三角形填空选择(提升篇)(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形填空选择(提升篇)(Word版含解析)
一、八年级数学三角形填空题(难)
1.如图,BE平分∠ABC,CE平分外角∠ACD,若∠A=42°,则∠E=_____°.
【答案】21°
【解析】
根据三角形的外角性质以及角平分线的定义可得.
解:由题意得:∠E=∠ECD−∠EBC=1
2
∠ACD−
1
2
∠ABC=
1
2
∠A=21°.
故答案为21°.
2.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;
②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C.其中正确个数是( )
A.4个B.3个C.2个D.1个
【答案】B
【解析】
解:
①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;
②∵BE平分
∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;
③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,
∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,③错误;
④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确.
故答案为①②④.
点睛:本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以
及三角形外角的性质是解题的关键.
3.如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则
∠1﹣∠2的度数是_____.
【答案】92°.
【解析】
【分析】
由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数.
【详解】
由折叠的性质得:∠C'=∠C=46°,
根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠C',
则∠1=∠2+∠C+∠C'=∠2+2∠C=∠2+92°,
则∠1﹣∠2=92°.
故答案为:92°.
【点睛】
考查翻折变换(折叠问题),三角形内角和定理,熟练掌握折叠的性质是解题的关键.
4.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.
【答案】40 .
【解析】
【分析】
根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.
【详解】
连续左转后形成的正多边形边数为:4559÷=,
则左转的角度是360940︒÷=︒.
故答案是:40︒.
【点睛】
本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.
5.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.
【答案】7
【解析】
【分析】
根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.
【详解】
∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,
∴a ﹣7=0,b ﹣1=0,
解得a=7,b=1,
∵7﹣1=6,7+1=8,
∴68c <<,
又∵c 为奇数,
∴c=7,
故答案为7.
【点睛】
本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.
6.两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则∠AOB 等于 ______ 度.
【答案】108°
【解析】
【分析】
如图,易得△OCD 为等腰三角形,根据正五边形内角度数可求出∠OCD ,然后求出顶角∠COD ,再用360°减去∠AOC 、∠BOD 、∠COD 即可
【详解】
∵五边形是正五边形,
∴每一个内角都是108°,
∴∠OCD=∠ODC=180°-108°=72°,
∴∠COD=36°,
∴∠AOB=360°-108°-108°-36°=108°.
故答案为108°
【点睛】
本题考查正多边形的内角计算,分析出△O CD 是等腰三角形,然后求出顶角是关键.
7.如图,A 、B 、C 三点在同一条直线上,∠A =50°,BD 垂直平分AE ,垂足为D ,则∠EBC 的度数为_____.
【答案】100°
【解析】
【分析】
根据线段垂直平分线的性质,得BE BA =,
根据等腰三角形的性质,得50E A ∠=∠=︒,再根据三角形外角的性质即可求解.
【详解】
∵BD 垂直平分AE ,
∴BE BA =,
∴50E A ∠=∠=︒,
∴100EBC E A ∠=∠+∠=︒,
故答案为100°.
【点睛】
考查线段垂直平分线的性质以及三角形外角的性质,掌握线段垂直平分线的性质是解题的关键.
8.如图,△ABC 中,∠B 与∠C 的平分线交于点O ,过O 作EF ∥BC 交AB 、AC 于E 、F ,若
△ABC的周长比△AEF的周长大12cm,O到AB的距离为4cm,△OBC的面积_____cm2.
cm.
【答案】242
【解析】
【分析】
由BE=EO可证得EF∥BC,从而可得∠FOC=∠OCF,即得OF=CF;可知△AEF等于AB+AC,所以根据题中的条件可得出BC及O到BC的距离,从而能求出△OBC的面积.
【详解】
∵BE=EO,∴∠EBO=∠EOB=∠OBC,∴EF∥BC,∴∠FOC=∠OCB=∠OCF,
∴OF=CF;△AEF等于AB+AC,
又∵△ABC的周长比△AEF的周长大12cm,∴可得BC=12cm,
根据角平分线的性质可得O到BC的距离为4cm,
∴S△OBC=1
×12×4=24cm2.
