BC 上(E 与B 、C 不重合)时,当点E 与点C 重合时,点P 恰好在AC 中点处,当点E 在BC 的延长线上时,分别分析即可得出;
(3)根据题意作出图形,利用(2)中证明思路即可得出答案.
【详解】
(1)当点P 在线段AO 上时,PE PD =且PE PD ⊥,理由如下:
∵四边形ABCD 是正方形,AC 为对角线,
∴BA DA =,45BAP DAP ∠=∠=︒,
在△ABP 和△ADP 中,
45AB AD BAP DAP AP AP =⎧⎪∠∠︒⎨⎪⎩
===,
∴△ABP ≌△ADP ,
∴PB PD =,ABP ADP ∠=∠,CDP CBP ∠=∠,
又∵PB PE =,
∴CBP BEP ∠=∠,PE PD =,
∴BEP CDP ∠=∠,
∵180BEP CEP ∠+∠=︒,
∴180CDP CEP ∠+∠=︒,
∵正方形ABCD 中,90BCD ∠=︒,
∴36090DPE CEP CDP BCD ∠=︒-∠-∠-∠=︒,
∴PE PD ⊥;
(2)当点P 在线段OC 上时,PE PD =且PE PD ⊥,理由如下:
∵四边形ABCD 是正方形,AC 为对角线,
∴BA DA =,45BAP DAP ∠=∠=︒,
又PA PA =,
∴BAP DAP ∆≅∆(SAS),
∴PB PD =,
又∵PB PE =,
∴PE PD =,
①当点E 与点C 重合时,PE PD ⊥;
②当点E 在BC 的延长线上时,如图所示,
∵BAP DAP ∆≅∆,
∴ABP ADP ∠=∠,
∴CDP CBP ∠=∠,
PB PE =,
∴CBP PEC ∠=∠,
∴PEC PDC ∠=∠,
∵12∠=∠,
∴90DPE DCE ∠=∠=︒,
∴PE PD ⊥,
综上所述:PE PD ⊥.
∴当点P 在线段OC 上时,(1)中的猜想成立;
(3)当点P 在线段OC 的延长线上时,如图所示,(1)中的猜想成立.
∵四边形ABCD 是正方形,点P 在AC 的延长线上,
∴BA DA =,45BAP DAP ∠=∠=︒,
又PA PA =,
∴BAP DAP ∆≅∆(SAS),
∴PB PD =,
又∵PB PE =,
∴PE PD =,
∵BAP DAP ∆≅∆,
∴ABP ADP ∠=∠,
∴CDP CBP ∠=∠,
PB PE =,
∴CBP PEC ∠=∠,
∴PEC PDC ∠=∠,
∵DGC EGP ∠=∠,
∴90DPE DCE ∠=∠=︒,
∴PE PD ⊥.
【点睛】
本题主要考查了正方形的性质、全等三角形的判定与性质以及垂线的证明方法,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,构造特殊三角形解决问题,属于中考压轴题..
15.(1)证明见解析;(2)5AP =;(3)图见解析,7AP =,∠CAB=120°.
【分析】
(1)只需借助等边三角形的性质证明△ACP ≌△QBP 即可得出结论;
(2)利用(1)中的全等和等边三角形的性质可求得90ABQ ∠=︒,再借助勾股定理即可求得AQ ,即AP 的值;
(3)当AQ 最长时,AP 最长,此时Q 在QB 的延长线,由此得解.
【详解】
解:(1)证明:
∵CBP ∆和APQ ∆为等边三角形,
∴AP=PQ ,CP=BP ,
∠CPN=∠APQ=60°,
∴∠CPA=∠BPQ ,
∴△ACP ≌△QBP (SAS )
∴AC=BQ ;
(2)∵△ACP ≌△QBP ,
∴3BQ AC ==,CAP BQP ,AP AQ =, ∵APQ ∆为等边三角形,
∴60PAQ AQP , ∵30CAB ∠=︒ ∴BAQ AQB
CAQ CAB AQP BQP 60
3060CAP BQP 90=︒
∴90ABQ ∠=︒, ∴2222435AP AQ AB BQ ;
(3)如下图,当等边△APQ 的AQ 边在AB 的延长线上时,AQ 有最大值,即AP 有最大
值,
由(1)得△ACP≌△QBP,
∴BQ=CA=3,∠CAP=∠Q,
∵△APQ为等边三角形,
∴∠CAP=∠Q=60°,AP=AQ=AB+BQ=7.
∴∠CAB=120°,
AP=,此时∠CAB=120°.
故AP最大值时,7
【点睛】
本题考查等边三角形的性质,全等三角形的性质和判定,三角形内角和定理,勾股定理.(1)中熟练掌握等边三角形的性质,得出∠CPA=∠BPQ是解题关键;(2)中能求得∠=︒是解题关键;(3)中能想到AQ有最大值,即AP有最大值是解题关键.ABQ
90。

相关文档
最新文档