H13_钢表面激光熔覆NbC

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表面技术第53卷第5期
H13钢表面激光熔覆NbC/Ni60复合涂层
组织及高温耐磨损性能
常倾城1,任利兵1,刘英1,2*,谢咏馨1,李卫1
(1.暨南大学 先进耐磨蚀及功能材料研究院,广州 510632;
2.暨南大学 韶关研究院,广东 韶关 512027)
摘要:目的研究NbC颗粒的加入量对H13钢表面激光熔覆NbC/Ni60复合涂层的组织、硬度和耐磨性的影响。

方法将Ni60合金粉末与NbC碳化物粉末球磨混合,采用激光熔覆技术,在H13钢基体表面制备不同NbC含量(质量分数分别为0%、10%、20%、30%)增强的NbC/Ni60合金复合涂层。

采用电子扫描显微镜(SEM)、X射线衍射仪对复合涂层的微观组织和物相进行分析。

借助显微硬度计,研究复合涂层的截面显微硬度分布规律。

采用高温摩擦磨损试验机测试复合涂层在真空400 ℃下的摩擦磨损性能。

结果在激光熔覆NbC/Ni60复合涂层中,物相主要由γ-(Ni, Fe)固溶体、Ni2Si、CrB、Cr23C6、NbC组成;熔覆层以胞晶和枝晶为主,NbC含量对复合熔覆层组织及形态具有显著影响,加入少量NbC可使熔覆层组织细化;在NbC 的质量分数为20%时,大量弥散的NbC颗粒在枝晶间呈聚集趋势;在NbC的质量分数为30%时,熔覆层中NbC相呈现块状、花瓣状形貌。

NbC/Ni60复合涂层的硬度显著高于H13钢基体,随着NbC含量的增加,NbC/Ni60复合熔覆层的显微硬度逐渐升高,NbC的质量分数为30%的NbC/Ni60复合熔覆层的平均硬度高达848HV。

在真空400 ℃、压力100 N、转速100 r/min、时间7 200 s磨损工况下,NbC质量分数为20%的NbC/Ni60复合涂层的磨损量最小,因此其高温耐磨性最好。

NbC质量分数为10%的NbC/Ni60复合涂层的摩擦因数最小。

随着NbC含量的增加,复合涂层的摩擦因数反而升高。

结论NbC/Ni60复合涂层与H13钢基体具有很好的冶金结合,显著提高了高温耐磨性能;NbC颗粒硬质相具有较好的增强作用,能够明显提高NbC/Ni60复合涂层的硬度和耐磨性;粗大NbC相不利于复合涂层耐磨性的进一步提高。