2
考点:1.三角形的面积;2.三角形三边关系.
9.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=______.
【答案】80°.
【解析】
【分析】
根据平行线的性质求出∠4,再根据三角形内角和定理计算即可.
【详解】
∵a∥b,
∴∠4=∠l=60°,
∴∠3=180°-∠4-∠2=80°,
故答案为80°.
【点睛】
本题考查了平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.
10.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果
∠ABP=20°,∠ACP=50°,则∠P=______°.
【答案】30
【解析】
【分析】
根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P的度数.
【详解】
∵BP是∠ABC的平分线,CP是∠ACM的平分线,∠ABP=20°,∠ACP=50°,
∴∠PBC=20°,∠PCM=50°,
∵∠PBC+∠P=∠PCM,
∴∠P=∠PCM-∠PBC=50°-20°=30°,
故答案为:30
【点睛】
本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.
二、八年级数学三角形选择题(难)
11.若△ABC内有一个点P1,当P1、A、B、C没有任何三点在同一直线上时,如图1,可构成3个互不重叠的小三角形;若△ABC内有两个点P1、P2,其它条件不变,如图2,可构成5个互不重叠的小三角形:……若△ABC内有n个点,其它条件不变,则构成若干个互不重叠的小三角形,这些小三角形的内角和为()
A.n·180°B.(n+2)·180°C.(2n-1)·180°D.(2n+1)·180°【答案】D
【解析】
【分析】
当△ABC内的点的个数是1时,三角形内互不重叠的小三角形的个数是3;当△ABC内的点的个数是2时,三角形内互不重叠的小三角形的个数是5;依此类推得到当△ABC内的点的个数是3时,三角形内互不重叠的小三角形的个数是7;当△ABC内的点的个数是n 时,三角形内互不重叠的小三角形的个数2n+1,所以这些小三角形的内角和为
(2n+1)·180°
【详解】
】解:图1中,当△ABC内只有1个点时,可分割成3个互不重叠的小三角形;
图2中,当△ABC内只有2个点时,可分割成5个互不重叠的小三角形;
图3中,当△ABC内只有3个点时,可分割成7个互不重叠的小三角形;
根据以上规律,当△ABC内有n个点(P1,P2,…,P n)时,可以把△ABC分割成S=2n+1个互不重叠的三角形,所以这些小三角形的内角和为(2n+1)·180°.
【点睛】
此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.
12.如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F,∠F的度数为()
A.120°B.135°C.150°D.不能确定
【答案】B
【解析】
【分析】
先根据∠1+∠2=90°得出∠EAM+∠EDN的度数,再由角平分线的定义得出∠EAF+∠EDF的度数,根据AE⊥DE可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA的度数,由三角形内角和定理即可得出结论.
【详解】
解:
∵∠1+∠2=90°,
∴∠EAM+∠EDN=360°-90°=270°.∵∠EAM和∠EDN的平分线交于点F,
∴∠EAF+∠EDF=1
2
×270°=135°.
∵AE⊥DE,
∴∠3+∠4=90°,
∴∠FAD+∠FDA=135°-90°=45°,
∴∠F=180°-(∠FAD+∠FDA)=180-45°=135°.
故选B.
【点睛】
本题查的是三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.
13.马小虎在计算一个多边形的内角和时,由于粗心少算了2个内角,其和等于830,则该多边形的边数是( )
A.7B.8C.7或8D.无法确定
【答案】C
【解析】
【分析】
n边形的内角和是(n-2)•180°,即为180°的(n-2)倍,多边形的内角一定大于0度,小于180度,因而多边形中,除去2个内角外,其余内角和与180度的商加上2,以后所得的数值,比这个数值大1或2的整数就是多边形的边数.
【详解】
设少加的2个内角和为x度,边数为n.
则(n-2)×180=830+x,
即(n-2)×180=4×180+110+x,
因此x=70,n=7或x=250,n=8.
故该多边形的边数是7或8.
故选C.
【点睛】
本题考查了多边形的内角和定理,正确理解多边形内角的大小的特点,以及多边形的内角和定理是解决本题的关键.
