银州区第四中学校2018-2019学年高二上学期第二次月考试卷数学(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

银州区第四中学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. lgx ,lgy ,lgz 成等差数列是由y 2=zx 成立的( ) A .充分非必要条件
B .必要非充分条件
C .充要条件
D .既不充分也不必要条件
2. 若cos (﹣α)=,则cos (
+α)的值是( )
A .
B .﹣
C .
D .﹣
3. 设集合(){,|,,1A x y x y x y =
--是三角形的三边长},则A 所表示的平面区域是( )
A .
B .
C .
D . 4. 若如图程序执行的结果是10,则输入的x 的值是( )
A .0
B .10
C .﹣10
D .10或﹣10
5. 从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( ) A .
B .
C .
D .
6. 下列命题中的假命题是( )
A .∀x ∈R ,2x ﹣1>0
B .∃x ∈R ,lgx <1
C .∀x ∈N +,(x ﹣1)2>0
D .∃x ∈R ,tanx=2
7. 给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各 面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中
正确命题的个数是( )
A .0
B .1
C .2
D .3
8. 已知角α的终边经过点(sin15,cos15)-o
o
,则2
cos α的值为( )
A .
132+ B .132- C. 34
D .0 9. 命题:“∀x >0,都有x 2﹣x ≥0”的否定是( )
A .∀x ≤0,都有x 2﹣x >0
B .∀x >0,都有x 2﹣x ≤0
C .∃x >0,使得x 2﹣x <0
D .∃x ≤0,使得x 2﹣x >0
10.函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则实数a 的取值范围是( )
A .R
B .[1,+∞)
C .(﹣∞,1]
D .[2,+∞)
11.为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知C B A ,,三个社区分别有低收入家 庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从C 社 区抽取低收入家庭的户数为( )
A .48
B .36
C .24
D .18
【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题.
12.已知实数y x ,满足不等式组⎪⎩

⎨⎧≤-≥+≤-5342
y x y x x y ,若目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则
实数m 的取值范围是( )
A .1-<m
B .10<<m
C .1>m
D .1≥m
【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.
二、填空题
13.已知(x 2﹣
)n )的展开式中第三项与第五项的系数之比为
,则展开式中常数项是 .
14.无论m 为何值时,直线(2m+1)x+(m+1)y ﹣7m ﹣4=0恒过定点 .
15.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.
16.如图,在矩形ABCD 中,3AB =,
3BC =, E 在AC 上,若BE AC ⊥,
则ED 的长=____________ 17.不等式的解集为R ,则实数m 的范围是

18.直线l :(t 为参数)与圆C :(θ为参数)相交所得的弦长的取值范围
是 .
三、解答题
19.已知函数f (x )=2cos 2ωx+2sin ωxcos ωx ﹣1,且f (x )的周期为2.
(Ⅰ)当时,求f (x )的最值; (Ⅱ)若,求
的值.
20.(本小题满分12分)
已知数列{n a }的前n 项和为n S ,且满足*)(2N n a n S n n ∈=+. (1)证明:数列}1{+n a 为等比数列,并求数列{n a }的通项公式;
(2)数列{n b }满足*))(1(log 2N n a a b n n n ∈+⋅=,其前n 项和为n T ,试求满足20152
2>++n
n T n 的
最小正整数n .
【命题意图】本题是综合考察等比数列及其前n 项和性质的问题,其中对逻辑推理的要求很高.
21.已知矩阵M 所对应的线性变换把点A (x ,y )变成点A ′(13,5),试求M 的逆矩阵及点A 的
坐标.
22.已知数列{a n }满足a 1=,a n+1=a n +(n ∈N *).证明:对一切n ∈N *,有
(Ⅰ)