NbC/Ni60复合涂层的磨损机制主要为磨粒磨损、疲劳剥落磨损。

关键词:激光熔覆;NbC/Ni60复合涂层;微观组织;显微硬度;高温耐磨性能
中图分类号:TG146.4 文献标志码:A 文章编号:1001-3660(2024)05-0108-07
DOI:10.16490/ki.issn.1001-3660.2024.05.011
Microstructure and High Temperature Wear Resistance of Laser Cladding NbC/Ni60 Composite Coating on H13 Die Steel
CHANG Qingcheng1, REN Libing1, LIU Ying1,2*, XIE Yongxin1, LI Wei1
(1. Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China;
收稿日期:2023-03-01;修订日期:2023-10-09
Received:2023-03-01;Revised:2023-10-09
基金项目:广东省自然科学基金(2023A1515010269)
Fund:Natural Science Foundation of Guangdong Province (2023A1515010269)
引文格式:常倾城, 任利兵, 刘英, 等. H13钢表面激光熔覆NbC/Ni60复合涂层组织及高温耐磨损性能[J]. 表面技术, 2024, 53(5): 108-114.
CHANG Qingcheng, REN Libing, LIU Ying, et al. Microstructure and High Temperature Wear Resistance of Laser Cladding NbC/Ni60 Composite Coating on H13 Die Steel[J]. Surface Technology, 2024, 53(5): 108-114.
*通信作者(Corresponding author)
第53卷第5期常倾城,等:H13钢表面激光熔覆NbC/Ni60复合涂层组织及高温耐磨损性能·109·
2. Research Institute of Shaoguan, Jinan University, Guangdong Shaoguan 512027, China)
ABSTRACT: Composite coatings on H13 steel are fabricated with NbC and Ni60 mixture powders by laser cladding to improve the wear resistance of matrix materials. In this study, the effect of NbC content on microstructure, hardness and high temperature tribological behavior of the coatings was investigated. The NbC particles reinforced Ni60 alloy composite coating with different NbC contents (0%, 10%, 20%, 30%) was fabricated by laser cladding with a pulsed Nd-YAG laser of a wavelength of 1 064 nm and a beam diameter of 1 mm under argon shielding gas, and with the Ni60 and NbC mixed powders by ball-milling method and H13 die steel as the substrate. The microstructure and phases were analyzed with a scanning electron microscope (SEM) and X-ray diffraction (XRD). The section micro-hardness distribution of composite coatings were studied with a micro-hardness tester. The friction and wear properties of the composite coatings were carried out on a high temperature friction wear tester at 400 ℃in a vacuum environment. The Ni60 laser cladding layer was mainly composed of γ-(Ni,Fe) solid solution, Ni2Si, Fe3C, CrB and Cr23C6. With the addition of NbC, a new hard-phase NbC was introduced in NbC/Ni60 laser cladding coatings and the microstructure was modified. The cladding layer was dominated by columnar crystals and dendritic structure, in which the dendrite spacing became smaller and the grain size was refined. During laser processing, the added NbC melts, and decomposes, and subsequently, a number of fine NbC precipitates formed and grew up during the solidification. NbC phases evolved and existed as particles, flakes, blocks or snowflakes distributed some uniformly in the coating. The amount of NbC addition had a strong influence on the morphology and size of NbC particles. When the mass fraction of NbC was above 20%, the dispersed NbC particles became aggregated between the dendrites. When the mass fraction of NbC was 30%, much grown and bigger block-shaped NbC, snowflake-shaped NbC was generated in the cladding layer. It was observed that the microhardness of NbC/Ni60 composite coatings were significantly higher than that of the H13 matrix, which increased with the increase of NbC content from 635HV to 848HV when 30% NbC was added. The NbC/Ni60 coating containing 20% NbC had the smallest wear mass loss, namely the the best wear resistance under the wear conditions of load 100 N, speed 100 r/min and time 7 200 s at 400 ℃in vacuum. The NbC/Ni60 coating containing 10% NbC had the lowest friction coefficient and the more NbC addition reversedly improved friction coefficient. The NbC/Ni60 coating can be metallurgically bonded to the substrate and increase its wear resistance greatly. The NbC works as a hard enhanced phase and increases the hardness and wear resistance of the composite coatings, but the coarse NbC phase is not conducive to further improvement of wear resistance. The main wear mechanisms of H13 steel are adhesive wear and abrasion wear. Moreover, the dominant wear mechanisms of the NbC/Ni60 composite coatings are abrasion wear and fatigue spalling wear.
KEY WORDS: laser cladding; NbC/Ni60 composite coating; microstructure; microhardness; high temperature wear resistance
H13钢(4Cr5MoSiVl)是一种具有高淬透性、高韧性、较高高温强度、较高热硬度的热作模具钢,其服役温度可接近600 ℃,常用于热锻模、热挤压模和压铸模等[1]。

在中高温下,热作模具型腔表面易发生磨损和热疲劳等现象,还会受到冲蚀、应力腐蚀的影响,从而降低模具寿命,或导致模具失效。

通过表面工程技术可改变模具钢的表面化学成分、相组成和微观组织,可以提高模具的表面硬度、强度等,增加模具抵抗磨损、变形和热疲劳的能力,从而有效提高模具的使用寿命[2]。

