行程几何模型数学题——二元三元容斥法(详解)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第28讲二元三元容斥法
1、在46人参加的采摘活动中,只采了樱桃的有18人,既采了樱桃又采了杏的有7人,既没采樱桃又没采杏的有6人,问:只采了杏的有多少人?
解:如图,用长方形表示全体采摘人员46人,A 圆表示采了樱桃的人数,B 圆表示采了杏
的人数.长方形中阴影部分表示既没采樱桃又没采杏的人数.
由图中可以看出,全体人员是至少采了一种的人数与两种都没采的人数之和,则至少采了一种的人数为:46640-=(人),而至少采了一种的人数=只采了樱桃的人数+两种都采了的人数+只采了杏的人数,所以,只采了杏的人数为:4018715--=(人).
2、有100位旅客,其中有10人既不懂英语又不懂俄语,有75人懂英语,83人懂俄语.问既懂英语又懂俄语的有多少人?
解:在100人中懂英语或俄语的有:1001090-=(人).又因为有75人懂英语,所以只懂俄语的有:907515-=(人).从83位懂俄语的旅客中除去只懂俄语的人,剩下的8315-68=(人)就是既懂英语又懂俄语的旅客.
3、某次英语考试由两部分组成,结果全班有12人得满分,第一部分有25人做对,第二部分有19人有错,问两部分都有错的有多少人?
解:如图,用长方形表示参加考试的人数,A 圆表示第一部分对的人数.B 圆
表示第二部分对的人数,长方形中阴影部分表示两部分都有错的人数.已知第一部分对的有25人,全对的有12人,可知只对第一部分的有:251213-=(人).又因为第二部分有19人有错,其中第一部分对第二部分有
错的有13人,那么余下的19136-=(人)必是第一部分和第二部分均有错的,两部分都有错的有6人.
4、某班有42人,其中26人爱打篮球,17人爱打排球,19人爱踢足球,9人既爱打篮球又爱踢足球,4人既爱打排球又爱踢足球,没有一个人三种球都爱好,也没有一个人三种球都不爱好.问:既爱打篮球又爱打排球的有几人?
解:由于全班42人没有一个人三种球都不爱好,所以全班至少爱好一种球的有42人.根据
包含排除法,4226171994=++-++()(既爱打篮球又爱打排球的人数0+)
,得到既爱打篮球又爱打排球的人数为:49427-=(人).5、如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的
两部分全对的两部分都有错的只做对第二部分的
只做对第一部分的
面积是多少平方厘米?
解:阴影部分是有两块重叠的部分,被计算两次,而三张纸重叠部分是被计算了三次.所以三张纸重叠部分的面积60310040220
()(平方厘米).
=⨯--÷=。