(Ⅱ)0<a n <1.
23.武汉市为增强市民交通安全意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.
(1)分别求第3,4,5组的频率;
(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(3)在(2)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
24.某游乐场有A、B两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两
人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为,丙、丁两人各自闯关成功的概率均为.(1)求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;
(2)记游戏A、B被闯关总人数为ξ,求ξ的分布列和期望.
银州区第四中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】A
【解析】解:lgx,lgy,lgz成等差数列,∴2lgy=lgx•lgz,即y2=zx,∴充分性成立,
因为y2=zx,但是x,z可能同时为负数,所以必要性不成立,
故选:A.
【点评】本题主要考查了等差数列和函数的基本性质,以及充分必要行得证明,是高考的常考类型,同学们要加强练习,属于基础题.
2.【答案】B
【解析】解:∵cos(﹣α)=,
∴cos(+α)=﹣cos=﹣cos(﹣α)=﹣.
故选:B.
3.【答案】A
【解析】
考点:二元一次不等式所表示的平面区域.
4.【答案】D
【解析】解:模拟执行程序,可得程序的功能是计算并输出y=的值,
当x<0,时﹣x=10,解得:x=﹣10
当x≥0,时x=10,解得:x=10
故选:D.
5.【答案】A
【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,
取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,
故取出的3个数可作为三角形的三边边长的概率P=.
故选:A.
【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件.
6.【答案】C
【解析】解:A.∀x∈R,2x﹣1=0正确;
B.当0<x<10时,lgx<1正确;
C.当x=1,(x﹣1)2=0,因此不正确;
D.存在x∈R,tanx=2成立,正确.
综上可知:只有C错误.
故选:C.
【点评】本题考查了指数函数与对数函数、正切函数的单调性,属于基础题.
7.【答案】B
【解析】111]
试题分析:由题意得,根据几何体的性质和结构特征可知,多面体是若干个平面多边形所围成的图形是正确的,故选B.
考点:几何体的结构特征.
8.【答案】B
【解析】
考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.
9.【答案】C
【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:
∃x >0,使得x 2﹣x <0,
故选:C .
【点评】本题主要考查含有量词的命题 的否定,比较基础.
10.【答案】C
【解析】解:由于f (x )=x 2﹣2ax 的对称轴是直线x=a ,图象开口向上,
故函数在区间(﹣∞,a]为减函数,在区间[a ,+∞)上为增函数, 又由函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则a ≤1. 故答案为:C
11.【答案】C
【解析】根据分层抽样的要求可知在C 社区抽取户数为249
2
108180270360180108=⨯=++⨯.
12.【答案】C
【解析】画出可行域如图所示,)3,1(A ,要使目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则需直线l 过点A 时截距最大,即z 最大,此时1>l k 即可.
二、填空题
13.【答案】 45 .
【解析】解:第三项的系数为C n 2,第五项的系数为C n 4, 由第三项与第五项的系数之比为
可得n=10,则T i+1=C 10i (x 2)10﹣i (﹣
)i =(﹣1)i C 10i
=,
令40﹣5r=0,解得r=8,故所求的常数项为(﹣1)8C 108=45, 故答案为:45.
14.【答案】 (3,1) .
【解析】解:由(2m+1)x+(m+1)y ﹣7m ﹣4=0,得 即(2x+y ﹣7)m+(x+y ﹣4)=0, ∴2x+y ﹣7=0,① 且x+y ﹣4=0,②
∴一次函数(2m+1)x+(m+1)y ﹣7m ﹣4=0的图象就和m 无关,恒过一定点. 由①②,解得解之得:x=3 y=1 所以过定点(3,1); 故答案为:(3,1)