相较于碳氮共渗(化学热处理)、感应加热淬火(表面热处理)、热喷涂等传统的表面改性技术,激光熔覆技术利用高能激光束快速熔化表层合金及粉末,凝固时的冷却速度快(102~106℃/s),制备的涂层具有过饱和固溶体、超细晶组织及亚稳定相组织,以及高强度、高硬度、优良的耐磨耐蚀性能,而且与基体之间为冶金结合,具有厚度较大、组织致密、变形小、加工灵活性好等特点[3-5],因此在汽车模具、航空、电子机械等领域得到广泛应用[6-7]。

模具钢的表面强化激光熔覆涂层常采用硬度高、耐磨性好和抗高温氧化性好的Ni基自熔性合金[8-11],通过在Ni基合金粉末中加入WC[12-14]、TiC[15-16]、NbC[17-19]等高硬度陶瓷粉,获得复合粉末,再制备金属基陶瓷复合熔覆涂层,进一步提高其硬度、耐磨性等,这已成为模具表面强化研究的热点之一。

通过Nb合金化可以细化晶粒,改善金属组织,从而提高其性能[17-18]。

NbC具有高熔点(3 600 ℃)、高硬度(2 400HV)、良好化学稳定性、良好的耐磨损性等,其密度(7.79 g/cm3)与激光熔覆用镍基、铁基合金及其基体的密度非常接近,是一种很好的增强相[19-24]。

文中采用YGA脉冲激光器,以不同NbC含量的Ni60+NbC 复合粉末为激光熔覆粉末,在H13热作模具钢表面制备高硬度的NbC/Ni基合金复合涂层,研究NbC/Ni60复合材料熔覆层的微观组织、显微硬度及高温耐磨损性能。

·110· 表 面 技 术 2024年3月
1 实验
基材为H13钢(4Gr5MoSiV1),其线切割尺寸为50 mm ⨯40 mm ⨯20 mm ,化学成分如表1所示,组织为回火托氏体及碳化物。

采用400~1200号砂纸依次打磨、清洗、烘干基材表面。

熔覆层粉末采用NbC+Ni60的混合粉末。

其中,NbC 粉末的粒径为1~3 μm 。

Ni60粉末的主要化学成分见表1,其粒径为50~150 μm 。

在实验时,将NbC 粉末分别以质量分数0%、10%、20%、30%的配比掺入Ni60合金粉末中,采用球磨机进行球磨混粉,转速为200 r/min ,球料比为5∶1,球磨时间为6 h ,经球磨后得到了相对均匀、形状不规则的混合粉末。

在激光熔覆前,在H13钢基体表面用有机黏合剂混涂预置混合粉末,预置层厚度约为300~400 μm ,经预热处理(在200 ℃下烘干)后备用。

通过对激光熔覆样品进行加热(保温)处理,以减少可能因急冷、急热产生的裂纹。

激光熔覆采用JHM-1GXY-700B 型Nd:YAG 固体工业激光设备,数控系统为PA8000NT CNC ,YAG 激光器激光波长为1.06 μm ,激光熔覆原理和涂层样品示意图如图1所示。

激光熔覆工艺的参数:激光电流为250 A ,频率为20 Hz ,脉宽为2.5 ms ,光斑直径为1 mm ,扫描速度为100 mm/min 。

在实验过程中,保护气体使用氩气,流速为10 L/min 。

采用Phenom XL 台式扫描电镜观察分析熔覆层的组织及表面形貌,采用MiniFlex 600型X 射线物相衍射仪(Cu 靶,管电压为40 kV ,管电流为15 mA ,扫描范围为25°~100°,扫描速度为4 (°)/min )分析物相。