14.能够铺满地面的正多边形组合是( )
A .正三角形和正五边形
B .正方形和正六边形
C .正方形和正五边形
D .正五边形和正十边形 【答案】D
【解析】
【分析】
正多边形的组合能否铺满地面,关键是要看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.
【详解】
解:A 、正五边形和正三边形内角分别为108°、60°,由于60m+108n=360,得m=6-95
n ,显然n 取任何正整数时,m 不能得正整数,故不能铺满,故此选项错误;
B 、正方形、正六边形内角分别为90°、120°,不能构成360°的周角,故不能铺满,故此选项错误;
C 、正方形、正五边形内角分别为90°、108°,当90n+108m=360,显然n 取任何正整数时,m 不能得正整数,故不能铺满,故此选项错误;
D 、正五边形和正十边形内角分别为108、144,两个正五边形与一个正十边形能铺满地面,故此选项正确.
故选:D .
【点睛】
此题主要考查了平面镶嵌,两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.需注意正多边形内角度数=180°-360°÷边数.
15.把一副直角三角板按如图所示的方式摆放在一起,其中C 90∠=,F 90∠=,D 30∠=,A 45∠=,则12∠∠+等于( )
A .270
B .210
C .180
D .150
【答案】B
【解析】
【分析】 利用三角形的外角等于不相邻的两内角和,和三角形内角和为180︒,可解出答案.
【详解】
如图,AB与DE交于点G,AB与EF交于点H,
∵∠1=∠A+∠DGA,∠2=∠B+∠FHB,
∠DGA=∠BGE,∠FHB=∠AHE,
在三角形GEH中,∠BGE+∠AHE =180︒-∠E=120︒,
∴∠1+∠2=∠A+∠B+∠BGE+∠AHE=90︒+120︒=210.
【点睛】
本题考查了三角形的外角性质,内角和定理,熟练掌握即可解题.
∠的度数16.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则3
等于()
A.50°B.30°C.20°D.15°
【答案】C
【解析】
【分析】
根据平行和三角形外角性质可得∠2=∠4=∠1+∠3,代入数据即可求∠3.
【详解】
如图所示,
∵AB∥CD
∴∠2=∠4=∠1+∠3=50°,
∴∠3=∠4-30°=20°,
故选C.
17.一正多边形的内角和与外角和的和是1440°,则该正多边形是()
A.正六边形B.正七边形C.正八边形D.正九边形
【答案】C
【解析】
【分析】
依题意,多边形的内角与外角和为1440°,多边形的外角和为360°,根据内角和公式求出多边形的边数.
【详解】
解:设多边形的边数为n,根据题意列方程得,
(n﹣2)•180°+360°=1440°,
n﹣2=6,
n=8.
故这个多边形的边数为8.
故选:C.
【点睛】
考查了多边形的外角和定理和内角和定理,熟练记忆多边形的内角和公式是解答本题的关键.
18.如图,把一副三角板的两个直角三角形叠放在一起,则α的度数()
A.75°B.135°C.120°D.105°
【答案】D
【解析】
如图,
根据三角板的特点,可知∠3=45°,∠1=60°,因此可知∠2=45°,再根据三角形的外角的性质,可求得∠α=105°.
故选
19.以下列数据为长度的三条线段,能组成三角形的是()
A.2 cm、3cm、5cm B.2 cm、3 cm、4 cm
C.3 cm、5 cm、9 cm D.8 cm、4 cm、4 cm
【答案】B
【解析】
【分析】
三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形,其实
只要最小两边的和大于最大边就可判断前面的三边关系成立.
【详解】
A、2+3=5,故本选项错误.
B、2+3>4,故本选项正确.
C、3+5<9,故本选项错误.
D、4+4=8,故本选项错误.
故选B.
【点睛】
本题考查三角形的三边关系,根据三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形.
20.一个多边形的每个内角均为108º,则这个多边形是()
A.七边形 B.六边形 C.五边形 D.四边形
【答案】C
【解析】
试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360
÷72=5(边).
考点:⒈多边形的内角和;⒉多边形的外角和.。

相关文档
最新文档