15.【答案】
【解析】【知识点】空间几何体的三视图与直观图 【试题解析】正方体中,BC 中点为E ,CD 中点为F ,
则截面为
即截去一个三棱锥其体积为:
所以该几何体的体积为:
故答案为:
16.【答案】21
2
【解析】在Rt △ABC 中,BC =3,AB =3,所以∠BAC =60°.
因为BE ⊥AC ,AB =3,所以AE =3
2
,在△EAD 中,∠EAD =30°,AD =3,由余弦定理知,ED 2=AE 2+AD 2-2AE ·AD ·cos ∠EAD =34+9-2×32×3×32=214,故ED =21
2.
17.【答案】 .
【解析】解:不等式,
x 2﹣8x+20>0恒成立
可得知:mx 2+2(m+1)x+9x+4<0在x ∈R 上恒成立.
显然m<0时只需△=4(m+1)2﹣4m(9m+4)<0,
解得:m<﹣或m>
所以m<﹣
故答案为:
18.【答案】[4,16].
【解析】解:直线l:(t为参数),
化为普通方程是=,
即y=tanα•x+1;
圆C的参数方程(θ为参数),
化为普通方程是(x﹣2)2+(y﹣1)2=64;
画出图形,如图所示;
∵直线过定点(0,1),
∴直线被圆截得的弦长的最大值是2r=16,
最小值是2=2×=2×=4
∴弦长的取值范围是[4,16].
故答案为:[4,16].
【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题.
三、解答题
19.【答案】
【解析】(本题满分为13分)
解:(Ⅰ)∵=,… ∵T=2,∴
,… ∴
,… ∵
, ∴, ∴
,… ∴
,… 当
时,f (x )有最小值,当时,f (x )有最大值2.… (Ⅱ)由
, 所以
, 所以
,… 而
,… 所以
,… 即
.…
20.【答案】
【解析】(1)当111,12n a a =+=时,解得11a =.
(1分) 当2n ≥时,2n n S n a +=, ①
11(1)2n n S n a --+-=, ②
①-②得,1122n n n a a a -+=-即121n n a a -=+,
(3分) 即112(1)(2)n n a a n -+=+≥,又112a +=.
所以{}1n a +是以2为首项,2为公比的等比数列. 即12n n a +=故21n n a =-(*n N ∈). (5分)
21.【答案】
【解析】解:依题意,由M=得|M|=1,故M﹣1=
从而由=得═=
故A(2,﹣3)为所求.
【点评】此题考查学生会求矩阵的逆矩阵及掌握矩阵的线性变换,考查学生的计算能力,比较基础.22.【答案】
【解析】证明:(Ⅰ)∵数列{a n}满足a1=,a n+1=a n+(n∈N*),
∴a n>0,a n+1=a n+>0(n∈N*),a n+1﹣a n=>0,
∴,
∴对一切n∈N*,<.
(Ⅱ)由(Ⅰ)知,对一切k∈N*,<,
∴,
∴当n≥2时,
=
>3﹣[1+]
=3﹣[1+]
=3﹣(1+1﹣)
=,
∴a n<1,又,
∴对一切n∈N*,0<a n<1.
【点评】本题考查不等式的证明,是中档题,解题时要注意裂项求和法和放缩法的合理运用,注意不等式性质的灵活运用.
23.【答案】
【解析】解:(1)由题意可知第3组的频率为0.06×5=0.3,
第4组的频率为0.04×5=0.2,
第5组的频率为0.02×5=0.1;
(2)第3组的人数为0.3×100=30,
第4组的人数为0.2×100=20,
第5组的人数为0.1×100=10;
因为第3,4,5组共有60名志愿者,
所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,
每组抽取的人数分别为:第3组=3;第4组=2;第5组=1;
应从第3,4,5组各抽取3,2,1名志愿者.
(3)记第3组3名志愿者为1,2,3;第4组2名志愿者为4,5;第5组1名志愿者为6;
在这6名志愿者中随机抽取2名志愿者有:
(1,2),(1,3),(1,4),(1,5),(1,6),
(2,3),(2,4),(2,5),(2,6),
(3,4),(3,5),(3,6),
(4,5),(4,6),
(5,6);
共有15种,第4组2名志愿者为4,5;至少有一名志愿者被抽中共有9种,
所以第4组至少有一名志愿者被抽中的概率为.
【点评】本题考查列举法计算基本事件数及事件发生的概率,频率分布直方图,考查计算能力.
24.【答案】
【解析】解:(1).
(2)ξ可取0,1,2,3,4,
P(ξ=0)=(1﹣)2(1﹣)2=;
P(ξ=1)=()(1﹣)()2+(1﹣)2=;
P(ξ=2)
=++=

P(ξ=3)==;
P(ξ=4)==.
∴ξ的分布列为:
ξ0 1 2 3 4
P
Eξ=0×+1×+2×+3×+4×=.
【点评】本题主要考查n次独立重复实验中恰好发生k次的概率,等可能事件的概率,体现了分类讨论的数学思想,属于中档题.。

相关文档
最新文档