采用HXD-1000TM 型显微硬度计(加载载荷为0.49 N ,加载时间为20 s )测试显微硬度。

采用MG-2000型高速高温摩擦磨损实验机,在高温400 ℃下对不同试样进行磨损特性测试,摩擦磨损示意如图2所示。

设置磨损工况:真空度低于1 mPa ,加载压力为100 N ,转速为100 r/min ,时间为7 200 s ,磨损行程为138 m ;磨损试样尺寸为ϕ4 mm ⨯15 mm ,对磨片为淬火回火45#钢。

表1 基材H13钢和Ni60粉末的化学成分
Tab.1 Chemical composition of H13 steel matrix and Ni60 powder
Mass fraction/%
Chemical composition
C Si Mn Cr V Mo Fe Cu B Ni
H13 0.41 1.10 0.31 4.95 1.15 1.21 Bal. Ni60 0.5-1.0 3.5-5.0 14-19 2-4 8.0 2-4 3.0-4.5 Bal.
图1 激光熔覆原理(a )及涂层样品(b )
Fig.1 Schematic diagram of laser cladding principle (a) and coating sample (b)
图2 摩擦磨损示意图
Fig.2 Schematic diagram of friction and wear 2 结果与分析
2.1 激光熔覆层的物相分析
将NbC 质量分数分别为10%、20%、30%的NbC/Ni60复合熔覆层分别记为10%NbC/Ni60、20%NbC/Ni60、30%NbC/Ni60,其X 射线衍射图谱如图3所示。

由图3可知,Ni60熔覆层主要含有γ-(Ni, Fe)固溶体、Ni 2Si 、Fe 3C 、Cr 23C 6、CrB ;加入NbC 后,熔覆层中增加了NbC 相,NbC/Ni60复合熔覆层的
物相主要由γ-(Ni,Fe)固溶体、Ni 2Si 、
Fe 3C 、Cr 23C 6、CrB 、NbC 组成;在熔覆层中,Ni 与Fe 形成了γ-(Ni, Fe)固
第53卷第5期常倾城,等:H13钢表面激光熔覆NbC/Ni60复合涂层组织及高温耐磨损性能·111·
溶体,在激光作用下涂层元素间发生了冶金化学反应,形成了Ni2Si,Fe3C、Cr7C3为快速凝固后的介稳相,NbC为外加的硬质相。

在激光熔覆后,涂层表面多种硬质相(如碳化物)的均匀分布将有益于提高复合熔覆层的硬度和耐磨性。

图3 激光熔覆涂层的X射线衍射图谱Fig.3 X-ray diffraction patterns of laser cladding layers 2.2 激光熔覆层的显微组织
不同NbC含量的NbC/Ni60复合熔覆层2种区域的截面组织形貌如图4所示。

由图4可知,NbC/Ni60复合熔覆层的厚度约为250~300 μm,与基体具有良好的冶金结合界面。

Ni60熔覆层主要为快速凝固形成的细小枝晶组织,枝晶间距为2~5 μm。

加入少量NbC(10%)后,NbC/Ni60复合熔覆层组织细化,枝晶间距为1~3 μm。

在10%NbC/Ni60复合熔覆层中,NbC颗粒粒径为0.5~3 μm。

随着NbC含量的增加,NbC的质量分数为20%、30%时,复合熔覆层主要呈块片状、颗粒状、花瓣状、星状等形貌。

NbC颗粒逐渐出现聚集长大的现象,有的片状尺寸长达6 μm。

由区域能谱分析(见表2)结果可知,枝晶含有大量Ni、Fe、Cr元素,属于γ-(Ni,Fe)型固溶体,枝晶间Ni、Fe的含量下降,且Cr、Si等元素含量显著增加,发生了Ni2Si、Fe3C、Cr23C6等相的聚集。

在加入NbC 后,枝晶内(C点)存在Nb元素。

在NbC相中也存在其他元素(如Ni、Si、Cr、Fe、B等),原因是凝固时部分NbC相长大,Ni2Si、Cr23C6等相在NbC表面析出或聚集。

分析NbC/Ni60激光熔覆层的组织细化原因,一方面在激光熔覆过程中部分NbC在熔池中发生溶解、分解,释放出Nb、C元素,出现成分波动或成分过冷等现象,可抑制晶核的长大;另一方面,NbC作为异质结晶核心,起到了细化作用。

随着NbC含量的增加,大量未熔化的NbC弥散白色小颗粒也阻碍了枝晶的长大。

2.3 激光熔覆层的显微硬度
不同NbC含量对NbC/Ni60熔覆层截面显微硬度的影响如图5所示。

由图5可知,熔覆层的显微硬度远大于淬火回火H13钢的显微硬度;在加入NbC后,熔覆层表面的显微硬度随着NbC含量的增加而提高,NbC的质量分数为0%、10%、20%、30%时NbC/Ni60复合熔覆层的平均硬度分别为635HV、690HV、753HV、848HV。

激光熔覆层经过快速熔化和凝固,枝晶组织得到显著细化。

NbC的加入使得复合熔覆层的硬度提升,一方面是因NbC的加入导致枝晶晶粒
图4 NbC/Ni60熔覆层微观组织
Fig.4 Microstructure of NbC/Ni60 cladding layers
·112·表面技术 2024年3月
表2 熔覆层部分区域组织能谱分析
Tab.2 EDS results of different regions in cladding layers
Atomic percentage/%
EDS
Ni Fe Cr Si Nb C B
A (area) 50.36 32.05 10.32 4.27 3.00
B (area) 33.82 37.75 11.56 4.92 10.01 1.94
C (point) 41.92 36.35 11.61 3.55 6.57
D (point) 24.98 35.27 19.49 1.85 1.76 11.41 5.24
E (point) 2.99 6.75 1.84 51.22 37.16 2.04
F (point) 4.24 1.77 7.33 2.09 52.59 31.98
G (point) 0.89 9.38 1.39 2.73 50.48 35.13
图5 熔覆层横截面显微硬度分布
Fig.5 Cross-sectional microhardness distribution
of cladding layers
变得细小,其他金属间化合物(如碳化物等)得到细化,发挥了细化晶粒的作用;NbC在熔池中发生分解,部分Nb、C元素固溶到基体组织中,起到了固溶强化的作用;NbC颗粒的硬度(2 400HV)极高,在激光熔覆时熔化后重新析出或长大,具有较高的第二相强化作用,NbC弥散分布在熔覆层内部,产生了较好的增强效果。

熔覆层的显微硬度随着与表面距离的增加而逐渐减小,熔覆层的硬度在通过熔覆层与基体界面的结合区(距离表面300~400 μm)后明显降低。

2.4 激光熔覆层的摩擦磨损性能
不同NbC含量的NbC/Ni60复合熔覆层在400 ℃下实验时,其摩擦因数−时间曲线及磨损量结果如图6所示。

由图6a可见,在磨损实验过程中,熔覆层的摩擦因数随着时间的延长有所波动,但总体较稳定;Ni60熔覆层的摩擦因数较高,平均摩擦因数为0.82;10%NbC/Ni60复合熔覆层的摩擦因数最小,平均摩擦因数为0.69;初始时加入NbC具有降低摩擦因数的效果,随着NbC含量的增加,摩擦因数有所增加。

由图6b可知,Ni60熔覆层的磨损量仅为18 mg,显著低于基体热处理(淬火回火)硬化的H13钢的磨损量(34 mg);当加入质量分数为10%、20%、30%的NbC时,熔覆层的平均磨损量分别为5、2.3、3.7 mg。

通过激光熔覆显著提高了H13钢的耐磨性能,在熔覆层Ni60中加入NbC明显降低了其磨损量,提高了耐磨性。

随着NbC含量的增加,熔覆层的磨损量呈先减小后增大的趋势;当NbC的质量分数为20%时,磨损量最小,耐磨性较佳。

NbC的加入有利于细晶强化、固溶强化、第二相强化,从而进一步提高了硬度、耐磨性。

当NbC的质量分数为30%时,熔覆层的平均硬度最高,不过其磨损量反而升高,耐磨性下降,原因是在熔覆层中NbC颗粒粗大容易产生大的内应力,导致表面脆性过高。

在400 ℃下进行摩擦磨损实验,不同NbC含量(0%、10%、20%、30%)的NbC/Ni60熔覆层的磨损表面形貌如图7所示,磨损表面局部区域的能谱分析如表3所示。

由图7可知,对磨片淬火回火45#钢表面磨损严重,有大量剥层脱落,并出现凹坑区域。

由于硬度较低,容易出现塑性变形和黏着磨损,黏着部分被撕裂,其磨损机制主要为黏着磨损。

热处理(淬火回火)H13钢试样表面有较深的磨损犁沟,出现明显的剥层脱落凹坑区域,耐磨性能较差,其磨损机制主要为磨粒磨损和黏着磨损。

Ni60熔覆层表面磨损程度较低,出现较浅的划痕痕迹和少量剥层脱落。

NbC/Ni60熔覆层表面划痕变得更浅、更细,NbC/Ni60
图6 在温度400 ℃下不同成分熔覆层的摩擦因数(a)及平均摩擦因数、磨损量(b)
Fig.6 Friction coefficient (a), average friction coefficient and wear loss (b) of cladding layers of different components at 400 ℃
第53卷 第5期 常倾城,等:H13钢表面激光熔覆NbC/Ni60复合涂层组织及高温耐磨损性能 ·113·
图7 400 ℃下熔覆层的磨损形貌
Fig.7 Worn surface morphology of cladding layers at 400 ℃: a) 45# steel; b) H13 steel;
c) Ni60; d) 10%NbC/Ni60; e) 20% NbC/Ni60; f) 30%NbC/Ni60
表3 磨损表面局部区域能谱分析 Tab.3 EDS results of different worn surface regions Atomic percentage/%
EDS
O Fe Cr Ni Si Nb C Mo
B
Ⅰ(area) 58.53 39.30 2.17 Ⅱ(point) 10.11 5.24 8.25 2.07 35.41 19.81 4.9614.14Ⅲ(area) 50.47 41.56 3.19 3.02 1.23 0.53
Ⅳ(area) 46.42 41.71 3.02 2.22 1.51 1.67 2.92 0.53
熔覆层表面有片状磨屑(Ⅰ、Ⅲ、Ⅳ),其主要成分为O 、Fe 、Cr ,主要是对磨片的黏着磨损脱离产物。

由于NbC 的硬度较高,通过添加NbC 提高了熔覆层的抗变形能力,磨损表面微切削作用减弱,仅留下磨粒磨损产生的犁沟,且随着NbC 含量的增加,犁沟形划痕越来越少、越来越浅,表面趋于光滑。

20%NbC/Ni60熔覆层表面存在细小磨粒,从能谱分析(Ⅱ)可见,富含Nb 、C ,表明在磨损过程中有NbC 脱落。

该磨损机制主要为磨粒磨损,也呈从二体模式转变为三体磨损的趋势,添加NbC 在一定程度上避免了熔覆层受到更严重的磨损,起到了一定的减磨、抗磨作用。

在NbC 的质量分数为30%时,熔覆层表面出现一些剥层剥落痕迹。

这主要是因30%NbC/ Ni60熔覆层表面的NbC 颗粒粗化,容易变脆,在周期反复切应力的作用下易发生应力集中,从而萌生裂纹,发生了表面剥落疲劳磨损。

3 结论
1)激光熔覆NbC/Ni60复合涂层的物相主要由γ-(Ni, Fe)固溶体、Ni 2Si 、Fe 3C 、Cr 23C 6、CrB 、NbC
组成。

NbC 的加入明显细化了熔覆层的显微组织,在
NbC 的含量较高时,NbC 逐渐出现聚集长大现象,主要表现为块片状、颗粒状、花瓣状、星状等形貌。

2)激光熔覆NbC/Ni60复合涂层的硬度显著高于H13钢基材的硬度。

熔覆层的显微硬度随着NbC 含量的增加而提高,30%NbC/Ni60复合熔覆层的平均硬度最高。

3)在真空400 ℃、压力100 N 、转速100 r/min 、时间7 200 s 的摩擦磨损工况下,适量加入NbC 具有降低摩擦因数的效果,10%NbC/Ni60复合熔覆层的摩擦因数最小;20%NbC/Ni60复合涂层的高温耐磨性最佳。

NbC/Ni60复合涂层具有优良的耐磨性,加入NbC 可明显降低熔覆层的磨损率,尽管过多及粗大的NbC 颗粒使其硬度增加,但其磨损率反而有所降低。

H13钢的主要磨损机制为磨粒磨损和黏着磨损,NbC/Ni60复合熔覆层的主要磨损机制表现为磨粒磨损、疲劳剥落。

参考文献:
[1]
KHEIRANDISH S, NOORIAN A. Effect of Niobium on Microstructure of Cast AISI H13 Hot Work Tool Steel[J]. Journal of Iron and Steel Research, International, 2008, 15(4): 61-66.
[2]
RODRÍGUEZ-BARACALDO R, BENITO J A, PUCHI- CABRERA E S, et al. High Temperature Wear Resistance of (TiAl)N PVD Coating on Untreated and Gas Nitrided AISI H13 Steel with Different Heat Treatments[J]. Wear, 2007, 262(3/4): 380-389.
[3]
LU J Z, XUE K N, LU H F, et al. Laser Shock Wave-
·114·表面技术 2024年3月
Induced Wear Property Improvement and Formation
Mechanism of Laser Cladding Ni25 Coating on H13 Tool
Steel[J]. Journal of Materials Processing Technology,
2021, 296: 117202.
[4] FARNIA A, MALEK GHAINI F, OCELÍK V, et al.
Microstructural Characterization of Co-Based Coating
Deposited by Low Power Pulse Laser Cladding[J]. Journal
of Materials Science, 2013, 48(6): 2714-2723.
[5] DINDA G P, DASGUPTA A K, MAZUMDER J. Laser
Aided Direct Metal Deposition of Inconel 625 Superalloy:
Microstructural Evolution and Thermal Stability[J]. Materials
Science and Engineering: A, 2009, 509(1/2): 98-104. [6] WANG K M, CHANG B H, CHEN J S, et al. Effect of
Molybdenum on the Microstructures and Properties of
Stainless Steel Coatings by Laser Cladding[J]. Applied
Sciences, 2017, 7(10): 1065.
[7] DUTTA MAJUMDAR J, PINKERTON A, LIU Z, et al.
Mechanical and Electrochemical Properties of Multiple-
Layer Diode Laser Cladding of 316L Stainless Steel[J].
Applied Surface Science, 2005, 247(1/2/3/4): 373-377. [8] HEMMATI I, OCELÍK V, DE HOSSON J T M. Effects of
the Alloy Composition on Phase Constitution and Properties
of Laser Deposited Ni-Cr-B-Si Coatings[J]. Physics
Procedia, 2013, 41: 302-311.
[9] 孙荣禄, 牛伟, 雷贻文, 等. 钛合金表面激光熔覆
TiB2-TiC/Ni复合涂层的真空摩擦磨损性能[J]. 材料热
处理学报, 2012, 33(5): 131-135.
SUN R L, NIU W, LEI Y W, et al. Tribological Properties
in Vacuum of TiB2-TiC/Ni Laser Clad Layer on Titanium
Alloy Substrate[J]. Transactions of Materials and Heat
Treatment, 2012, 33(5): 131-135.
[10] HE X M, LIU X B, WANG M D, et al. Elevated
Temperature Dry Sliding Wear Behavior of Nickel-Based
Composite Coating on Austenitic Stainless Steel Deposited
by a Novel Central Hollow Laser Cladding[J]. Applied
Surface Science, 2011, 258(1): 535-541.
[11] WANG L Q, ZHOU J S, YU Y J, et al. Effect of Powders
Refinement on the Tribological Behavior of Ni-Based
Composite Coatings by Laser Cladding[J]. Applied Surface
Science, 2012, 258(17): 6697-6704.
[12] DESCHUYTENEER D, PETIT F, GONON M, et al.
Processing and Characterization of Laser Clad NiCrBSi/WC
Composite Coatings-Influence of Microstructure on
Hardness and Wear[J]. Surface and Coatings Technology,
2015, 283: 162-171.
[13] BARTKOWSKI D, KINAL G. Microstructure and Wear
Resistance of Stellite-6/WC MMC Coatings Produced by
Laser Cladding Using Yb:Y AG Disk Laser[J]. International
Journal of Refractory Metals and Hard Materials, 2016,
58: 157-164.
[14] MA Q S, LI Y J, WANG J, et al. Investigation on Cored-
Eutectic Structure in Ni60/WC Composite Coatings
Fabricated by Wide-Band Laser Cladding[J]. Journal of
Alloys and Compounds, 2015, 645: 151-157.
[15] 赵雪阳, 刘英, 夏一龙, 等. H13钢激光熔覆TiC/Ni合
金复合涂层的组织与耐磨性[J]. 材料热处理学报,
2016, 37(4): 190-196.
ZHAO X Y, LIU Y, XIA Y L, et al. Microstructure and
Wear Resistance of TiC/Ni Based Alloy Composite
Coatings on H13 Steel by Laser Cladding[J]. Transactions
of Materials and Heat Treatment, 2016, 37(4): 190-196. [16] CHEN L Y, YU T B, CHEN X, et al. Process Optimization,
Microstructure and Microhardness of Coaxial Laser
Cladding TiC Reinforced Ni-Based Composite Coatings[J].
Optics & Laser Technology, 2022, 152: 108129.
[17] HU H J, XU G, WANG L, et al. The Effects of Nb and Mo
Addition on Transformation and Properties in Low Carbon
Bainitic Steels[J]. Materials & Design, 2015, 84: 95-99. [18] SUN S T, FU H G, PING X L, et al. Reinforcing Behavior
and Microstructure Evolution of NbC in Laser Cladded
Ni45 Coating[J]. Applied Surface Science, 2018, 455:
160-170.
[19] FERNANDES M R P, MARTINELLI A E, KLEIN A N,
et al. Production of Nickel Matrix Composites Reinforced
with Carbide Particles by Granulation of Fine Powders
and Mechanical Pressing[J]. Powder Technology, 2017,
305: 673-678.
[20] ZHONG L S, XU Y H, YE F X. In Situ NbC Particulate-
Reinforced Iron Matrix Composite: Microstructure and
Abrasive Wear Characteristics[J]. Tribology Letters,
2012, 47(2): 253-259.
[21] HUANG S G, LIU R L, LI L, et al. NbC as Grain Growth
Inhibitor and Carbide in WC-Co Hardmetals[J]. International
Journal of Refractory Metals and Hard Materials, 2008,
26(5): 389-395.
[22] LI Q T, LEI Y P, FU H G. Laser Cladding In-Situ NbC
Particle Reinforced Fe-Based Composite Coatings with
Rare Earth Oxide Addition[J]. Surface and Coatings
Technology, 2014, 239: 102-107.
[23] CAO Y B, REN H T, HU C S, et al. In-Situ Formation
Behavior of NBC-Reinforced Fe-Based Laser Cladding
Coatings[J]. Materials Letters, 2015, 147: 61-63.
[24] GAO W L, LENG Y, FU D F, et al. Effects of Niobium
and Heat Treatment on Microstructure and Mechanical
Properties of Low Carbon Cast Steels[J]. Materials &
Design, 2016, 105: 114-123.。

相关文档
最新文档